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Abstract

The first leap Zagreb index LM1 of a (molecular) graph, is the sum of squares of the second degrees
of vertices (number of their second neighbors), and the second leap Zagreb index LM2 is the sum of
the products of the second degrees of pairs of adjacent vertices, and the third leap Zagreb index LM3

is the sum of the product of the degree and second degree of the vertices. In this paper, we determine
the first, second and third leap Zagreb indices of some graph operations.
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1 Introduction

I
n this paper G is a simple and connected
graph with vertex set V = V (G) and edge

set E = E(G). The degree of a vertex v in
G is the number of edges incident to v and
denoted by d(v/G). The distance dG(u, v) be-
tween any two vertices u and v of a graph G is
equal to the length of a shortest path connect-
ing them. For a vertex v ∈ V (G) and a pos-
itive integer k, the open k-neighborhood of v in
the graph G, denoted by Nk(v/G), is defined as
Nk(v/G) = {u ∈ V (G) : d(u, v) = k}. The k-
distance degree of a vertex v in G, denoted by
dk(v/G) is the number of k-neighbors of the ver-
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tex v in G, i.e., dk(v/G) = |Nk(v/G)|. It is clear
that d1(v/G) = d(v/G) for every v ∈ V (G).

In chemical graph theory, a graphical invari-
ant is a number related to a graph which is
structurally invariant. These invariant numbers
are also known as the topological indices. The
well-known Zagreb indices are one of the old-
est graph invariants firstly introduced by Gut-
man and Trinajstić [?], where they examined the
dependence of total π-electron energy on molec-
ular structures, and this was elaborated in [?].
For a (molecular) graph G, the first Zagreb in-
dex M1(G) and the second Zagreb index M2(G),
defined as:

M1(G) =
∑

v∈V (G)

d(v/G)2

=
∑

uv∈E(G)

[d(u/G) + d(v/G)]

and

M2(G) =
∑

uv∈E(G)

d(u/G)d(v/G).
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For properties of the two Zagreb indices see
[?, ?, ?, ?] and the papers cited therein. In re-
cent years, some novel invariants of Zagreb in-
dices have been put forward, such as Zagreb
coindices [?, ?, ?], reformulated Zagreb indices
[?, ?], Zagreb hyperindex [?, ?], multiplicative
Zagreb indices [?, ?], multiplicative sum Zagreb
index [?, ?], and multiplicative Zagreb coindices
[?], etc. The Zagreb coindices are defined as:

M1(G) =
∑

uv ̸∈E(G)

[d1(u/G) + d1(v/G)]

and

M2(G) =
∑

uv ̸∈E(G)

d1(u/G)d1(v/G).

Recently Naji, Soner and Gutman [?], extended
the concept of Zagreb index to analogous invari-
ants based on the second vertex degree as leap
Zagreb indices. For a graph G, the first, second,
and third leap Zagreb indices are:

LM1(G) =
∑

v∈V (G)

d2(v/G)2

LM2(G) =
∑

uv∈E(G)

d2(u/G)d2(v/G)

LM3(G) =
∑

v∈V (G)

d(v/G)d2(v/G).

The authors [?] investigated basic properties of
these invariants and established some bounds on
leap Zagreb indices in terms of Zagreb indices,
and in terms of the order and the size of the
graph.

Graph operations play an important role in
chemical graph theory. Some chemically impor-
tant graphs can be obtained from some graphs
by different graph operations, such as some nan-
otorus or Hamming graph, that is Cartesian prod-
uct of complete graphs. Many authors computed
some indices for some graph operations (see, for
instance [?, ?, ?, ?, ?, ?, ?] and the references
cited therein).

In this paper, we compute the first, second, and
third leap Zagreb indices of some graph opera-
tions.

2 The corona, disjunction,
symmetric difference, compo-
sition and cartesian product
of graphs

In this section, we compute the first, second,
and third leap Zagreb indices of the corona, dis-
junction, symmetric difference, composition and
cartesian product of graphs. For convenience, we
assume that D2(G) =

∑
u∈V (G) d2(u/G).

