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Abstract

In this study, based on the optimal free derivative without memory methods proposed by Cordero et al.
[A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative
methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer
Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a
nonlinear equation. The first has two steps with three self-accelerating parameters, and the second has
three steps with four self-accelerating parameters. These parameters are calculated using information
from the current and previous iteration so that the presented methods may be regarded as the with
memory methods. The self-accelerating parameters are computed applying Newton’s interpolatory
polynomials. Moreover, they use three and four functional evaluations per iteration and corresponding
R-orders of convergence are increased from 4 ad 8 to 7.53 and 15.51, respectively. It means that,
without any new function calculations, we can improve convergence order by 93% and 96%. We
provide rigorous theories along with some numerical test problems to confirm theoretical results and
high computational efficiency.

Keywords : Nonlinear equation; With memory method; R-order of convergence; Self accelerating
parameter; Efficiency index.

—————————————————————————————————–

1 Introduction

M
ulti-point iterative with and without mem-
ory methods for solving a nonlinear equa-

tion are great importance among the researchers
in this field. Without doubt, Traub [14] and Os-
trowski [12] made major contributions. Kung and
Traub conjectured any optimal multi-point with-
out memory method has convergence order 2n us-
ing exactly n + 1 functional evaluations per full
cycle [4].
In addition, Ostrowski introduced a criteria for
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comparing different methods, say, efficiency in-
dex which is defined by EI = p

1
n , where p and n

represent convergence order and functional eval-
uations, respectively.
Based on Kung and Traub’s conjecture, during
the last two decades many researchers have de-
signed many optimal without memory methods
[1,5,17] and over recent years several with mem-
ory methods have presented [2,3] and [6-11], too.
In this study, we consider two kind of Cordero
et al.’s methods [1] and try to develop two new
with memory methods. Our improvements have
not been studied before. As the main contribu-
tion of this work, convergence orders have been
increased from 4 and 8 to 7.53 and 15.51, respec-
tively, without any new functional evaluations.
First, we modify the first two and three steps of
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Cordero et al.’s method [1] in such a way that
they are still optimal. Then, introducing the
best approximations for considered accelerators,
we attempt to derive our new with memory meth-
ods.
The rest of this paper is organized as follows: Sec-
tion 2 is devoted to modifications of the two and
three steps of Cordero et al.’s methods [1]. Sec-
tion 3 concerns with developing new with memory
methods. Section 4 includes some numerical per-
formances. And, Section 5 comprises conclusion
remarks.

2 Modified three- and Four-
parametric methods

2.1 three-parametric two-point
method

In this section, our goal is to modify two opti-
mal without memory methods by Cordero et al.
[1]. Let start by the following optimal two-point
without memory method

zn = xn − f(xn)

f [xn, wn]
,

xn+1 = zn − f(zn)

p′2(zn)
,

(2.1)

with this error equation

en+1 = (1 + f ′(α))2c2(c
2
2 − c3)e

4
n +O(e5n). (2.2)

Where wn = xn + f(xn), and p2(zn) is
the interpolating polynomial of the points
(xn, f(xn)), (wn, f(wn)), (zn, f(zn)). This poly-
nomial can be written as

p2(x) =
xn−zn
xn−wn

f [wn, zn] +
wn−zn
wn−xn

f [xn, zn], (2.3)

so, we have

p′2(zn) = f [xn, zn]− f [xn, wn] + f [wn, zn]. (2.4)

Now, we consider the following modification of
(2.1) by adding three free parameters γ, p, and λ
wn = xn + γf(xn),

zn = xn − f(xn)

f [xn, wn] + pf(wn)
,

xn+1 = zn − f(zn)

p′2(zn) + λ(zn − xn)(zn − wn)
.

