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Abstract

Let R be an associative ring with identity. An element x ∈ R is called ZG-regular (resp. strongly
ZG-regular) if there exist g ∈ G, n ∈ Z and r ∈ R such that xng = xngrxng (resp. xng = x(n+1)g).
A ring R is called ZG-regular (resp. strongly ZG-regular) if every element of R is ZG-regular (resp.
strongly ZG-regular). In this paper, we characterize ZG-regular (resp. strongly ZG-regular) rings.
Furthermore, this paper includes a brief discussion of ZG-regularity in group rings.
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1 Introduction

R
ecall that an element x in R is said to be reg-
ular if xyx = x, for some y ∈ R, the ring

R is regular if every element of R is regular and
an element x ∈ R is said to be strongly (Von
Neumann) regular if there exists y ∈ R such that
x = x2y, the ring R is strongly regular if each
of elements R is strongly regular. More proper-
ties of regular and strongly regular rings can be
found for example in [2, 7, 10]. An element a ∈ R
is said to be π-regular if there exist b ∈ R and
a positive integer n such that an = anban. An
element a ∈ R is said to be strongly π-regular if
an = an+1b. The ring R is π-regular if every ele-
ment of R is π-regular and is strongly π-regular if
every element of R strongly π-regular. By a result
of Azumaya [3] and Dischinger [9], the element a
can be chosen to commute with b. In particular
this definition is left-right symmetric. π-regular
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and strongly π-regular rings, are studied in par-
ticular in [3, 2, 4, 5, 6, 8]. Denote by ZG the in-
tegral group ring of a finite group G. An element
x ∈ R is said to be G-regular if there exist y ∈ R
and g ∈ G such that xg = xgyxg. The ring R is
G-regular if each elements of R is G-regular. An
element x ∈ R is said to be strongly G-regular if
there exist an element y ∈ R and g ∈ G such that
xg = x2gy, with this property that (x2)g = (xg)2.
A ring R is strongly G-regular if every element
of is strongly G-regular. A ring R is abelian if
every idempotent element of R is central. A ring
R is called locally finite if every finite subset in it
generates a finite semigroup multiplicatively. A
group is locally finite if every finitely generated
subgroup in it, is finite. The n×n full triangular
matrix ring , the n × n upper triangular matrix
ring, the n× n lower triangular matrix ring over
denote by Mn(R), Un(R), Ln(R) respectively. In
Section 2 we define ZG-regular and strongly ZG-
regular rings and investigate some characteriza-
tion of them. Let G be a group and X a set.
Then a group action (or just action) of G on X
is a binary operation:

µ : X ×G −→ X
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(If there is no fear of confusion, we write
µ(x, g) simply as by xg) such that

(i) (xg)h = xgh for all x ∈ X and g, h ∈ G,

(ii) x1 = x for all x ∈ X.

If S is a subset of R and
∏
i∈I Ri is a finite

direct product of {Ri}i∈I , then we define:
ang = (ag)n, (xi)

g
i∈I = (xgi )i∈I , S

g = {xg|x ∈ S}.
For each (xi)i∈I ∈

∏
i∈I Ri, g ∈ G, n ∈ Z . The

main purpose of Section 3 is to characterize ZG-
regular and strongly ZG-regular group rings.

2 Preliminarie

Definition 2.1 An element x ∈ R is called ZG-
regular (resp. Strongly ZG-regular) if there exist
g ∈ G, n ∈ Z and r ∈ R such that xng = xngrxng

(resp. xng = x(n+1)gr). A ring R is called ZG-
regular (resp. Strongly ZG-regular) if every el-
ement of R is ZG-regular (resp. strongly ZG-
regular). So an element x ∈ R is ZG-regular
(resp. Strongly ZG-regular) if there exists g ∈
G such that xg is π-regular (resp. Strongly π-
regular).

Now we define a ZG-regular ideal as follows:
Let µ : R×G −→ R be a group action and I be a
two-sided ideal of R. Then group G acts on R/I
by the rule µ(r + I, g) = µ(r, g) + I.

