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Abstract

The importance as well as the difficulty of the problem of ranking fuzzy numbers is pointed out. Here
we consider approaches to the ranking of fuzzy numbers based upon the idea of associating with a
fuzzy number a scalar value, its signal/noise ratios, where the signal and the noise are defined as the
middle-point and the spread of each γ-cut of a fuzzy number, respectively. We use the value of a as
the weight of the signal/noise ratio of each γ-cut of a fuzzy number to calculate the ranking index of
each fuzzy number. The proposed method can rank any kinds of fuzzy numbers with different kinds
of membership functions.
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1 Introduction

I
n many applications of fuzzy set theory, par-
ticularly in decision making, we often obtain a

measure of a course of action expressed as a fuzzy
number, a fuzzy subset of the real line. For exam-
ple the profit obtained by using the new XYZ pro-
cess may be about §300,000. Essentially here we
have some uncertainty as to the exact value of the
profit. As noted in the literature1 this is a kind
of possibilistic uncertainty. Often in these deci-
sion making environments we are faced with the
problem of selecting one from among a collection
of alternative actions. This selection process may
then require that we rank, order, fuzzy numbers.
While it is clear when considering two pure num-
bers which is bigger or smaller, the situation with
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respect to fuzzy numbers is not always obvious.
It was early in the development of the fuzzy set
theory that the problem of comparing fuzzy sub-
sets of the real line was seen to be an important
and difficult problem. The recent literature has
also addressed this problem.4 What seems to be
clear is that there exists no uniquely best method
for comparing fuzzy numbers, the different meth-
ods satisfy different desirable criteria. While cer-
tain properties are necessary for any methodol-
ogy that orders fuzzy numbers, user preferences
account for a significant part of the performance
of a preferred approach. Our focus here is to
try to understand and suggest some methodolo-
gies for comparing fuzzy numbers. In this pa-
per, we present a new approach for ranking fuzzy
numbers using the γ-cut, the belief features and
the signal/noise ratios of fuzzy numbers, where
γ ∈ [0, 1]. The proposed method can overcome
the drawbacks of Chen and Chen’s method [3],
Cheng’s method [4], Murakami et al. [10], Yong
and Qi’s method [20] and Yager’s method [19].
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2 A review of the existing
methods for ranking fuzzy
numbers

In this paper, we assume that the reader is famil-
iar with basics of fuzzy set theory and fuzzy logic
in the broad sense.
A fuzzy number is a convex fuzzy subset of the
real line R and is completely defined by its mem-
bership function. Let A be a fuzzy number, whose
membership function fA(x) can generally be de-
fined as [1, 2, 12, 13, 14, 15, 8],

fA(x) =


fL
A(x) when a1 ≤ x < a2,
ω when a2 ≤ x < a3,
fR
A (x) when a3 ≤ x < a4,
0 otherwise.

(2.1)
Where 0 ≤ ω ≤ 1 is a constant, fL

A : [a1, a2] →
[0, ω] and fR

A : [a3, a4] → [0, ω] are two strictly
monotonically and continuous mappings from R
to closed interval [0, ω]. When ω = 1, then A
is a normal fuzzy number; otherwise it is said
to be a non-normal fuzzy number. If the mem-
bership function fA(x) is piecewise linear, then
A is referred to as a trapezoidal fuzzy number
and is usually denoted by, A = (a1, a2, a3, a4;ω).
In particular, if a2 = a3, the trapezoidal fuzzy
number is reduced to a triangular fuzzy number.
Since fL

A(x) and fR
A (x) are both strictly mono-

tonically and continuous functions, their inverse
functions exist and should also be continuous and
strictly monotonically. Let gLA : [0, ω] → [a1, a2]
and gRA : [0, ω] → [a3, a4] be the inverse func-
tions of fL

A and fR
A , respectively. Then gLA(y) and

gRA(y) should be integrable on the closed inter-
val [0, ω]. In other words, both

∫ ω
0 gLA(y)dy and∫ ω

0 gRA(y)dy should exist. In the case of trape-
zoidal fuzzy number, the inverse function gLA(y)
and gRA(y) can be analytically expressed as:

gLA(y) = a1 +
(a2 − a1)y

ω
, 0 ≤ y ≤ ω, (2.2)

gRA(y) = a4 −
(a4 − a3)y

ω
, 0 ≤ y ≤ ω. (2.3)

In order to determine the centroid point (x0, y0)
of a fuzzy number A, Wang et al. [18] provided
the following centroid formulae:

x0(A) =∫ a2
a1

xfL
A(x)dx+

∫ a3
a2

(xω)dx+
∫ a4
a3

xfR
A (x)dx∫ a2

a1
fL
A(x)dx+

∫ a3
a2

(ω)dx+
∫ a4
a3

fR
A (x)dx

,

(2.4)
y0(A) = ∫ ω

0 y(gRA(y)− gLA(y))dy∫ ω
0 (gRA(y)− gLA(y))dy

. (2.5)