2.1 The corona product of graphs

The corona product G1 ◦G2 of graphs G1 and G2

with disjoint vertex sets V (G1) and V (G2) and
edge sets E(G1) and E(G2) is the graph obtained
by one copy of G1 and |V (G1)| copies of G2 and
joining the i-th vertex of G1 to every vertex in
i-th copy of G2. Obviously,

|V (G1 ◦G2)|= |V (G1)|+|V (G1)||V (G2)|

and

|E(G1 ◦G2)|=

|E(G1)|+|V (G1)||E(G2)|+|V (G1)||V (G2)|

.
We begin with the following decisive lemma re-
lated to 2-distance degree properties of a vertex
in the corona product of two graphs. The proof
of that is immediate, so omitted.

Lemma 2.1. Let Gi be a graph of order ni for
i = 1, 2. Then

d2(u/G1 ◦G2) = d2(u/G1) + n2d(u/G1)

if
u ∈ V (G1),

and

d2(u/G1 ◦G2) = n2 − 1− d(u/G2) + d(x/G1)

if

u ∈ V (G2), x ∈ V (G1) and ux ∈ E(G1 ◦G2)

.

Theorem 2.1. Let Gi be a graph of order ni and
size εi for i = 1, 2. Then
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(a)LM1(G1 ◦G2) =

LM1(G1) + n2
2M1(G1)+

2n2LM3(G1) + n1n2(n2 − 1)2

+ n2M1(G1) + n1M1(G2)−

8ε1ε2 + 4(n2 − 1)(n2ε1 − n1ε2).

(b) LM2(G1 ◦G2) =

LM2(G1) + n2
2M2(G1)+

2ε1n
2
2(n2 − 1)− 4ε1ε2n2

+ n2
2M1(G1) + [n2(n2 − 1)

− 2ε2]D2(G1) + n2LM3(G1)

n1ε2(n2 − 1)2l + ε2M1(G1)−

n1(n2 − 1)M1(G2) + 4(n2 − 1)

ε1ε2 − 2ε1M1(G2) + n1M2(G2)+

n2

∑
vivj∈E(G1)

[d(vi/G1)d2(vj/G1)

+ d2(vi/G1)d(vj/G1)].

(c) LM3(G1 ◦G2) =

LM3(G1) + n2M1(G1) + 2ε1n
2
2+

n2D2(G1) + 2n2ε1+

(2n1ε2 + n1n2)(n2 − 1)−

n1M1(G2) + 4ε1ε2 − 2n1ε2.

Proof. Suppose that V (G1) = {v1, . . . , vn1} and

V (G2i) = {ui1, . . . , uin2}, 1 ≤ i ≤ n1

such that G2i is the i-th copy of G2. By Lemma
?? we have

LM1(G1 ◦G2) =
∑

u∈V (G1◦G2)

(d2(u/G1 ◦G2))
2

=

n1∑
i=1

(d2(vi/G1 ◦G2))
2

+

n1∑
i=1

n2∑
j=1

(d2(uij/G1 ◦G2))
2

=

n1∑
i=1

(d2(vi/G1) + n2d(vi/G1))
2

+

n1∑
i=1

n2∑
j=1

(n2 − 1− d(uij/G2) + d(vi/G1))
2

=

n1∑
i=1

[d2(vi/G1)
2 + 2n2d2(vi/G1)

d(vi/G1) + n2
2d(vi/G1)

2]+

n1∑
i=1

n2∑
j=1

[(n2 − 1)2 + d(uij/G2)
2 + d(vi/G1)

2

− 2(n2 − 1)d(uij/G2)+

2(n2 − 1)d(vi/G1)− 2d(vi/G1)d(uij/G2)]

= LM1(G1) + 2n2LM3(G1) + n2
2M1(G1)

+ n1n2(n2 − 1)2 + n1M1(G2)+

n2M1(G1)− 8ε1ε2 + 4(n2 − 1)(n2ε1 − n1ε2).
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LM2(G1 ◦G2) =

∑
uv∈E(G1◦G2)

d2(u/G1 ◦G2)d2(v/G1 ◦G2)

=
∑

vivj∈E(G1)

d2(vi/G1 ◦G2)d2(vj/G1 ◦G2)

+

n1∑
i=1

n2∑
j=1

d2(vi/G1 ◦G2)d2(uij/G1 ◦G2)+

n1∑
i=1

∑
uijuik∈E(G2i)

d2(uij/G1 ◦G2)d2(uik/G1 ◦G2)

=
∑

vivj∈E(G1)