Definition 2.2 Let J be a two-sided ideal of a
ring R. J is a ZG-regular ideal of R in case for
any x ∈ J , there exist n ∈ Z and y ∈ R such that
xng = xngyxng.

Theorem 2.1 Any factor ring of a ZG-regular
(resp. Strongly ZG-regular) ring is ZG-regular
(resp. Strongly ZG-regular). In particular a ho-
momorphic image of a ZG-regular (resp. Strongly
ZG-regular) ring is ZG-regular (resp. Strongly
ZG-regular).

Proof. Let R be ZG-regular (resp. Strongly ZG-
regular) and I be a two-sided ideal of R. Let x =
x + I ∈ R/I. Since R is ZG-regular, then there
exist g ∈ G, n ∈ Z and r ∈ R such that xng =
xngrxng (resp. xng = x(n+1)gr). This implies
xng = xngrxng (resp. xng = xngr). Thus by
definition we have xng = xngrxng (resp. xng =
x(n+1)gr).

Theorem 2.2 Let R be a ring. Then the follow-
ing conditions are equivalent:

(i) R is strongly ZG-regular.

(ii) R/N is strongly ZG-regular that is the prime
radical N of R.

(iii) Every prime factor ring of R is strongly ZG-
regular.

Proof. It suffices to show that (iii) implies (i).
Suppose R contains an element a that is not
strongly ZG-regular. Then by Zorn s lemma,
there exists an ideal I of R that is maximal with
respect to the property that a is not strongly ZG-
regular in R = R/I. Since I can not be prime,
there exist ideals K,L properly containing I such
that KL ⊆ I Then we can find a n ∈ Z such that
ang1 −a(n+1)g1x ∈ K and ang2 −a(n+1)g2y ∈ L for
some x, y ∈ R, g1, g2 ∈ G. But

an(g1+g2) − a(n+1)(g1+g2)(a−g1y + a−g2x+ xy) =
(ang1 − a(n+1)g1x)(ang2 − a(n+1)g2y) ∈ KL ⊆ I

Which is a contradiction.

Lemma 2.1 Let G be a group acts on the ring R
by this property that (xy)g = xgyg for each x, y ∈
R. If x, y ∈ R, g ∈ G and x′ = xng−xngyxng, and
if x′n

′h = x′n
′han

′
x′n

′h for some a ∈ R and some
h ∈ G. Then xng = xngbxng for some b ∈ R.

Proof. We have

xng = x′ + xngyxng

= (x′n
′han

′
x′n

′h)n
′−1h−1

+ xngyxng

= x′ah
−1
x′ + xngyxng

= (xng − xngyxng)ah
−1
(xng − xngyxng)

+xngyxng

= (xngah
−1 − xngyxngah

−1
)(xng − xngyxng)

+xngyxng

= xngah
−1
xng − xngyxngah

−1
xng

−xngah−1
xngyxng + xngyxngah

−1
xngyxng

+xngyxng

= xng(ah
−1 − yxngah

−1 − ah
−1
xngy

+yxngah
−1
xngy + y)xng

(2.1)
Now by taking b = ah

−1 − yxngah−1 −ah−1
xngy+

yxngah
−1
xngy + y we have xng = xngbxng.

Theorem 2.3 Let J ⊆ K be two sided ideals in
a ring R. So J and K/J are both ZG-regular if
and only if K is ZG-regular.
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Proof. Assume that J and K/J are both ZG-
regular. Given x ∈ J , it follows from the regular-
ity ofK/J that xng−xngyxng ∈ J for some y ∈ K
and n ∈ Z. Consequently, (xng − xngyxng)n

′h =
(xng − xngyxng)n

′hz(xng − xngyxng)n
′h for some

z ∈ J , from which by lemma 2.1 we conclude
that xng = xngwxng for some w ∈ K. Thus, K
is ZG-regular. Conversely, assume that K is a
ZG-regular ring. Clearly K/J is ZG-regular. It
suffices to show that J is ZG-regular. Since K
is a ZG-regular ring then for any ∀x ∈ J , there
exist g ∈ G and y ∈ K and n ∈ Z such that

xng ∈ J , xng = xngyxng

Now by taking z = yxngy ∈ J we have:

xng = xngzxng

Therefore, J is a ZG-regular ideal.