(2.5)
This method is of four convergence order and we
state it formally in the following theorem

Theorem 2.1 Let f : D → R be sufficiently dif-
ferentiable function with a simple root α ∈ D,
D ⊂ R be an open set, x0 be close enough to α,
then the method (2.5) is at least of fourth-order,
and satisfies α the error equation

en+1 =
(1+γf ′(α))2(p+c2)(λ+c2f ′(α)(p+c2)−c3f ′(α))e4n

f ′(α)

+O(e5n), (2.6)

where en = xn − α and cj =
f (j)(α)
j!f ′(α) .

Proof. We use the Mathematica for finding the
error equation.
f[e ] = f1a ∗

(
e+

∑4
k=2 ck ∗ ek

)
;

ew = e+ 'f[e] (∗ew = w − α∗);
f[x , y ] := f[x]−f[y]

x−y
;

ez = e− Series[ f[e]
f[e,ew]+pf[ew] , {e, 0, 4}]

(∗ez = z − α∗)
Out[a] : (1+ f1a')(p+ c2)e

2 + O[e]3.
p2[t ] = a0 + a1(t− ez) + a2(t− ez)2;
dp2[t ] := a1 + 2a2(t− ez);
a1 := f[e, ez]− f[e, ew] + f[ew, ez];

en+1 = ez− f[ez]
dp2[ez]+˘(ez−e)(ez−ew)//Simplify;

Out[b] : (1+f1a')2(p+c2)(˘+c2f1a(p+c2)−c3f1a)e4

f1a

+O[e]5.

Therefore, we have

en+1 =
(1+γf ′(α))2(p+c2)(λ+c2f ′(α)(p+c2)−c3f ′(α))e4n

f ′(α)

+O(e5n).

2.2 Four-parameteric three-point
method

Now, we consider the following optimal three-
point without memory method that has proposed
by Cordero et al. [1]

zn = xn − f(xn)

f [xn, wn]
,

un = zn − f(zn)

p′2(zn)
, n = 0, 1, · · · ,

xn+1 = un − f(un)

p′3(un)
,

(2.7)

with this error equation

en+1 = (1 + f ′(α))4c22(c
2
2 − c3)

(c32 − c2c3 + c4)e
8
n +O(e9n). (2.8)

Where p3(un) is the interpolating polynomial of
the points (xn, f(xn)), (wn, f(wn)), (zn, f(zn)),
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(un, f(un)). This polynomial can be written as

p3(x) =
(xn−un)(zn−un)
(xn−wn)(zn−wn)

f [wn, un]

+ (wn−un)(zn−un)
(wn−xn)(zn−xn)

f [xn, un] (2.9)

+ (wn−un)(xn−un)
(wn−zn)(xn−zn)

f [zn, un],

so, we have

p′3(un) =−
(
f [zn, un](wn − un)(xn − un)

(xn − wn) + f [xn, un](wn − un)

(zn − un)(wn − zn) + f [wn, un]

(xn − un)(zn − un)(zn − xn)
)
/(

(xn − un)((wn − un)(1− xn − zn

+ 2un) + (xn − un)(zn − un))
)
.

(2.10)

Then, we modify (2.7) as follows similar to (2.5)
wn = xn + γf(xn),

zn = xn − f(xn)
f [xn,wn]+pf(wn)

,

un = zn − f(zn)
p′2(zn)+λ(zn−xn)(zn−wn)

,

xn+1 = un − f(un)
p′3(un)+β(un−wn)(un−xn)(un−zn)

.

(2.11)
This method is of eight convergence order and we
demonstrate it officially in the following theorem

Theorem 2.2 Let f : D → R be sufficiently dif-
ferentiable function with a simple root α ∈ D,
D ⊂ R be an open set, x0 be close enough to α,
then the method (2.11) is at least of eighth-order,
and satisfies α the error equation

en+1 =
(
1 + γf ′(α))4(p+ c2)

2(λ+ c2f
′(α)

(p+ c2)− c3f(α))(−β + c2(λ+ c2f
′(α)

(p+ c2)− c3f
′(α)) + c4f

′(α))e8n

)
f ′(α)2

+O(e9n), (2.12)

where en = xn − α and cj =
f (j)(α)
j!f ′(α) .

