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Abstract 

Although strong ground motion networks are expanding, near-source strong motion 
recordings are still sparse .In this article it is planned to characterize the level and variability 
of strong ground motion in near field of large earthquakes due to source effects.  We have 
developed a stochastic rupture model that characterizes the variability and spatial complexity 
of slip as observed in past earthquakes. We model slip heterogeneity on the fault plane as a 
spatial random field for 21 near source earthquakes. The data follows a von Karman 
autocorrelation function (ACF), for which the correlation lengths (a) increase with the source 
dimensions .These stochastic slip distributions are used to develop the temporal behavior of 
slip using physically consistent with stochastic-dynamic earthquake source models .It means 
that we can use this model to simulate realistic strong ground motion in order to characterize 
the variability of source effects in the near-field of large earthquakes. For earthquakes with 
large fault aspect ratios, we observe substantial differences of the correlation length in the 
along-strike (ax) and downdip (az) directions. Increasing correlation length with increasing 
magnitude can be understood using concepts of dynamic rupture propagation.  

The power spectrum of the slip distribution can also be well described with a  fractal 
distribution in which the fractal dimension D remains scale invariant, accounting for larger 
‘‘asperities ’’ for large-magnitude events. 

 Our stochastic slip model can be used to generate scenario earthquakes for near-source 
ground motion simulations. 

 
Keywords: Slip heterogeneity, Near source rupture model, Complexity of slip, Random fields, 
Correlation lengths of asperities, Earthquake rupture dynamics 
 
Introduction1 

Finite – source images of earthquake 
rupture show that fault slip is spatially 
variable at all resolvable scales. Finite –
source rupture models are typically derived 
by inversion of low-pass-filtered strong 
ground motion recordings [e.g.,Beroza and 
Spudich,1988], some times augmented 
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with teleseismic data [Hartzell and Hea-
ton,1983;Wald et al.,1991] and/or geodetic 
measurements [Heaton,1982;Wald and 
Somerville, 1995; Yoshida et al., 1996]. 
Some studies derived slip on the fault 
plane from a forward-modeling approach, 
other techniques use geodetic data alone to 
constrain large-scale slip and empirical 
Green’s function analysis. The rupture 
complexity inferred from these slip-
distribution models has important 
implication for the dynamic of the 
earthquake source. Studying the source 
properties of such well-documented past 
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earthquakes therefore offers the possibility 
to gain insight into the physics of rupture 
process. In most cases the differences in 
the final slip distributions are appreciable, 
reflecting unmodeled Earth structure, 
different data processing and weighting the 
choice of the inversion method, and 
smoothing or regularization applied during 
the inversion. The variability in source 
model provides a means to assess the 
generally unknown uncertainties of the 
imaged slip distributions. Rupture 
variability is of great interest because it 
strongly influences the level and variability 
of damaging high-frequency seismic 
energy radiated by an earthquake [Spudich 
and Frazer, 1984]. 

Some theoretical studies of extended-
source earthquake models describe 
heterogeneous slip distributions on fault 
planes. Andrews [1980b, 1981] showed 
that a slip spectrum that decays as k-2 

in the 
wave number domain leads to far-field 
displacements that follow the widely 
observed w-2 

spectral decay. The 
fundamental assumption in this model is 
that individual large and small earthquakes 
have about the same stress drop. Based on 
this concept, Herrero and Bernard [1994] 
introduced the ‘‘k-square’’ model in which 
the slip spectrum decays as k-2 

beyond the 
corner wave number, kc, which is related 
to fault length. In this representation, slip 
is fractal. The‘‘k-square’’model assumes 
that the rupture front propagates with 
constant rupture velocity vr, while the rise 
time depends on wave number. The 
resulting ground motions follow the w-2 
decay for far-field displacements, and were 
used to study directivity effects [Bernard et 
al., 1996]. Another class of constant stress-
drop, extended-source models are the 
composite source models in which the 
earthquake is composed of many small 
events of different size with a fractal size 
distribution, filling the rupture plane to 
form the main shock slip distribution 
[Frankel, 1991; Zeng et al., 1994]. The 
composite source model has been used 
success fully to simulate ground motions 

as well as to invert for earthquake slip 
distributions [Zeng et al., 1994; Zeng and 
Anderson, 2000; Su et al., 1996].  