Lemma 2.2 A finite direct product
∏
i∈I Ri (I

is a finite set) of ZG-regular rings {Ri}i∈I is ZG-
regular.

Proof. At first we prove that direct product
of two ZG-regular rings is ZG-regular. Let R1

and R2 be two ZG-regular rings. Then for ev-
ery (a1, a2) ∈ R1 × R2 there exist g1, g2 ∈ G
, (r1, r2) ∈ R1 × R2 and n1, n2 ∈ Z such that
an1g1
1 = an1g1

1 r1a
n1g1
1 and an2g2

2 = an2g2
2 r2a

n2g2
2 .

Now by setting ng = n1n2g1g2 we have

(a1, a2)
ng = (ang1 , ang2 )

= ((an1g1
1 )n2g2 , (an2g2

2 )n1g1)
= ((an1g1

1 r1a
n1g1
1 )n2g2 , (an2g2

2 r2a
n2g2
2 )n1g1)

= (a1, a2)
ng(rn2g2

1 , rn1g1
2 )(a1, a2)

ng

(2.2)
Thus by induction any finite direct product of
ZG-regular rings is ZG-regular.

Theorem 2.4 (i) Let x ∈ R be ZG-regular,
then there exist g ∈ G, n ∈ Z and r ∈ R
such that xngr is idempotent.

(ii) If an element x ∈ R is π-regular, then it is
ZG-regular by taking G to be trivial group.

(iii) An element x ∈ R is ZG-regular if there
exist g ∈ G, n ∈ Z such that xng is Von
Neumann.

Proof. (i) Since x ∈ R is ZG-regular thus there
exist g ∈ G, n ∈ Z and r ∈ R such that xng =
xngrxng therefore xngr = xngrxngr = (xngr)2.
(ii), (iii) are trivial.

Theorem 2.5 Let S be the center of ZG-regular
ring R with the property that Sng ⊆ S, for any
g ∈ G, n ∈ Z. Then S is ZG-regular.

Proof. Let R be a ring with center S, and let
x ∈ S. There exist y ∈ R, n ∈ Z and g ∈ G such
that xngyxng = xng, and we set z = yxngy. Note
that

xngzxng = xngyxngyxng = xng

For any r ∈ R, we have

zr = yxngyr
= y2rxng

= y2rxngyxng

= y2rxngxngy
= yxngyrxngy
= yxngyxngry
= yxngry

(2.3)

Similarly we have rz = yrxngy, so rz = yrxngy =
yxngry = zr, therefore z ∈ S. Thus S is also ZG-
regular.

Proposition 2.1 A ring R is strongly ZG-
regular, if and only if R satisfies the descending
chain condition on principal right ideals of the
form agR ⊇ a2gR ⊇ ..., for every a ∈ R and an
element g ∈ G.

Proof. One direction is clear. Assume R is not
strongly ZG-regular. Then there exists an ele-
ment a ∈ R such that xng ̸= x(n+1)gr for any
r ∈ R and g ∈ G and n ∈ Z. We have a descend-
ing chain agR ⊃ a2gR ⊃ ... of ideals of R which
does not terminate, which is a contradiction.

Lemma 2.3 Let R be a ring. If R is locally fi-
nite and a ∈ R, then at is an idempotent for some
positive t.

Proof. see [11].

Theorem 2.6 Let R be a ring. If R is a locally
finite ring, then R is strongly ZG-regular.

By lemma 2.3, a locally finite ring R satisfies the
descending chain condition on principal right ide-
als of form aR ⊇ a2R ⊇ ..., for every a in R;
then R satisfies the descending chain condition on
principal right ideals of form agR ⊇ a2gR ⊇ ...,
for every a ∈ R and g ∈ G. Therefore R is
strongly ZG-regular by proposition 2.1.