Proof. We use the Mathematica for finding the
error equation.
f[e ] = f1a ∗

(
e+

∑5
k=2 ck ∗ ek

)
;

ew = e+ 'f[e] (∗ew = w − α∗);
f[x , y ] := f[x]−f[y]

x−y
;

ez = e− Series[ f[e]
f[e,ew]+pf[ew] , {e, 0, 8}]

(∗ez = z − α∗)
Out[a] : (1+ f1a')(p+ c2)e

2 + O[e]3.
p2[t ] = a0 + a1(t− ez) + a2(t− ez)2;
dp2[t ] := a1 + 2a2(t− ez);
a1 := f[e, ez]− f[e, ew] + f[ew, ez];

eu = ez− f[ez]
dp2[ez]+˘(ez−e)(ez−ew)//Simplify

(∗eu = u− α∗)
Out[b] : (1+f1a')2(p+c2)(˘+c2f1a(p+c2)−c3f1a)e4

f1a

+O[e]5.
p3[t ] = b0 + b1(t− eu) + b2(t− eu)2

+b3(t− eu)3;
dp3[t ] := b1 + 2b2(t− eu) + 3b3(t− eu)2;

b1 := −
(
f[ez, eu](ew− eu)(e− eu)(e− ew)

+f[e, eu](ew− eu)(ew− eu)(ew− ez)

+f[ew, eu](e− eu)(ez− eu)(ez− e)
)

/
(
(e− eu)((ew− eu)(1− e− ez

+2eu) + (e− eu)(ez− eu))
)
;

en+1 = eu− f[eu]
dp3[eu]+↓(eu−ew)(eu−e)(eu−ez)

Out[c] :
(
(1+ f1a')4(p+ c2)

2(˘+ c2f1a

(p+ c2)− c3f1a)(−↓+ c2(˘+ c2f1a

(p+ c2)− c3f1a) + c4f1a)e
8
)
/f1a2

+O[e]9.

Therefore, we gain

en+1 =
(
(1 + γf ′(α))4(p+ c2)

2(λ+ c2f
′(α)

(p+ c2)− c3f
′(α))(−β + c2(λ

+ c2f
′(α)(p+ c2)− c3f

′(α))

+ c4f
′(α))e8n

)
/f ′(α)2 +O(e9n).

3 The developments of new
with memory methods

3.1 A new family of two-step with
memory methods

In structure of iterative with memory methods
by using free parameters and utilization suitable
approximations for them, without any new func-
tion evaluations, one is able to increase the con-
vergence order of an optimal method by apply-
ing the previous and current information of iter-
ations. To this end, we modify γ → γn, p → pn,
and λ → λn. According to error equation (2.6),
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to increase convergence order, we consider
1 + γnf

′(α) = 0,

pn + c2 = 0,

λn + f ′(α)c2(p+ c2)− f ′(α)c3 = 0,

(3.13)

So, we have

γn = − 1
f ′(α) , pn = − f ′′(α)

2!f ′(α) , λn = f ′′′(α)
3! .

(3.14)

Because α is unknown, therefore, we can not com-
pute f (J)(α), j = 1, 2, 3. Then, we use interpola-
tion to approximate them as follows

γn = − 1
N ′

3(xn)
, pn = − N ′′

4 (wn)
2!N ′

4(wn)
, λn =

f ′′′
5 (zn)
3! ,

where N3(t) and N4(t) are Newton’s iterpolatory
polynomials of third and fourth degrees. Hence,
the new with memory method is given by

x0, γ0, p0 are given, then w0 = x0 + γ0f(x0),

γn = − 1
N ′

3(xn)
, pn = − N ′′

4 (wn)
2N ′

4(wn)
, λn =

f ′′′
5 (zn)
3! ,

wn = xn + γnf(xn),

zn = xn − f(xn)
f [xn,wn]+pnf(wn)

, n = 1, 2, · · · ,
xn+1 = zn − f(zn)

p′2(zn)+λn(zn−xn)(zn−wn)
.