The ranking value R(A) of the fuzzy number A
is defined as follows [4]:

R(A) =
√

x20(A) + y20(A). (2.6)

The larger the value of R(A), the better the rank-
ing of A.
In [7], the authors presented a centroid-index
ranking method for ordering fuzzy numbers. The
centroid point of fuzzy number A, is (xA, yA)
where xA and yA are the same as formula 2 and
3 in [7]. The ranking value S(A) of the fuzzy
number A is defined as follows:

S(A) = xA × yA. (2.7)

The larger the value S(A), the better the rank-
ing of A. In [3], Chen et al. proposed a simple
method to obtain COG point of fuzzy numbers.
If A is a generalized fuzzy number, where A =
(a1, a2, a3, a4;ω), then the COG point (x∗A, y

∗
A) of

A is as follows:

x∗A =
y∗A(a2 + a3) + (a1 + a4)(1− y∗A)

2
, (2.8)

y∗A =

{
ω(

a3−a2
a4−a1

+2)

6 , a1 ̸= a4,
1
2 , a1 = a4.

(2.9)

After obtaining the COG point of fuzzy number A
where A = (a1, a2, a3, a4;wA), the ranking value
Rank(A) can be calculated as

Rank(A) = x∗A + (wA − y∗A)
ŝA × (y∗A + 0.5)1−wA ,

(2.10)
where,

ŝA =

√∑4
i=1(ai − a)2

3
, (2.11)

and,

a =
a1 + a2 + a3 + a4

4
. (2.12)

The larger the value Rank(A), the better the
ranking A. However, this method has a draw-
back in that it cannot correctly rank generalized
fuzzy numbers in some situations. The example
is used to show the drawback Chen’s method.
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Example 2.1 Two generalized fuzzy number A
and B are shown as follows (Fig. 1):

A = (−0.01,−0.01,−0.01,−0.01; 1),

B = (0.01, 0.01, 0.01, 0.01; 0.8).

It can be easily to obtain the COG points of
fuzzy numbers A and B respectively, as fol-
lows, (x∗A, y

∗
A) = (−0.01, 0.5) and (x∗B, y

∗
B) =

(0.01, 0.4). By applying Chen method, we have
R(A) = 0.99 and R(B) = 0.989. The ranking
result shows that ranking order is A ≻ B. How-
ever, it can be easily seen that the correct order
is A ≺ B.

Figure 1

3 A novel method for ranking
fuzzy numbers

In this section, we present a new method for
ranking fuzzy numbers. The proposed method
integrates many concepts, such as the approxi-
mate area measure [5], the belief feature [6] and
the signal/noise ratio [9]. Assume that a decision
maker wants to determine the ranking order of
m fuzzy numbers A1, A2, · · ·, and Am. The kth
γ-cut Aγk

i of fuzzy number Ai is defined as follows:

Aγk
i =

{x|fAi(x) ≥ γk, x ∈ X}, γk =
k

n
, k ∈ {0, 1, · · · , n},

(3.13)

n ∈ N

where n denotes the number of γ-cuts.
The minimal value li,k and the maximal value ri,k

of the kth γ-cut of the fuzzy number Ai are de-
fined as follows:

li,k = inf
x∈X

{x|fAi(x) ≥ γk}. (3.14)

ri,k = sup
x∈X

{x|fAi(x) ≥ γk}. (3.15)

respectively. The maximal barrier U and the min-
imal barrier L of the m fuzzy numbers A1, A2, · · ·,
and Am are defined as follows:

U = max
∀i

{x|x ∈ Aγ
i , 0 ≤ γ ≤ hAi , 1 = 1, 2, · · · ,m},

(3.16)
L = min

∀i
{x|x ∈ Aγ

i , 0 ≤ γ ≤ hAi , 1 = 1, 2, · · · ,m}.
(3.17)

where Aγ
i denotes the γ-cut of the fuzzy number

Ai and hAi denotes the height of Ai defined as
follows:

hAi = sup
x∈X

fAi(x). (3.18)

The signal/noise ratio ηi,k of the kth γ-cut of the
fuzzy number Ai used in the proposed method is
defined as follows:

ηi,k =
mi,k − L

δi,k + c
, (3.19)

where mi,k and di,k denote the middle-point and
the spread of Aγk

i , respectively, defined as follows:

mi,k =
ri,k + li,k

2
, (3.20)

δi,k = ri,k − li,k. (3.21)