Proposition 2.2 Let the n × n full triangular
matrix ring over R be ZG-regular. Then R is
ZG-regular.
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Proof. It is obvious. We introduced π-regular
(resp. Strongly π-regular) rings as an example of
ZG-regular (resp. Strongly ZG-regular) rings by
taking G to be trivial group. Lee and Kim showed
in [12], that the n by n full matrix rings over
strongly π-regular ring R, need not be strongly
π-regular (see: Example 2.1), so we conclude that
the n× n full triangular matrix ring over R need
not be strongly ZG-regular rings.

Theorem 2.7 For a ring R and a positive inte-
ger m, the following conditions are equivalent.

(a) R is locally finite.

(b) Mn(R) is locally finite.

(c) Un(R) is locally finite.

(d) Ln(R) is locally finite.

Proof. see [11].

Example 2.1 Let R be a locally finite ring.
Mn(R), Un(R), Ln(R) R are examples of strongly
ZG-regular rings by Theorems 2.6 and 2.7.

Lemma 2.4 Let R be an abelian ZG-regular
ring. Then for each x ∈ R, there exist r ∈ R, g ∈
G and n ∈ Z such that xngr = rxng.

Since R is ZG-regular, then by theorem 2.4 (i), for
each x ∈ R, there exist g ∈ G, n ∈ Z, r ∈ R such
that xngr, rxng ∈ Id(R) and since R is abelian
then xngr, rxng ∈ Z(R), therefore we have:

xngr = (xngrxng)r
= xng(rxng)r
= xngr(rxng) = r(xngrxng)
= rxng

(2.4)

Definition 2.3 An element x ∈ R is said unit
ZG-regular if there exist g ∈ G and u ∈ U(R) and
n ∈ Z depending on x such that xng = xnguxng.
R is unit ZG-regular if every element of R is unit
ZG-regular.

Theorem 2.8 Let R be an abelian ZG-regular
ring. Then R is unit ZG-regular.

Since R is abelian ZG-regular by lemma 2.4, for
each x ∈ R, there exist g ∈ G, y ∈ R and n ∈ Z,
such that xngy = yxng.

Let u = xng+xngy− 1 and v = xngy+xngy2− 1.
Since xngy = yxng, then we have:

uv = (xng + xngy − 1)(xngy + xngy2 − 1)
= xng(xngy) + xngxngy2 − xng

+(xngy)(xngy) + (xngy)(xngy2)
−xngy − xngy − xngy2 + 1
= xng(yxng) + (xngyxng)y − xng

+(xngyxng)y + (xngyxng)y2

−xngy − xngy − xngy2 + 1
= xng + xngy − xng + xngy
+xngy2 − xngy − xngy − xngy2 + 1 = 1

(2.5)
And

vu = (xngy + xngy2 − 1)(xng + xngy − 1)
= xngyxng + xngyxngy − xngy
+xngy2xng + xngy2xngy
−xngy2 − xng − xngy + 1
= xngyxng + (xngyxng)y − xngy
+xngy(yxng) + xngy(yxng)y−
xngy2 − xng − xngy + 1
= xng + xngy − xngy + (xngyxng)y
+xngyxngy2 − xngy2 − xng − xngy + 1
= xng + xngy − xngy + xngy
+xngy2 − xngy2 − xng − xngy + 1 = 1

(2.6)
Therefore, uv = vu = 1. Moreover,

xngvxng = xng(xngy
+xngy2 − 1)xng

= xngxngyxng

+xngxngy2xng − xngxng

= xngxng + xngxngyyxng

−xngxng
= (xngyxng)yxng

= xngyxng

= xng

(2.7)

Theorem 2.9 Let R be an abelian ZG-regular
ring, and x ∈ R. Then there exist g ∈ G, n ∈ Z
such that xng = eu, for some e ∈ Id(R) and
u ∈ U(R).

