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Abstract

Motivated by the terminal Wiener index, we define the Ashwini index A of trees as

A(T ) =
∑

1≤i<j≤n

dT (vi, vj)[degT (N(ui))

+ degT (N(vj))],

where dT (vi, vj) is the distance between the vertices vi, vj ∈ V (T ), is equal to the length of the shortest
path starting at vi and ending at vj and degT (N(v)) is the cardinality of degT (u), where uv ∈ E(T ).
In this paper, trees with minimum and maximum A are characterized and the expressions for the
Ashwini index are obtained for detour saturated trees T3(n), T4(n) as well as a class of Dendrimers
Dh.

Keywords : Wiener index; terminal Wiener index, Ashwini index..

—————————————————————————————————–

1 Introduction

L
et G = (V,E) be a graph. The number of
vertices of G we denote by n and the num-

ber of edges we denote by m, thus |V (G)|= n
and |E(G)|= m. By the open neighborhood of
a vertex v of G we mean the set NG(v) = {u ∈
V (G):uv ∈ E(G)}. The degree of a vertex v,
denoted by deg(v), is the cardinality of its open
neighborhood. The neighborhood degree of a
pendant vertex v, degG(N(v)) is the cardinal-
ity of degG(u), where uv ∈ E(G). The distance
between the vertices vi, vj ∈ V (G), is equal to
the length of the shortest path starting at vi and
ending at vj , and will be denoted by dG(vi, vj).
For undefined terminologies we refer the reader
to [15].

∗Corresponding author. sunilkumar.rcu@gmail.com
†Department of Mathematics, Rani Channamma Uni-
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The oldest molecular index is the one put for-
ward in 1947 by H. Wiener [33], nowadays re-
ferred to as the Wiener index and denoted by W .
It is defined as the sum of distance between all
pairs of vertices of a graph.

W (G) =
∑

{u,v⊆V (G)}

dG(u, v)

=
∑

1≤i<j≤n
dG(u, v).

For details on its chemical applications and
mathematical properties one may refer to [5, 6,
7, 9, 10, 12, 13, 14, 23, 18, 19, 20, 21, 22] and the
references cited therein.

If G has k-pendent vertices labeled by
v1, v2 · · · vk , then its terminal distance matrix is
the square matrix of order k whose (i, j)-th en-
try is dG(vi, vj). Terminal distance matrices were
used for modeling amino acid sequences of pro-
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teins and of the genetic codes [17, 28, 29].

The terminal Wiener index TW (G) of a con-
nected graph G is defined as the sum of the dis-
tances between all pairs of its pendent vertices.
Thus if VT = {v1, v2, · · · , vk} is the set of all pen-
dent vertices of G, then

TW (G) =
∑

{u,v⊆VT (G)}

dG(u, v)

=
∑

1≤i<j≤k
dG(u, v)

This distance-based molecular structure descrip-
tor was recently put forward by Gutman et
al.[11].

Motivated by the previous researches on termi-
nal Wiener index and its chemical applications
[16, 27, 34], we now define the Ashwini index
A(T ) of a tree T as follows.

A(T ) =
∑

1≤i<j≤n
dT (vi, vj)[degT (N(ui))

+ degT (N(vj))]. (1.1)

In fact, one can rewrite the Ashwini index as

A(T ) =
1

2

n∑
i=1

n∑
j=1

dT (vi, vj)[degT (N(vi))

+ degT (N(vj))]

As before, in Eq. 1.1 it is assumed that the
tree has n vertices of which k vertices, labeled by
v1, v2, · · · , vk, are pendent. In order to illustrate
(1.1), we show that the Ashwini index is com-
puted for a molecular graph of 3-methylpentane
depicted in Fig. 1.

Figure 1: 3-methylpentane and its molecular
graph.

The tree T , representing the molecular graph
of 3-methylpentane has three pendant vertices v1,
v4 and v6. Further, their respective neighborhood

Figure 2: Cata-condensed and its dualist graph.