All of these models have in common a 
fractal slip distribution, and hence contain 
no characteristic length scales to describe 
the size of asperities (large slip patches, 
areas of high stress drop). The only length 
scale in the fractal model is a 
‘‘characteristic’’ source dimension, Lc 
(usually fault length) that determines the 

corner wave number, 
c

c L
k 1α , beyond 

which the spectra show power law decay. 
Somerville et al. [1999] take a 

deterministic approach to correlate size 
and number of asperities with seismic 
moment for a set of finite-source rupture 
models. They find that the total number of 
asperities as well as the asperity size 
increases with seismic moment. The same 
study also indicates that for a few selected 
earthquakes the slip distributions may 
follow a k-2 

decay in the wave number 
domain, but there has not yet been an 
attempt to rigorously verify  

the k-2 
model for published finite-source 

models. Somerville et al. [1999] propose 
that the correlation of size of asperity and 
number of asperities with seismic moment 
can be used to constrain simulated slip 
distributions that obey a k-2 

spectral decay. 
In this paper we propose a stochastic 

characterization of the spatial complexity 
of earthquake slip as found in finite-source 
slip inversions (Figure1). We use a spatial 
random field model in which the slip 
distribution is described by an 
autocorrelation function (ACF) in space, or 
its power spectral density (PSD) in the 
wave number domain, each parameterized 
by characteristic length scales ax, az. We 
compile a data base of 21 near-source 
rupture models, using for earthquakes, 
which their hypocenters are  <10 Km 
(Table1), and for each slip model we test 
whether a Gaussian (GS), an exponential 
(EX), or a von Karman (VK) ACF 
provides an appropriate description of the 
inferred slip distribution. We also examine 
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the possibility of slip being fractal 
(meaning that there are no characteristic 
scale lengths, aside from the source 
dimensions). Finally , we analyze our 
measurements of correlation lengths ax, 
and az, and fractal dimension, D, for 

dependence on source parameters, i.e., 
whether scaling laws exist that relate the 
stochastic source parameters (fractal 
dimension, corre lation lengths) to 
deterministic source parameters (fault 
length, fault width, seismic moment). 

 
Table 1.Source parameters of Finite - Source Rupture Models Used in This Study 

No. Location Date L W Mw Mo FM REFERENCE 
1 San Fernando 9February1971 19 19 6.8 1.6E+19 RV Heaton [1982] 
2 Tabas 16September1978 95 45 7.1 5.3E+19 RV Hartzell and Mendoza[1991] 
3 ImperialValley 15October1979 42 10 6.5 5.7E+18 SS Zeng and Anderson[2000] 
4 BorahPeak 28October1983 52 26 6.8 1.8E+19 N Mendoza and Hartzell[1988] 
5 Morgan Hill 24 April 1984 30 10 6.2 2.6E+18 SS Beroza and Spudich[1988] 
6 Michoacan 19September1985 180 140 8.0 1.2E+21 RV Mendoza and Hartzell[1988] 
7 Nahinni1 5October1985 40 17 6.7 1.3E+19 RV Hartzell et al. [1994] 
8 Nahinni2 23December1985 48 21 6.8 1.7E+19 RV Hartzell et al. [1994] 
9 N palm Springs 8July1986 22 15 6.1 1.7E+18 OB Hartzell et al. [1994] 

10 Whittier Narrows 10October1987 10 10 5.9 8.7E+17 OB Hartzell and Iida[1990] 
11 Superstition Hills 24 November 1987 24 11 6.6 9.3E+18 SS Zeng and Anderson[2000] 
12 Loma Prieta 18October1989 40 14 6.9 2.4E+19 OB Beroza[1991] 
13 Landers 28June1992 77 15 7.3 7.6E+19 SS Zeng and Anderson[2000] 
14 Northridge 17January1994 18 21 6.7 1.2E+19 RV Wald[1996] 
15 Kobe 17January1995 60 20 6.9 2.8E+19 SS Zeng and Anderson[2000] 
16 Hyuga - Nada1 19October1996 32 32 6.8 1.9E+19 RV Yagi and Kikuchi[1999] 
17 Hyuga - Nada2 2December1996 29 29 6.7 1.3E+19 RV Yagi and Kikuchi[1999] 
18 Izmit (Turkey) 17August1999 125 22 7.4 1.4E+20 SS Bouchon [2000] 
19 Chi-Chi(Taiwan) 20Sep.1999 84 42 7.7 4.6E+20 RV Zeng and Anderson[2000] 
20 Tottori (Japan) 6 October  2000 32 20 6.7 1.4E+19 OB Ripperger et al. [2007] 
21 Parkfield 28 Sep. 2004 40 15 6.1 1.4E+18 SS Ripperger et al. [2007] 

 
Rv = Reverse, SS = Strike Slip, N = Normal Faulting, OB = Oblique Mechanism 
 

We first discuss the basic concepts of 
the spatial random field model, and outline 
the approach we take to determine the best 
fitting correlation lengths. 