(n2d(vi/G1) + d2(vi/G1))(n2d(vj/G1)

+ d2(vj/G1)) +

n1∑
i=1

n2∑
j=1

(n2d(vi/G1) + d2(vi/G1))

(n2 − 1− d(uij/G2) + d(vi/G1))+
n1∑
i=1

∑
uijuik∈E(G2i)

(n2 − 1− d(uij/G2)

+ d(vi/G1))(n2 − 1− d(uik/G2) + d(vi/G1))

=
∑

vivj∈E(G1)

[n2
2d(vi/G1)d(vj/G1)

+ n2(d(vi/G1)d2(vj/G1) + d(vj/G1)d2(vi/G1))+

d2(vi/G1)d2(vj/G1)]+
n1∑
i=1

n2∑
j=1

[n2(n2 − 1)d(vi/G1)

− n2d(vi/G1)d(uij/G2) + n2d(vi/G1)
2

+ (n2 − 1)d2(vi/G1)− d(uij/G2)

d2(vi/G1) + d(vi/G1))d2(vi/G1)]+

n1∑
i=1

∑
uijuik∈E(G2i)

[(n2 − 1)2

− (n2 − 1)(d(uij/G2) + d(uik/G2))

− d(vi/G1)(d(uij/G2) + d(uik/G2))

+ 2(n2 − 1)d(vi/G1) + d(uij/G2)d(uik/G2)

+ d(vi/G1)
2] = n2

2M2(G1) + LM2(G1) + n2

∑
vivj∈E(G1)

[d(vi/G1)d2(vj/G1) + d2(vi/G1)d(vj/G1)]

+ 2ε1n
2
2(n2 − 1)− 4ε1ε2n2

+ n2
2M1(G1) + [n2(n2 − 1)− 2ε2]D2(G1)+

n2LM3(G1) + n1ε2(n2 − 1)2 − n1(n2 − 1)

M1(G2)− 2ε1M1(G2)+

4(n2 − 1)ε1ε2 + n1M2(G2) + ε2M1(G1).

LM3(G1 ◦G2) =
∑

u∈V (G1◦G2)

d(u/G1 ◦G2)

d2(u/G1 ◦G2) =

n1∑
i=1

d(vi/G1 ◦G2)

d2(vi/G1 ◦G2) +

n1∑
i=1

n2∑
j=1

d(uij/G1 ◦G2)d2(uij/G1 ◦G2)

=

n1∑
i=1

(n2 + d(vi/G1))(n2d(vi/G1)

+ d2(vi/G1)) +

n1∑
i=1

n2∑
j=1

(d(uij/G2) + 1)

(n2 − 1− d(uij/G2) + d(vi/G1))

=

n1∑
i=1

[n2
2d(vi/G1) + n2d2(vi/G1)

+ n2d(vi/G1)
2 + d(vi/G1)d2(vi/G1)]+

n1∑
i=1

n2∑
j=1

[(n2 − 1)d(uij/G2)− d(uij/G2)
2

+ d(uij/G2)d(vi/G1)+

n2 − 1− d(uij/G2) + d(vi/G1)]

= 2ε1n
2
2 + n2D2(G1) + n2M1(G1)

+ LM3(G1) + (2n1ε2 + n1n2)(n2 − 1)

− n1M1(G2) + 4ε1ε2 − 2n1ε2 + 2n2ε1.
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2.2 Disjunction product of graphs

The disjunction product G1 ∨ G2 of graphs G1

and G2 is a graph with vertex set V (G1)×V (G2)
and (u, x)(v, y) is an edge of G1 ∨ G2 if uv ∈
E(G1) or xy ∈ E(G2). Obviously, |E(G1 ∨G2)|=
|E(G1)||V (G2)|2+|E(G2)||V (G1)|2.

Lemma 2.2. [?] Let Gi be a graph of order
ni for i = 1, 2. Then dG1∨G2((u, x), (v, y)) ={

1 uv ∈ E(G1) or xy ∈ E(G2)
2 otherwise.

Using Theorem ?? and a simple verification, we
obtain the following result.

Lemma 2.3. Let Gi be a graph of order ni for
i = 1, 2. Then d2((u, x)/G1 ∨ G2) = n1n2 −
d((u, x)/G1 ∨G2)− 1.