L denotes the minimal barrier of the m fuzzy
numbers A1, A2, · · · , Am defined by Eq. (3.17),
c is a parameter, and c > 0. The parameter c > 0
is used to avoid the case that if the fuzzy number
Ai is the crisp value ”0”, the signal/noise ratio
will be indeterminate. From Eq. (3.19), we can
find that the larger the value of c, the smaller
the influence of δi,k on the signal/noise ratio ηi,k.
Therefore, we think that the influence of δi,k on
ηi,k should be smaller than the influence of mi,k

on ηi,k. The value of c should be greater than
the value of R − L in order to avoid the special
case that if we want to obtain the ranking order
of two equal crisp values A1 and A2, the values of
R−L and δi,k of the kth γ-cut of the fuzzy number
A1 and A2 will be all zero and the signal/noise
ratio will be indeterminate or undefined, where
γk ∈ [0, 1]. In the following, we present a new ap-
proach for comparing fuzzy numbers based on the
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distance method. The method not only consid-
ers the signal/noise ratio of a fuzzy number, but
also considers the minimum crisp value of fuzzy
numbers. The proposed method for ranking fuzzy
numbers A1, A2, · · · , Am is now presented as fol-
lows:
Use the point (RI(Aj), 0) to calculate the ranking
value sn/r(Aj) = D(RI(Aj), xmin) of the fuzzy
numbers Aj , where Aj , where 1 ≤ j ≤ m, as
follows:

D(RI(Aj), xmin) = ∥RI(Aj)− xmin∥ (3.22)

From formula (3.22), we can see that sn/r(Aj) =
D(RI(Aj), xmin) can be considered as the Eu-
clidean distance between the point (RI(Aj), 0)
and the point (xmin, 0). We can see that the
larger the value of sn/r(Aj), the better the rank-
ing of Aj , where 1 ≤ j ≤ m. When ranking
n fuzzy numbers A1, A2, · · · , Am, the minimum
crisp value xmin is defined as:

xmin = min{x|x ∈ Domain(A1, A2, · · · , Am)}.
(3.23)

The index RI(Aj) of fuzzy numbers Ai is calcu-

lated as RI(Aj) =
hAi

∑n
k=1 γk×ηi,k∑n
k=1 γk

, where γ =

hAi × k
n , k ∈ {1, 2, · · · , n}, n ∈ N , and n denotes

the number of γ-cuts.

3.1 An Application

Chen and Chen [3] proposed a method to han-
dle fuzzy multi-criteria decision making problems
based on fuzzy number induced ordered weighted
averaging (FN-IOWA) operator and applied the
algorithm to a human selection problem. In this
section, we use the same example illustrated in
Chen and Chen to show the efficiency of the
proposed ranking method. For more detailed
information about the FN-IOWA operator, (see
[11, 16, 17, 19]). Here we just pay attention to
the fuzzy ranking step in the final decision mak-
ing process.
A new manager will be recruited among three
candidates, X, Y and Z. The final scores, which
can be obtained by an FN-IOWA operator, are
fuzzy numbers and are listed as follows:

SX = (0.2501, 0.7727, 2.2501; 1),
SY = (0.0667, 0.5000, 1.8750; 1),
SZ = (0.1667, 0.6592, 2.2500; 1).

By applying the proposed ranking method, the
index radius of gyration of each alternative can
be obtained as follows:

sn/r(X) = 1.10,
sn/r(Y ) = 0.09,
sn/r(Z) = 1.01.

We can see that their ranking order X > Z >
Y . Therefore, Candidate X is more suitable than
Candidate Z, and Candidate Z is more suitable
than Candidate Y . The result are the same as
the one presented in Chen and Chen.

4 Conclusion

In this paper, we have presented a new approach
for ranking of fuzzy numbers. First, we present a
new method for ranking fuzzy numbers based on
the γ-cuts, the belief features and the signal/noise
ratios of fuzzy numbers. The proposed method
calculates the signal/noise ratio of each γ-cut of
a fuzzy number to evaluate the quantity and the
quality of a fuzzy number, where the signal and
the noise are defined as the middle-point and the
spread of each γ-cut of a fuzzy number, respec-
tively. We use the value of a as the weight of the
signal/noise ratio of each γ-cut of a fuzzy num-
ber to calculate the ranking index of each fuzzy
number. The proposed fuzzy ranking method can
rank any kinds of fuzzy numbers with different
kinds of membership functions.
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 یک روش جدید برای مقایسھ اعداد فازی بر اساس مقدار اسکالر و نقطھ میانی از اعداد فازی

  :چکیده

برآورد پارامترھای توزیع . ھدف این مقالھ مطالعھ ی توزیع نسبت آماره ھای ترتیبی تعمیم یافتھ برای توزیع پارتو می باشد

بعنوان برآورد نقطھ ای از روش . پارتو برپایھ ی آماره ھای ترتیبی تعمیم یافتھ و نسبت ھایی از آنھا بدست آمده اند

برای مقایسھ ی عملکرد . سازگاری برآوردگر نااریب تشریح شده است. است گشتاوری و برآورد نااریب استفاده شده

 .مثالی نیز بھ کمک داده ھای واقعی آورده شده است. برآوردگرھای بکارگرفتھ شده ، نتایج عددی محاسبھ شده اند
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