Figure 3: Detour saturated tree for T3(0), T3(1)
and T3(2)

degrees are degT (N(v1)) = 2, degT (N(v4)) = 3
and degT (N(v6)) = 2. Therefore the summation

on the right-hand side of (1.1) contains 3(3−1)
2 = 3

terms and we have:

A(T ) = d(v1, v4 \ T )[degT (N(v1)) + degT (N(v4))]

+ d(v1, v6 \ T )[degT (N(v1)) + degT (N(v6))]

+ d(v4, v6 \ T )[degT (N(v4)) + degT (N(v6))]

= 3(2 + 3) + 4(2 + 2) + 3(3 + 2)

= 46.

2 Trees with minimal and max-
imal Ashwini index

When a new topological index is introduced, one
of the first question that need to be answered is
for which (molecule) graphs this index assumes
minimal and maximal values. Therefore, we char-
acterize trees with minimum and maximum Ash-
wini index values. For any n-vertex tree T ,
4(n − 1) ≤ A(T ) ≤ 2(n − 1)2(n − 2). Equality
of lower bound holds if and only if T ∼= Pn and
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Figure 4: Detour saturated tree of double claw

Figure 5: Detour saturated tree for T4(0), T4(1)
and T4(2).

the equality of upper bound holds if and only if
T ∼= Sn.
Proof. We prove this theorem by considering the
following cases.
Case 1. First consider the lower bound for Ash-
wini index. Let us consider the minimum possi-
bility of any n-vertex tree T such that Ashwini in-
dex exists. Let u, v ∈ V (T ) such that d(u, v)T ≤
n − 1 and degT (N(u)) = 2 = degT (N(v)). Now
employing (1.1), we get 4(n− 1) ≤ A(T ).

Now for the equality of lower bound, consider
the case path Pn, there two pendant vertices v1
and v2 respectively, such that degPn

(N(v1)) = 2
and degPn

(N(vn)) = 2. Now employing (1.1), to
the path Pn, we get A(Pn) = 4(n− 1).

Conversely, if A(G) = 4(n − 1) and G ̸= Pn,
then G contains a pair of vertices vi, vj ∈ V (G)
such that dG(vi, vj) < n − 1. Hence employing
(1.1) to G we get A(G) < 4(n − 1), a contradic-
tion.

Case 2. Now for the upper bound, let us consider
a n-vertex tree T together with maximum num-
ber of pendant vertices and corresponding max-

Figure 6

imum neighborhood degrees. We know that for
any n-vertex tree T , there exists at most n − 1
pendant vertices and maximum neighborhood de-
gree n − 1. Also by (1.1), we can see that every
pendant vertex counts at most (n − 2) times to-
gether with corresponding neighborhood degree.
Hence by enumeration techniques, we could see
that A(T ) ≤ 2(n− 1)2(n− 2).

Now for the equality of upper bound, in the
case of the star Sn, there are n − 1 pendant
vertices, and the neighborhood degree of each
pendant vertex is (n − 1). Therefore A(Sn) =
2(n− 1)2(n− 2).

Conversely, if A(G) = 2(n − 1)2(n − 2) and
G ̸= Sn then G contains a pair of vertices vi, vj ∈
V (G) such that dG(vi, vj) ≥ 3. Hence employ-
ing (1.1) to G we get A(G) < 2(n − 1)2(n − 2),
a contradiction. Thus, the path is the tree with
minimal Ashwini index and the star is the tree
with maximal Ashwini index.

3 Ashwini index of detour satu-
rated trees

A graph is said to be detour–saturated if the ad-
dition of any edge results in an increased greatest
path length [24]. A benzenoid graph is called cat-

acondensed if its characteristic graph is a tree.
The characteristic graph of a hexagonal chain
is isomorphic to the path [8]. In the new def-

inition [1], Cata-condensed species have dualist
graphs, which are detour saturated trees, while
those Peri-condensed species contain at least one
circuit. The dualist graph of Cata-condensed
species is a claw. The claw is the detour-saturated
tree T3, which is depicted in Fig. 2. The general
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detour-saturated tree T3(n) [2] for odd n ≥ 5 is
obtained from T3(n − 1) by attaching two new
leave to each of the old leaves. The Ashwini
index of detour saturated tree T3(n) is

A(T3(n)) = 18 · 2n−1

[ n+1∑
i=1

i2i

+ (n+ 1)2n+1

]
(3.2)

Proof. Let n be the number of steps in the
formation of detour trees. Then claerly, T3(n)
contains 3·2n leaves. Further note that the neigh-
borhood degree of each leaf is 3. Therefore by the
definition of Ashwini index

A(G) =
1

2

3·2n∑
i=1

3·2n∑
j=1

d(vi, vj)[degG(N(vi))

+ degG(N(vj))].