Proof. By theorem 2.8, R is unit ZG-regular.
Thus there exists v ∈ U(R) such that xng =
xngvxng. Let u be the multiplicative inverse of
v in R, then xng = xnguv = xngvu = eu. Since
e = xngv ∈ Id(R). Thus xng = eu for some
e ∈ Id(R) and u ∈ U(R).

Theorem 2.10 Let R be an abelian ring. Then
the following statements are equivalent:

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


P. Darabi et al. /IJIM Vol. 8, No. 4 (2016) 331-337 335

(i) R is a unit ZG-regular ring.

(ii) For every a ∈ R, there exist g ∈ G, n ∈ Z
such that ang can be written as a product of
a unit, and an idempotent of R.

(iii) For every a ∈ R, there exist g ∈ G, n ∈ Z
such that ang can be written as a product of
an idempotent and a unit of R.

Proof. (i ⇒ ii) By theorem 2.9, is clear.
(ii ⇒ i) Suppose there exists g ∈ G, n ∈ Z such
that ang = ve where v ∈ U(R) and e2 = e. The
latter implies v−1ang=v−1angv−1ang, so ang =
angv−1ang, as desired.

3 ZG-regular group ring

Let R be a ring and G a group. We shall de-
note the group ring of G over R as RG. The
augmentation ideal of RG is generated by {1, g}.
We shall use ∆ to denote the augmentation ideal
of RG. It is known that R is a homomorphic im-
age of RG. Since RG/∆ ∼= R. For any element
x =

∑
g∈G xgg ∈ RG, the support of x, written

as Supp(x), is the subset of G consisting of all
those g ∈ G such that xg ̸= 0. Since xg ̸= 0 for
only finitely many g ∈ G, so Supp(x) is a finite
subset of G.

Corollary 3.1 Let R be a ring and G a group.
If RG is a ZG-regular ring, then R is a ZG-
regular ring.

Proof. Since R is homomorphic image of RG,
then R is ZG-regular by theorem 2.1. For any
idempotent e in a ring, we have the following
peirce decomposition:

R = eRe⊕ eRf ⊕ fRe⊕ fRf

Where f = 1 − e is the complementary idempo-
tent to e. Two ring eRe and fRf be characterized
by the equation:
eRe = {rR : er = r = re},
fRf = {rR : fr = r = rf}

Lemma 3.1 e is a central idempotent iff eRf =
fRe = 0.

Proof. For r ∈ R, erf = 0 and fre = 0 amount
to er = ere = re.

Proposition 3.1 Let e ̸= 0 be any central idem-
potent in R. If eRe and fRf are ZG-regular,
then R is a ZG-regular ring.

Since e is a central idempotent, then we have the
peirce decomposition:

R = eRe⊕ fRf

Thus by lemma 2.2, since eRe and fRf are ZG-
regular then R is ZG-regular.

Theorem 3.1 Let e1+. . .+en = 1 be a decompo-
sition of 1 into sums of orthogonal idempotents.
If eiRei is ZG-regular for each i, then R is ZG-
regular.

Proof. It is obvious from Lemma 2.2 and Propo-
sition 3.1.

Theorem 3.2 Let R be a commutative semiper-
fect ring and G a group, and let (eRe)G be ZG-
regular for each local idempotent e in R. Then
RG is ZG-regular.

Proof. Since R is semiperfect, so by theo-
rem 6.27 of [1], R has a complete orthogonal
set e1, e2, ..., en of idempotent R. So ei is a lo-
cal idempotent for each i ∈ {0, ..., n}. Now
by hypothesis, (eiRei)G is ZG-regular. Since,
(eiRei)G ∼= ei(RG)ei for each i, it follows that
ei(RG)ei is ZG-regular. Hence RG is ZG-regular
by proposition 3.1.

Theorem 3.3 Let R be a ring in which 2 is in-
vertible and G = {1, g} be a group. Then RG is
ZG-regular if and only if R is ZG-regular.