Lemma 2.4. [?] Let G and H be graphs. Then

M1(G ∨H) = (|V (G)||V (H)|2−4|E(H)|
|V (H)|)M1(G) +M1(H)M1(G)

+(|V (H)||V (G)|2−4|E(G)||V (G)|)M1(H)
+8|E(G)||E(H)||V (G)||V (H)|

Theorem 2.2. Let Gi be a graph of order ni and
size εi for i = 1, 2. Then

(a) LM1(G1 ∨G2) = M1(G1 ∨G2)
+n1n2(n1n2 − 1)2−

4(n1n2 − 1)(ε1n
2
2 + ε2n

2
1).

(b) LM2(G1 ∨G2) = M2(G1 ∨G2)
−(n1n2 − 1)M1(G1 ∨G2)+
(n1n2 − 1)2(ε1n

2
2 + ε2n

2
1).

(c) LM3(G1 ∨G2)
= 2(n1n2 − 1)(ε1n

2
2 + ε2n

2
1)

−M1(G1 ∨G2).

Proof. By Lemma ?? and Theorem ??, we deduce
that

LM1(G1 ∨G2) =∑
(u,x)∈V (G1∨G2)

(d2((u, x)/G1 ∨G2))
2

=
∑

(u,x)∈V (G1∨G2)

(n1n2 − d((u, x)/G1 ∨G2)

−1)2 = M1(G1 ∨G2) + n1n2(n1n2 − 1)2

−4(n1n2 − 1)(ε1n
2
2 + ε2n

2
1).

LM2(G1 ∨G2) =∑
(u,x)(v,y)∈E(G1∨G2)

d2((u, x)/G1 ∨G2)

d2((v, y)/G1 ∨G2) =∑
(u,x)(v,y)∈E(G1∨G2)

(n1n2 − d((u, x)/G1 ∨G2)− 1)

(n1n2 − d((v, y)/G1 ∨G2)− 1)
= M2(G1 ∨G2)− (n1n2 − 1)M1(G1 ∨G2)+

(n1n2 − 1)2(ε1n
2
2 + ε2n

2
1).

LM3(G1 ∨G2) =∑
(u,x)∈V (G1∨G2)

d((u, x)/G1 ∨G2)

d2((u, x)/G1 ∨G2)
=

∑
(u,x)∈V (G1∨G2)

d((u, x)/G1 ∨G2)

(n1n2 − d((u, x)/G1 ∨G2)− 1)
= 2(n1n2 − 1)(ε1n

2
2 + ε2n

2
1)−M1(G1 ∨G2).

2.3 The symmetric difference of
graphs

The symmetric difference G1 ⊕ G2 of graphs G1

and G2 is the graph with vertex set V (G1⊕G2) =
V (G1)×V (G2) and (u, x)(v, y) is an edge of G1⊕
G2 if uv ∈ E(G1) or xy ∈ E(G2) but not both.
Obviously,
|E(G1 ⊕G2)|= |E(G1)||V (G2)|2

+|E(G2)||V (G1)|2−4|E(G1)||E(G2)|

.

Lemma 2.5. [?] Let Gi be a graph of order
ni for i = 1, 2. Then dG1⊕G2((u, x), (v, y)) =

1 if uv ∈ E(G1) or xy ∈ E(G2)
but not both

2 otherwise.

By Theorem ??, the following result is at-
tained.

Lemma 2.6. Let Gi be a graph of order ni for
i = 1, 2. Then d2((u, x)/G1 ⊕ G2) = n1n2 −
d((u, x)/G1 ⊕G2)− 1.

Lemma 2.7. [?] Let G and H be graphs. Then

M1(G⊕H) = (|V (G)||V (H)|2−8|E(H)|
|V (H)|)M1(G) + 4M1(G)M1(H)

+(|V (H)||V (G)|2−8|E(G)||V (G)|)M1(H)
+8|E(G)||E(H)||V (G)||V (H)|

Theorem 2.3. Let Gi be a graph of order ni and
size εi for i = 1, 2. Then
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(a) LM1(G1 ⊕G2) =

M1(G1 ⊕G2) + n1n2(n1n2 − 1)2−

4(n1n2 − 1)(ε1n
2
2 + ε2n

2
1 − 4ε1ε2).