A(T3(0)) =
1
23[2(6) + 2(6)] = 1

218[4]

A(T3(1)) =
1
23·2

1[2(6)+4(6)+4(6)+4(6)+4(6)] =
1
218 · 2

1[2 + (4 + 4) + (4 + 4)]

A(T3(2)) =
1
218 · 2

2[2+ (4+4)+ (6+6+6+6)+
(6 + 6 + 6 + 6)]

A(T3(3)) = 1
218 · 23

[
2 + (4 + 4) + (6 + 6 + 6 +

6)+ 8 + 8 + · · ·+ 8︸ ︷︷ ︸
8times

+8 + 8 + · · ·+ 8︸ ︷︷ ︸
8times

]
and so on.

With this background now, we are able to prove
(3.2) by mathematical induction.

A(T3(0)) = 3·20
2 [2(2(6))] = 36, is true for

n = 0.

A(T3(1)) =
3·2
2 [2(6) + 2(22)(6)] + 3·2

2 [2(22)(6)] =
324 is true for n = 1.

Assume the result is true for n = k − 1.
Then

A(T3(k − 1)) = 18·2k−1

2 [2 + 2(22) + 3(23) +

· · ·+ k2k] + 18·2k−1

2 [k2k]

A(T3(k − 1)) = 18·2k−1

2

[
k∑
i=1

i2i
]
+ 18·2k−1

2 (k)2k

To prove A(T3(k)) is true for n = k

A(T3(k)) =
18 · 2k−1

2

[ k∑
i=1

i2i
]

+
18 · 2k−1

2

[
(k + 1)2k+1

]
+

18 · 2k

2
(k + 1)2k+1

=
18 · 2k

2

[ k+1∑
i=1

i2i
]

+
18 · 2k

2
(k + 1)2k+1

= 18 · 2k−1

[ k+1∑
i=1

i2i

+ (k + 1)2k+1

]
= 18 · 2n−1

[ n+1∑
i=1

i2i

+ (n+ 1)2n+1

]
.

Double claw can be connected to the species in
the form of Polyhexes. Double claw is denoted
by T4(n) and can be constructed inductively by
adding two new leaves at each of the old leaves of
T4(n − 1), n ≥ 6. The Ashwini index of detour
saturated tree T4(n) is

A(T4(n)) = 6 · 2n+1

[ n+1∑
i=1

i2i

+ (2n+ 3)2n+1

]
. (3.3)

Proof. Let n be the number of steps in the for-
mation of detour trees. Clearly the detour sat-
urated tree T4(n) has 2n+2 leaves and note that
the neighborhood degree of each leaf is 3. Hence,
by the definition of Ashwini index,

A(G) =
1

2

2n+2∑
i=1

2n+2∑
j=1

d(vi, vj)[degG(N(vi))

+ degG(N(vj))].
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A(T4(0)) =
1

2

{
4 · 20[2(6) + (3(6)

+ 3(6))]

}
A(T4(1)) =

1

2

{
(4 · 2)[2(6) + (4 + 4)(6)

+ (5 + 5 + 5 + 5)(6)]

}
A(T4(2)) =

1

2

{
(4 · 22)[2(6) + (4 + 4)(6)

+ (6 + 6 + 6 + 6)(6)

+ (7 + 7 + · · ·+ 7)︸ ︷︷ ︸
8times

(6)]

}

A(T4(3)) =
1

2

{
(4 · 23)

[
2(6) + (4 + 4)(6)

+ (6 + 6 + 6 + 6)(6)

+ (8 + 8 + · · ·+ 8)(6)︸ ︷︷ ︸
8times

+ (9 + 9 + · · ·+ 9)︸ ︷︷ ︸
16times

(6)

]}

and so on. With this background now we are in
a position to prove (3.3).

A(T4)(0) =
4·20
2

[
2(20)+(2+2)+(1+1)

]
(6) = 96

is true for n = 0.

A(T4)(1) = 4·21
2

[
2 + 2(22) + 2(22) + 2(22) +

2(2)

]
(6) = 720, is true for n = 1.

Now assume the result is true for n = k − 1.