Proof. If RG is ZG-regular, then by corollary
3.1, R is ZG-regular. Conversely, since R is ZG-
regular and 2 is invertible in R, then RG ∼= R×R
via the map a+ bg ⇐⇒ (a+ b, a− b). Hence RG
is ZG-regular by lemma 2.2.

Theorem 3.4 Let R be a ring and G a group.
Then RG is strongly ZG-regular if and only if
(R/P )G is strongly ZG-regular for every prime
ideal P of R.

Proof. If RG is strongly ZG-regular, and I is an
ideal of R, then since

(R/I)G ∼= RG/IG

and homomorphic images of strongly ZG-regular
rings strongly ZG-regular, it follows that (R/I)G
is strongly ZG-regular.
Conversly, suppos to the contrary that RG is not
strongly ZG-regular. Then there exists an ele-
ment x ∈ RG such that for any n ∈ Z and g ∈ G,
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xng ̸= x(n+1)gy for any y ∈ RG. Therefore the
sequence
xgRG ⊇ x2gRG
⊇ ... ⊇ xngRG ⊇ x(n+1)gRG ⊇ ...
ideals of does not terminate. Let ℑ be the set of
all ideals I of R such that the sequence
(x+ IG)g(RG/IG)
⊇ (x+ IG)2g(RG/IG) ⊇ ...
does not terminate. Note that ℑ ̸= ∅, since
(0) ∈ ℑ. Furthermore, ℑ is partially ordered
by inclusion. Let (Iα)α∈Ω be a chain of ele-
ments of ℑ and let J = ∪α∈ΩIα. Clearly, J is
an ideal of R and Iα ⊂ J for all α ∈ Ω. We
show that J ∈ ℑ. Suppose that J /∈ ℑ . Then
z = xng −x(n+1)gr ∈ JG for some r ∈ RG, g ∈ G
and n ∈ Z. Since Supp(z) is finite, there exists
some α ∈ Ω such that z ∈ IαG. It follows that
the sequence (x+ IαG)

g(RG/IαG)
⊇ (x+ IαG)

2g(RG/IαG) ⊇ ...
terminates, which is a contradiction. Therefore
J ∈ ℑ and thus by Zorn ’s Lemma, ℑ contains a
maximal element M . Since (R/M)G ∼= RG/MG
is not strongly ZG-regular, it follows by hypoth-
esis that M is not a prime ideal. Therefore there
exist ideals A,B of R such that AB ⊆ M but
A,B ̸⊆ M . Let A′ = M + A and B′ = B +M .
Then M is strictly contained in A′ and B′, and
we also have that:

A′B′ = (M +A)(M +B) ⊆M

By the maximality of M in ℑ, the sequences
(x+A′G)2g(RG/A′G)
⊇ (x+A′G)2g(RG/A′G) ⊇ ...
And
(x+B′G)2g(RG/B′G)
⊇ (x+B′G)2g(RG/B′G) ⊇ ...
both terminate. Hence there exists m ∈ Z
such that (xmg + A′G)(RG/A′G) = (x(2m+1)g +
A′G)(RG/A′G) and (xmg + B′G)(RG/B′G) =
(x(2m+1)g +B′G)(RG/B′G).
It follows that xmg −x(2m+1)gs ∈ A′G and xmg −
x(2m+1)gt ∈ B′G for some s, t ∈ RG. Therefore:
(xmg − x(2m+1)gs)(xmg − x(2m+1)gt)
∈ (A′B′)G ⊆MG
Form which it follows that xmg − x(2m+1)gw ∈
MG for some w ∈ RG. Hence the sequence:
(x+MG)g(RG/MG)
⊇ (x+MG)2g(RG/MG) ⊇ ...
terminates; contradicting the fact that M ∈ ℑ.
We thus have that RG must be a strongly ZG
ring.

Theorem 3.5 Let R be a ring with artinian
prime factors and G be a locally finite group.
Then RG is strongly ZG-regular.