(3.15)
To prove its convergence order, we need to fol-
lowing lemma

Lemma 3.1 If γn = −1/N ′
3(xn) and pn =

−N ′′
4 (wn)/(2N

′
4(wn)), n = 1, 2, . . ., then the es-

timates

1 + γnf
′(α) ∼ en−1,z en−1,w en−1, (3.16)

and

c2 + pn ∼ en−1,z en−1,w en−1, (3.17)

and

λn + f ′(α)c2(pn + c2)− f ′(α)c3

∼ en−1,z en−1,w en−1, (3.18)

hold.

Proof. Similar to Lemma 1 in [15] and Lemma
4 and 6 in [9].
The following theorem determines the conver-
gence order of the two-point iterative with mem-
ory method (3.15).

Theorem 3.1 If an initial estimation x0 is close
enough to a simple root α of f(x) = 0, being f
a real sufficiently differentiable function, then the
R-order of convergence of the two-point method
with memory (3.15) is at least 7.5311.

Proof. Let {xn} have converged order R. Then,
we can write

en+1 ∼ eRn , en = xn − α, (3.19)

Hence

en+1 ∼ eRn = (eRn−1)
R = eR

2

n−1. (3.20)

Suppose sequences {wn} and {yn} have converged
p and q, respectively,

en,w ∼ epn = (eRn−1)
p = eRp

n−1 (3.21)

and

en,z ∼ eqn = (eRn−1)
q = eRq

n−1. (3.22)

By (3.22), (3.21), and Lemma 3.1, we obtain

1 + γnf
′(α) ∼ ep+q+1

n−1 , (3.23)

c2 + pn ∼ ep+q+1
n−1 . (3.24)

Substituting these into en,w, en,y, and en+1 in
Theorem 3.1, we have

en,w ∼
(
1 + γnf

′(α)
)
en = e

(1+p+q)+R
n−1 , (3.25)

en,z ∼ c2

(
1 + γnf

′(α)
)
(c2 + pn)e

2
n

= e
2(1+p+q)+2R
n−1 , (3.26)

and

en+1 ∼ A4

(
1 + γnf

′(α)
)2

(c2 + pn)

(λ+ f ′(α)c2(p+ c2)− f ′(α)c3)e
4
n

∼ e
4(1+p+q)+4R
n−1 . (3.27)

Equating the powers of error exponents of en−1 in
pairs of relations (3.21)-(3.25), (3.22)-(3.26), and
(3.20)-(3.27), we have

Rp−R− (p+ q + 1) = 0,

Rq − 2R− 2(p+ q + 1) = 0,

R2 − 4R− 4(p+ q + 1) = 0.

(3.28)

This system has the solution p = 1.8828, q =
3.7656, and R = 7.5311 which specifies the R-
order of convergence of the derivative-free scheme
with memory (3.15). 2
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3.2 A new family of three-step with
memory methods

In a similar way to former section, in addi-
tion to mentioned parameters, due to three-point
method error equation (2.12), we modify β → βn,
too. Then, we have



1 + γnf
′(α) = 0,

pn + c2 = 0,

λn + f ′(α)c2(p+ c2)− f ′(α)c3 = 0,

−βn + c2(λ+ c2f
′(α)(p+ c2)− c3f

′(α))

+c4f
′(α) = 0.