A(T4)(k − 1) = 4·2k−1

2

{
[2 + 2(22) + 3(23) + · · ·+

k(2k)] + k(2k) + k(2k) + 2k
}

A(T4)(k − 1) = 4·2k−1

2

{
k∑
i=1

i2i + k(2k) + k(2k) +

2k
}
.

To prove the result is true for n = k

A(T4)(k) =
4 · 2k

2

{
[2 + 2(22) + 3(23) · · ·+ k(2k)

+ (k + 1)2k+1](6)

+ [((k + 1)(2k+1)) + ((k + 1)(2k+1))

+ 2k+1](6)

}
=

4 · 2k

2

{ k+1∑
i=1

i2i + ((k + 1)(2k+1))

+ ((k + 1)(2k+1)) + 2k+1

}
(6)

= 6 · 2k+1

[ k+1∑
i=1

i2i + (2k + 3)2k+1

]

= 6 · 2n+1

[ n+1∑
i=1

i2i + (2n+ 3)2n+1

]
.

Let D0, D1, D2, · · · be a series of dendrimer
graphs. Let for h = 1, 2, · · · , the dendrimer graph
Dh be obtained so that k leaves are attached to
each leaf of Dh−1. For an illustration see Fig. 6.
The Ashwini index of the dendrimer graph Dh is

A(Dh) = 18 · 2n−1

[ n∑
i=1

i2i

+ (n+ 2)2n+2

]
(3.4)

Proof. Let n be the number of steps in the
formation of dendrimer graph. Clearly the den-
drimer graph Dh has 3 · 2n leaves and note that
the neighborhood degree of each leaf is 3. Hence,
by the definition of Ashwini index,

A(G) =
1

2

3·2n∑
i=1

3·2n∑
j=1

d(vi, vj)[degG (3.5)

(N(vi)) + degG(N(vj))].

A(D0) =
1

2
[3(4(6) + 4(6))]

= 72

A(D1) =
3 · 21

2

[
2(6) + (6 + 6)(6)

+ (6 + 6)(6)

]
= 468
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A(D2) =
3 · 22

2

[
2(6) + (4 + 4)(6)

+ (8 + 8 + 8 + 8)︸ ︷︷ ︸
4times

(6)

+ (8 + 8 + 8 + 8)︸ ︷︷ ︸
4times

(6)

]
= 2664

A(D3) =
3 · 22

2

[
2(6) + (4 + 4)(6)

+ (6 + 6 + 6 + 6)(6)

+ (10 + 10 + · · ·+ 10)︸ ︷︷ ︸
8times

(6)

+(10 + 10 + · · ·+ 10)︸ ︷︷ ︸
8times

(6)

]
= 13968

and so on. Now we are in a position to prove (3.4)
by mathematical induction
A(D0) =

3·20
2 [2(4)] = 12 is true for n = 0

A(D1) =
3·21
2

[
2(6) + 3(23)(6)

]
= 468, is true for

n = 1.
Now assume that the result is true for n = k− 1.

A(Dk−1) =
3 · 2k−1

2

[
2(6) +

2(22)(6) + · · · + (k − 1)2k−1(6)

]
+

3 · 2k−1

2
[(k + 1)2k+1](6)

=
18 · 2k−1

2

[ k−1∑
i=1

i2i
]
+

18 · 2k−1

2
(k + 1)2k+1

To prove the result is true for n = k

A(Dk) =
18 · 2k−1

2

[ k−1∑
i=1

i2i
]

+
18 · 2k−1

2
[k2k]

+
18 · 2k

2
[(k + 2)2k+2]

=
18 · 2k

2

[ k∑
i=1

i2i
]
+

18 · 2k

2
[(k + 2)2k+2]

= 18 · 2k−1[ k∑
i=1

i2i + (k + 2)2k+2

]
= 18 · 2n−1[ n∑

i=1

i2i + (n+ 2)2n+2

]
.
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Mihalić, On the Harary index for the charac-
terization of chemical graphs, J. Math. Chem
12 (1993) 235-250.

[27] H. S. Ramane, K. P. Narayankar, S. S.
Shirkol, A. B. Ganagi, Terminal Wiener in-
dex of line graphs, MATCH Commun. Math.
Comput. Chem. 69 (2013) 775-782.
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