Proof. Let P be a prime ideal of R and x =∑
g∈G rgg ∈ (R/P )G. Let Hx be the subgroup of

G generated by the support of x. Since Supp(x)
is finite and G is locally finite, it follows that Hx

is finite. It is clear that x ∈ (R/P )Hx is strongly
ZG-regular. Indeed, sinceR/P is artinian andHx

is finite, so (R/P )Hx is artinian; hence strongly
ZG-regular. Since x is arbitrary in (R/P )G, so
(R/P )G is also strongly ZG-regular. By theorem
3.3, it follows that RG is strongly ZG-regular.

Theorem 3.6 Let R be a ring, G be a group and
Un(RG) be strongly ZG-regular for n ≥ 2. Then
R is strongly ZG-regular.

Proof. As Un(RG) is strongly ZG-regular, so by
example 2.1, RG is strongly ZG-regular. Hence
by Corallary 3.1, R is strongly ZG-regular.

4 Examples

Here we give some examples of ZG-regular
rings.

Example 4.1 It is clear that if G is a trivial
group (group with only one element) then R is
ZG-regular for n ≥ 1 iff R is π-regular.

Example 4.2 One easily checks that Z/4Z and
Z/6Z are ZG-regular rings because they are π-
regular rings.

Example 4.3 Let G = U(R) (where U(R) is the
group of units in R) and X a set, then a regular
action µ of G on X is a function:

µ : X ×G −→ X : (x, g) = gx (4.8)

And conjugate action is a function:

µ : X ×G −→ X : (x, g) = gxg−1 (4.9)

Example 4.4 Let G = U(R). An element x ∈ R
is said unitary π-regular (resp. strongly unitary
R-regular) if there exist g ∈ G and r ∈ R and
n ∈ Z such that (gx)n = (gx)nr(gx)n (resp.
(gx)n = (gx)(n+1)r). R is unitary π-regular
(resp. strongly unitary π-regular) if every element
of R is unitary π-regular (resp. strongly unitary
π-regular).
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Example 4.5 Let G = U(R). An element x ∈ R
is said conjugate π-regular (resp. strongly conju-
gate π-regular) if there exist g ∈ G and r ∈ R
and n ∈ Z such that (x)n = (x)ng−1rg(x)n(resp.
(x)n = (x)n+1gxg). R is conjugate π-regular
(resp. strongly conjugate π-regular) if every el-
ement of R is conjugate π-regular (resp. strongly
conjugate π-regular).

Example 4.6 Let Aut(R) be automorphism
group of R. An element x ∈ R is called Auto-
morphic π-regular ((Aut) π-regular) if there exist
α ∈ Aut(R), r ∈ R and n ∈ Z such that (xα)n =
(xα)nr(xα)n. R is Automorphic π-regular every
element of R is automorphic π-regular.

5 Conclusion

Ring theory is a subject of central importance in
algebra. Historically, some of major discoveries
in ring theory have helped shape the course of
development of abstract algebra. In the moment,
ring theory is a fertile meeting ground for group
rings. In this paper, we characterized ZG-regular
and strongly ZG-regular group rings.
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  توسيعی از حلقه ھای منظم

    چکيده:

ݔپذير با عنصر ھمانی باشد. يک عنصر يک حلقه شرکت ܴ فرض کنيد ∈ ܴ ، Ժناميده می شود اگر يک منظم -ܩ

ݎعنصر ∈ ݃و ܴ ∈ ݊و ܩ ∈ Ժ  ݔموجود باشد به طوری که ൌ ناميده می شود  منظم-ܩԺ. يک حلقه ݔݎݔ

. علاوه بر م نمودخواھيرا بررسی منظم ) -ܩԺمنظم (قوياً -ܩԺباشد. در اين مقاله ما حلقه ھای  منظم-ܩԺاگر ھر عنصر آن 

 بودن گروه حلقه ھا می باشد. منظم-ܩԺاين مقاله شامل يک بحث مختصری راجع به   ،آن
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