(3.29)
So, we gain

γn = − 1
f ′(α) , pn = − f ′′(α)

2!f ′(α) ,

λn = f ′′′(α)
3! , βn =

f (4)(α)

4!
. (3.30)

Because α is unknown, therefore, we can not com-
pute f (J)(α), j = 1, 2, 3, 4. Then, we use interpo-
lation to approximate them as follows

γn = − 1
N ′

4(xn)
, pn = − N ′′

5 (wn)
2!N ′

5(wn)
,

λn =
N ′′′

6 (zn)
3! , βn =

N
(4)
7 (un)
4! ,

where Ni(t), (i = 4, 5, 6, 7), are Newton’s iterpo-
latory polynomials of i degrees. As we state in
previous section by estimating γn, pn, λn, and
βn with Newton’s interpolatory polynomials, we
find out new three-point methods with memory
as follows

x0, γ0, p0 are given, then w0 = x0 + γ0f(x0),

γn = − 1
N ′

4(xn)
, pn = − N ′′

5 (wn)
2N ′

5(wn)
,

wn = xn + γnf(xn), n = 1, 2, . . . ,

zn = xn − f(xn)
f [xn,wn]+pnf(wn)

,

un = zn − f(zn)
p′2(zn)+λn(zn−xn)(zn−wn)

,

xn+1 = un − f(un)
p′3(un)+βn(un−wn)(un−xn)(un−zn)

.

(3.31)
To demonstrate the convergence order of (3.31),
we require this lemma

Lemma 3.2 If γn = −1/N ′
4(xn) and pn =

−N ′′
5 (wn)/(2N

′
5(wn)), n = 1, 2, . . ., then the es-

timates

1 + γnf
′(α) ∼ en−1,u en−1,z en−1,w en−1, (3.32)

and

c2 + pn ∼ en−1,u en−1,z en−1,w en−1, (3.33)

λn + f ′(α)c2(pn + c2)− f ′(α)c3

∼ en−1,u en−1,z en−1,w en−1, (3.34)

− β + c2(λ+ c2f
′(α)(p+ c2)− c3f

′(α))

+ c4f
′(α) ∼ en−1,u en−1,z en−1,w en−1, (3.35)

hold.

Proof. Similar to Lemma 1 in [15] and Lemma
4 and 6 in [9].
The next theorem shows that the convergence
order of the three-step iterative with memory
method (3.31).

Theorem 3.2 If an initial estimation x0 is close
enough to a simple root α of f(x) = 0, being f
a real sufficiently differentiable function, then the
R-order of convergence of the three-step method
with memory (3.31) is at least 15.5156.

Proof. Let {xn} have converged order R. Then,
we can write

en+1 ∼ eRn , en = xn − α, (3.36)

Hence

en+1 ∼ eRn = (eRn−1)
R = eR

2

n−1. (3.37)

Assume sequences {wn}, {zn}, and {un} have
converged p, q, and s, respectively, that is

en,w ∼ epn = (eRn−1)
p = eRp

n−1, (3.38)

en,z ∼ eqn = (eRn−1)
q = eRq

n−1, (3.39)

and

en,u ∼ esn = (eRn−1)
s = eRs

n−1. (3.40)

By (3.38), (3.39), (3.40), and Lemma 3.2, we ob-
tain

1 + γnf
′(α) ∼ ep+q+s+1

n−1 , (3.41)

c2 + pn ∼ ep+q+s+1
n−1 . (3.42)

Substituting these into en,w, en,z, en,u, and en+1

in Theorem 3.2, we have

en,w ∼
(
1 + γnf

′(α)
)
en = e

(1+p+q+s)+R
n−1 , (3.43)
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Table 1: Computational order of convergence of (3.31)

functions |x1 − α| |x2 − α| |x3 − α| COC

f1(x) 8.2290(−3) 1.0503(−30) 1.4474(−472) 15.848
f2(x) 1.2212(−2) 7.8503(−36) 1.9533(−549) 15.475
f3(x) 3.3663(−3) 5.6416(−46) 1.6379(−713) 15.605
f4(x) 6.2164(−4) 7.3597(−43) 1.3871(−652) 15.664
f5(x) 2.8111(−7) 9.0115(−107) 8.5433(−1644) 15.448