(b) LM2(G1 ⊕G2) =

M2(G1 ⊕G2)− (n1n2 − 1)M1(G1 ⊕G2)+

(n1n2 − 1)2(ε1n
2
2 + ε2n

2
1 − 4ε1ε2).

(c) LM3(G1 ⊕G2) =

2(n1n2 − 1)(ε1n
2
2 + ε2n

2
1 − 4ε1ε2)

−M1(G1 ⊕G2).

Proof. The proof is similar to that described in
the proof of Theorem ?? and so omitted.

2.4 The composition of graphs

The composition G = G1[G2] of graphs G1 and
G2 with disjoint vertex sets V (G1) and V (G2)
and edge sets E(G1) and E(G2) is the graph
with vertex set V (G1) × V (G2) and (u, x)(v, y)
is an edge of G if (uv ∈ E(G1)) or (xy ∈
E(G2) and u = v). Obviously, |E(G)|=
|E(G1)||V (G2)|2+|E(G2)||V (G1)|.

Lemma 2.8. [?] Let G1 and G2 be graphs.
If G1 is connected, |V (G1)|> 1 and G =
G1[G2], then for every vertex (u, x), (v, y) ∈
V (G1[G2]) we have: dG1[G2]((u, x), (v, y)) =

dG1(u, v) if u ̸= v
1 if u = v and xy ∈ E2

2 if u = v and xy /∈ E2.

By Theorem ??, the proof of the following
Lemma is immediate, so omitted.

Lemma 2.9. Let Gi be a graph of order ni for
i = 1, 2. If G1 is connected and n1 > 1, then
d2((u, x)/G1[G2]) = n2+n2d2(u/G1)−d(x/G2)−
1.

Theorem 2.4. Let Gi be a graph of order ni and
size εi for i = 1, 2. If G1 is connected and n1 > 1,
then

(a) LM1(G1[G2]) =

n3
2LM1(G1) + n1n2(n2 − 1)2

+ n1M1(G2)− 4ε2n1(n2 − 1)

+ (2n2
2(n2 − 1)− 4n2ε2)D2(G1).

(b) LM2(G1[G2]) =

ε1n
2
2(n2 − 1)2 − ε1(n2 − 1)

[2M1(G2) + 2M1(G2) + 4ε2]

+ n3
2(n2 − 1)LM3(G1)

+ ε1[2M2(G2) + 2M2(G2)

+M1(G2)] + n4
2LM2(G1) + ε2n1

(n2 − 1)2 − n1(n2 − 1)

M1(G2) + n2
2ε2LM1(G1) + (2n2ε2(n2 − 1)

− n2M1(G2))D2(G1) + n1M2(G2)−

n2

∑
x,y∈V (G2)

∑
uv∈E(G1)

[d2(u/G1)d(y/G2)

+ d2(v/G1)d(x/G2)].

(c) LM3(G1[G2]) =

n3
2LM3(G1) + 2n3

2ε1−
4n2ε1ε2 − 2n2

2ε1 − 2n1ε2+

2n1n2ε2 − n1M1(G2)+

2n2ε2D2(G1)
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Proof. By Lemma ?? we have

LM1(G1[G2]) =
∑

(u,x)∈V (G1[G2])

d22((u, x)

/G1[G2]) =
∑

(u,x)∈V (G1[G2])

(n2 + n2d2(u/G1)

− d(x/G2)− 1)2 =∑
u∈V (G1)

∑
x∈V (G2)

[(n2 − 1)2 − 2(n2 − 1)

d(x/G2) + d(x/G2)
2 + n2

2d2(u/G1)
2+

2n2(n2 − 1)d2(u/G1)− 2n2d2(u/G1)

d(x/G2)] = n3
2LM1(G1) + n1n2(n2 − 1)2

+ n1M1(G2)− 4ε2n1(n2 − 1)+

(2n2
2(n2 − 1)− 4n2ε2)D2(G1).

LM2(G1[G2]) =
∑

(u,x)(v,y)∈E(G1[G2])

d2((u, x)/G1[G2])d2((v, y)/G1[G2])

=
∑

x,y∈V (G2)

∑
uv∈E(G1)

(n2 + n2d2(u/G1)

− d(x/G2)− 1)(n2 + n2d2(v/G1)

− d(y/G2)− 1) +
∑

u=v∈V (G1)

∑
xy∈E(G2)

(n2 + n2d2(u/G1)− d(x/G2)− 1)

(n2 + n2d2(u/G1)− d(y/G2)− 1)

=
∑

x,y∈V (G2)

∑
uv∈E(G1)

[(n2 − 1)2 + n2(n2 − 1)(d2(u/G1)

+ d2(v/G1)) + n2
2d2(u/G1)d2(v/G1)

− (n2 − 1)(d(x/G2)

+ d(y/G2))− n2d2(u/G1)d(y/G2)−

n2d2(v/G1)d(x/G2) + d(x/G2)d(y/G2)]+∑
u=v∈V (G1)

∑
xy∈E(G2)

[(n2 − 1)2

+ 2n2(n2 − 1)d2(u/G1) + n2
2d2(u/G1)

2−

(n2 − 1)(d(x/G2) + d(y/G2))

− n2d2(u/G1)(d(x/G2) + d(y/G2))

+ d(x/G2)d(y/G2)]

= ε1n
2
2(n2 − 1)2 + n3

2(n2 − 1)LM3(G1)

− ε1(n2 − 1)[2M1(G2) + 2M1(G2) + 4ε2]

+ n4
2LM2(G1)− n2

∑
x,y∈V (G2)

∑
uv∈E(G1)

[d2(u/G1)d(y/G2) + d2(v/G1)d(x/G2)]

+ ε1[2M2(G2) + 2M2(G2) +M1(G2)]+

ε2n1(n2 − 1)2 + (2n2ε2(n2 − 1)−
n2M1(G2))D2(G1) + n2

2ε2LM1(G1)

− n1(n2 − 1)M1(G2) + n1M2(G2).

LM3(G1[G2]) =
∑

(u,x)∈V (G1[G2])

d((u, x)/G1[G2])d2((u, x)/G1[G2])

=
∑

(u,x)∈V (G1[G2])

(n2d(u/G1)

+ d(x/G2))(n2 + n2d2(u/G1)− d(x/G2)− 1)

=
∑

u∈V (G1)

∑
x∈V (G2)

[n2
2d(u/G1)d2(u/G1)

+ n2(n2 − 1)d(u/G1)− n2d(x/G2)d(u/G1)+

n2d(x/G2)d2(u/G1) + (n2 − 1)d(x/G2)− d(x/G2)
2]

= n3
2LM3(G1) + 2n3

2ε1 − 4n2ε1ε2 − 2n2
2ε1 − 2n1ε2+

2n1n2ε2 − n1M1(G2) + 2n2ε2D2(G1).

2.5 The Cartesian product of graphs

The cartesian product G1 ×G2 of graphs G1 and
G2 is a graph with vertex set V (G1)×V (G2) and
(u, x)(v, y) is an edge of G1 × G2 if uv ∈ E(G1)
and x = y, or u = v and xy ∈ E(G2). Obviously,
|E(G1 ×G2)|= |E(G1)||V (G2)|+|V (G1)||E(G2)|.

Lemma 2.10. [?] Let Gi be a graph of order ni

for i = 1, 2. Then

dG1×G2((u, x), (v, y)) = dG1(u, v) + dG2(x, y).

The proof of the following Lemma is immedi-
ate, so omitted.
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Lemma 2.11. Let Gi be a graph of order ni for
i = 1, 2. Then d2((u, x)/G1 ×G2) = d2(u/G1) +
d2(x/G2) + d(u/G1)d(x/G2).

Theorem 2.5. Let Gi be a graph of order ni and
size εi for i = 1, 2. Then

(a) LM1(G1 ×G2) =

n2LM1(G1) + n1LM1(G2)+
M1(G1)M1(G2) + 4ε2LM3(G1)

+4ε1LM3(G2) + 2D2(G1)D2(G2).

(b) LM2(G1 ×G2) =

n2LM2(G1) + ε1LM1(G2) +M1(G1)

LM3(G2) +M2(G1)M1(G2)+
LM3(G1)D2(G2) + LM3(G2)D2(G1)
+n1LM2(G2) + ε2LM1(G1) +M1(G2)

LM3(G1) +M2(G2)M1(G1)+

2ε2
∑

uv∈E(G1)
[d2(u/G1)d(v/G1)

+d2(v/G1)d(u/G1)]+
2ε1

∑
xy∈E(G2)

[d2(x/G1)d(y/G1)

+d2(y/G1)d(x/G1)].