Table 2: Computational order of convergence of (3.15)

functions |x1 − α| |x2 − α| |x3 − α| COC

f1(x) 1.0831(−2) 1.1281(−13) 2.1218(−99) 7.7936
f2(x) 4.6845(−2) 3.0552(−10) 2.1117(−74) 7.8469
f3(x) 1.1972(−2) 4.8007(−19) 8.2100(−142) 7.4840
f4(x) 1.4378(−3) 7.6488(−12) 4.8261(−85) 8.8502
f5(x) 4.5624(−4) 3.6324(−26) 1.3751(−192) 7.5307

en,z ∼ c2

(
1 + γnf

′(α)
)
(c2 + pn)e

2
n

= e
2(1+p+q+s)+2R
n−1 , (3.44)

en,u ∼ an,4

(
1 + γnf

′(α)
)2

(c2 + pn)

(λ+ f ′(α)c2(p+ c2)− f ′(α)c3)e
4
n

= e
4(1+p+q+s)+4R
n−1 , (3.45)

and

en+1 ∼ an,8

(
1 + γnf

′(α)
)4

(c2 + pn)
2(λ+ f ′(α)c2

(p+ c2)− f ′(α)c3)(−β + c2(λ+ c2f
′(α)

(p+ c2)− c3f
′(α)) + c4f

′(α))e8n

∼ e
8(1+p+q+s)+8R
n−1 . (3.46)

Equating the powers of error exponents of en−1

in pairs of relations (3.38)-(3.43), (3.39)-(3.44),
(3.40)-(3.45), and (3.37)-(3.46), we have

Rp−R− (p+ q + s+ 1) = 0,

Rq − 2R− 2(p+ q + s+ 1) = 0,

Rs − 4R− 4(p+ q + s+ 1) = 0,

R2 − 8R− 8(p+ q + s+ 1) = 0.

(3.47)

This system has the solution p = 1.9394, q =
3.8789, s = 7.7578, and R = 15.5156 which spec-
ifies the R-order of convergence of the derivative-
free scheme with memory (3.31). 2

4 Numerical Results

Now we show the convergence behavior of de-
veloped the with memory methods in action. For

this purpose, ten test problems are chosen along
with their initial approximations and the exact
zeros in Table 1. The errors |xn − α| denote
approximations to the sought zeros, and a(−b)
stands for a × 10−b. Moreover, COC indicates
the computational order of convergence [16] and
is computed by

COC =
log|f(xn)/f(xn−1)|
log|f(xn−1)/f(xn−2)|

. (4.48)

To carry out the numerical results, the pack-
age Mathematica 9 with multi-precision arith-
metic was used. We have used γ0 = 0.01, p0 =
−1, λ0 = 0.1, β0 = 5 for all test problems. In
Tables 1 and 2, we have examined some methods
with different kinds of convergence order. It is
observed that these methods support their theo-
retical aspects.



f1(x) = x log(x+ 1) + ex
2+x cosx−1 sinx,

x0 = 0.6, α = 0,

f2(x) = ex
3−x − cos(x2 − 1) + x3 + 1,

x0 = −1.65, α = −1,

f3(x) =
1
2(e

x−2 − 1),

x0 = 2.5, α = 2,

f4(x) = (x− 1)(x10 + x3 + 1) sinx,

x0 = 0.7, α = 1,

f5(x) = ex
2−4 + sin(x− 2)− x4 + 15,

x0 = 1.67, α = 2.
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5 Conclusion

In this work, we have improved two kinds of
optimal without memory methods so that they
achieve convergence orders 7.53 and 15.51, re-
spectively, using three and four functional eval-
uations. In other words, the efficiency indices of
the optimal without memory methods have been
increased from 4

1
3 ≃ 1.5874 and 8

1
4 ≃ 1.6818

to 7.53
1
3 ≃ 1.9600 and 15.51

1
4 ≃ 1.9845, which

means that we were able to increase the conver-
gence orders about 93% and 96%, respectively.
Studying basin of attractions of the proposed
methods can be considered for the future works.
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