(c) LM3(G1 ×G2) =

n2LM3(G1) + n1LM3(G2)
+2ε1M1(G2) + 2ε2M1(G1)
2ε2D2(G1) + 2ε1D2(G2).

Proof. By Lemma ?? we have
LM1(G1 ×G2) =∑

(u,x)∈V (G1×G2)

(d2((u, x)/G1 ×G2))
2

=
∑

(u,x)∈V (G1×G2)

(d2(u/G1)

+d2(x/G2) + d(u/G1)d(x/G2))
2

=
∑

u∈V (G1)

∑
x∈V (G2)

[d2(u/G1)
2

+d2(x/G2)
2 + d(u/G1)

2d(x/G2)
2

+2d2(u/G1)d2(x/G2)+
2d2(u/G1)d(u/G1)d(x/G2)

+2d2(x/G2)d(u/G1)d(x/G2)]
= n2LM1(G1) + n1LM1(G2)

+M1(G1)M1(G2) + 2D2(G1)D2(G2)+
4ε2LM3(G1) + 4ε1LM3(G2).

LM2(G1 ×G2) =∑
(u,x)(v,y)∈E(G1×G2)

d2((u, x)/G1 ×G2)d2((v, y)/G1 ×G2)
=

∑
x=y∈V (G2)

∑
uv∈E(G1)

[(d2(u/G1)

+d2(x/G2) + d(u/G1)d(x/G2))
(d2(v/G1) + d2(x/G2) + d(v/G1)d(x/G2))

+
∑

u=v∈V (G1)

∑
xy∈E(G2)

[(d2(u/G1)

+d2(x/G2) + d(u/G1)d(x/G2))
(d2(u/G1) + d2(y/G2) + d(u/G1)d(y/G2))]

=
∑

x=y∈V (G2)

∑
uv∈E(G1)

[d2(u/G1)d2(v/G1)

+d2(x/G2)(d2(u/G1) + d2(v/G1))+
d(x/G2)(d2(u/G1)d(v/G1) + d2(v/G1)

d(u/G1)) + d2(x/G2)
2+

d(x/G2)d2(x/G2)(d(u/G1) + d(v/G1))
+d(x/G2)

2d(u/G1)d(v/G1)]+∑
u=v∈V (G1)

∑
xy∈E(G2)

[d2(x/G2)d2(y/G2)

+d2(u/G2)(d2(x/G2) + d2(y/G2))+
d(u/G1)(d2(x/G2)d(y/G2) + d2(y/G2)

d(x/G2)) + d2(u/G1)
2 + d(u/G1)

d2(u/G1)(d(x/G2) + d(y/G2)) + d(u/G1)
2

d(x/G2)d(y/G2)] = n2LM2(G1)
+LM3(G1)D2(G2) + ε1LM1(G2)

+M1(G1)LM3(G2) +M2(G1)M1(G2) + 2ε2∑
uv∈E(G1)

[d2(u/G1)d(v/G1) + d2(v/G1)

d(u/G1)] + n1LM2(G2) + LM3(G2)D2(G1)
+ε2LM1(G1) +M1(G2)LM3(G1) +M2(G2)
M1(G1) + 2ε1

∑
xy∈E(G2)

[d2(x/G1)d(y/G1)

+d2(y/G1)d(x/G1)].

LM3(G1 ×G2) =∑
(u,x)∈V (G1×G2)

d((u, x)/G1 ×G2)d2((u, x)

/G1 ×G2) =
∑

(u,x)∈V (G1×G2)

(d(u/G1)

+d(x/G2))(d2(u/G1) + d2(x/G2)+
d(u/G1)d(x/G2)) =

∑
u∈V (G1)

∑
x∈V (G2)

[d2(u/G1)

d(u/G1) + d(u/G1)d2(x/G2) + d(u/G1)
2

d(x/G2) + d(x/G2)d2(u/G1) + d2(x/G2)
d(x/G2) + d(u/G1)d(x/G2)

2]
= n2LM3(G1) + 2ε1D2(G2) + 2ε2M1(G1)
+2ε2D2(G1) + n1LM3(G2) + 2ε1M1(G2).
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3 Mycielskian graphs

For a graph G = (V,E), the Mycielskian of G
is the graph µ(G) with the disjoint union V ∪
X ∪ {x} as its vertex set and E ∪ {vixj | vivj ∈
E} ∪ {xxj | 1 ≤ j ≤ n} as its edge set, where
V = {v1, v2, . . . , vn} and X = {x1, x2, . . . , xn}.

We will use the following results.

Lemma 3.1. [?] Let µ(G) be the Mycieliskian of
G. Then for each v ∈ V (µ),

d(v/µ(G)) =


n if v = x

1 + degG(vi) if v = xi

2d(vi/G). otherwise.

Lemma 3.2. [?] In the Mycieliskian µ(G) of G,
the distance between two vertices u, v ∈ V (µ(G))
are given as follows,

dµ(G)(u, v) =



1 if u = x, v = xi

2 if u = x, v = vi

2 if u = xi, v = xj

dG(vi, vj) if u = vi, v = vj ,

dG(vi, vj) ≤ 3

4 if u = vi, v = vj ,

dG(vi, vj) ≥ 4

2 if u = vi, v = xj , i = j

dG(vi, vj) if u = vi, v = xj , i ̸= j,

dG(vi, vj) ≤ 2

3 if u = vi, v = xj , i ̸= j,

dG(vi, vj) ≥ 3.

Specially, the diameter of the Mycialiskian
graph is at most four.

The proof of the following result is obvious, so
omitted.

Lemma 3.3. Let G be a graph of order n. Then

d2(u/µ(G)) =


n if u = x

d2(vi/G) + n− 1 if u = xi

2d2(vi/G) + 2 if u = vi.

Theorem 3.1. Let G be a graph of order n and
size ε. Then

(a) LM1(µ(G)) =

5LM1(G) + n3 − n2 + 5n

+2(n+ 3)D2(G).

(b) LM2(µ(G)) =

6LM2(G) + 6LM3(G)+

4ε+ 2(n− 1)ε+ n3 − n2+

nD2(G) + 2(n− 2)
∑

vivj∈E(G) d2(vi/G).

(c) LM3(µ(G)) =

5LM3(G) + 2(n− 1)ε+

8ε+ 2n2 − n+D2(G).

Proof. By Lemma ?? we have

LM1(µ(G)) =
∑

u∈V (µ(G))

(d2(u/µ(G)))2

= n2 +
n∑

i=1

(d2(vi/µ(G)))2

+

n∑
i=1

(d2(xi/µ(G)))2

= n2 +

n∑
i=1

(2d2(vi/G) + 2)2

+
n∑

i=1

(d2(vi/G) + n− 1)2

= 5LM1(G) + n3 − n2 + 5n

+ 2(n+ 3)D2(G).
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LM2(µ(G)) =
∑

uv∈E(µ(G))

d2(u/µ(G))

d2(v/µ(G))

=
∑

xxi∈E(µ(G))

d2(x/µ(G))d2(xi/µ(G))

+
∑

vivj∈E(µ(G))

d2(vi/µ(G))d2(vj/µ(G))

+
∑

vixj∈E(µ(G))

d2(vi/µ(G))d2(xj/µ(G))

=

n∑
i=1

n(d2(vi/G) + n− 1)

+
∑

vivj∈E(G)

(2d2(vi/G) + 2)(2d2(vj/G)

+ 2) +
∑

vivj∈E(G)

(2d2(vi/G) + 2)(d2(vj/G)

+ n− 1)

= 6LM2(G) + 6LM3(G) + 4ε+ 2(n− 1)ε

+ n3 − n2 + nD2(G) + 2(n− 2)∑
vivj∈E(G)

d2(vi/G).

LM3(µ(G)) =
∑

u∈V (µ(G))

d(u/µ(G))d2(u/µ(G))

= n2 +

n∑
i=1

d(vi/µ(G))d2(vi/µ(G))

+

n∑
i=1

d(xi/µ(G))d2(xi/µ(G))

= n2 +
n∑

i=1

2d(vi/G)(2d2(vi/G) + 2)

+
n∑

i=1

(d(vi/G) + 1)(d2(vi/G) + n− 1)

= 5LM3(G) + 2(n− 1)ε+ 8ε+ 2n2

− n+D2(G).
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