 It can be applied the technique to 
published slip distributions, and examine 
the measured correlation lengths with 
respect to earthquake source parameters, so 
we discuss the implications of the result 
for rupture dynamics. 

We can use our model to simulate slip 
distributions for hypothetical future 
earthquakes that can be used to calculate 
synthetic near-field ground motions. 

 

Representing and simulating slip 
variability with random field models  

Spatial random field models are widely 
used in geosciences to describe quantities 
with non homogeneous spatial distribution 
[Goff and Jordan, 1988; Turcotte, 1989; 
Holliger and Levander, 1992].  

They are characterized either in space 
by an ACF, C (r), or by a PSD, P (k), 
where is distance and k is wave number.  

We consider three commonly used 
correlation functions, the Gaussian, 
exponential, and von Karman correlation 
function with the following expressions for 
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C(r) and P (k): 

 

Where )()( rKrrG H
k

H = . In these 
expressions, H is the Hurst exponent, KH is 
the modified Bessel function of the first 
kind (order H), and kx and kz are horizontal 
and vertical wave numbers, respectively. 
The characteristic scales are given by the 
correlation lengths in along-strike and 
downdip direction, ax, az, respectively and  
 

2

2
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The Hurst exponent H in the expression 

for the von Karman ACF determines the 
spectral decay at high wave numbers. For 
H=0.5 the von Karman ACF is identical to 
the exponential ACF. For a fractal medium, 
the power spectrum is characterized by a 
power law decay. In the two-dimensional 
case, this can be written as [Voss, 1988] 

 

         (3) 
 

 
Where 
 

D=E+1-H                                                 (4  
  
In (4), D is the fractal dimension, E the 

Euclidean dimension of the fractal medium, 
therefore D=3-H for a two dimensional 
fault plane. From (3) and (4) it follows that 

HB 21+= .The‘‘k-square’’ model 
therefore implies H =1 or equivalently 
D=2. 

The differences among the random field 
models in (1) are illustrated in Figure 2 for 
four slip distributions with identical 
phasing. The Gaussian random field seems  
smooth with little short –scale 
variation .To estimate the best fitting 
correlation length for the Gaussian, 
exponential and von Karman correlation 
function, we can use a grid-search 
algorithm by fitting power spectra for 
discrete values of correlation lengths a to 
measured spectral densities. 

We examine average decay properties of 
the slip using the Fractal Analysis from 
Circular Average (FACA) method 
[Anguiano et al., 1994], then we analyze 
the decay in along-strike and downdip 
direction separately. In the FACA method, 
the fractal dimension of a two-dimensional 
image is estimated from integrated spectral 
values along a radial, kr, and hence only 
represents average properties of the 
random field.  We extend this approach to 
more general random fields, parameterized 
by the ACFs given in (1). This method 
eliminates possible anisotropy, but it yields 
more stable average estimates for the 
decay parameters, which provide a starting 
point for the subsequent two-dimensional 
analysis of the slip. We then estimate the 
best fitting correlation length ax, az, in 
along-strike and downdip direction, 
respectively, by iteratively sweeping 
through a large range of correlation lengths. 
This is done for each direction separately 
using the one-dimensional slice in along–
strike or downdip direction. 
 
Application to Finite-Source Models 

We estimate parameters of 21 finite-
source slip models (Table1) that comprise 
strike - slip and dip-slip earthquakes from 
various tectonic regimes. These slip 
models were derived using a number of 
inversion techniques, different strategies to 
stabilize the inversion ( regularization and 
smoothing constraints), and with different 
spatial sampling .  

Slip in earthquakes as imaged by finite-
fault inversion techniques is invariably 
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found to be heterogeneous. The overall 
dimensions of the rupture planes used in 
these studies are chosen to be more than 
large enough to accommodate the entire 
fault rupture, and therefore may produce 
slip models with significant portions of 
low (or even zero) slip towards their edges. 
Thus, using the dimension of the finite-
source model may lead to an overestimate 
of the "true" rupture area, and hence to 
scaling laws that do not represent source 
behavior accurately. This, together with 
the intrinsically heterogeneous nature of 
slip in earthquakes, raises the question of 
how to characterize the spatial extent of 
the source. 

To analyze heterogeneous slip 
distributions (parameterized by slip values 
in a two-dimensional array of subfaults) 
we use equivalent (effective) source 
dimensions, based on definition of 
autocorrelation width. For a given function, 
f, autocorrelation width, WACF, is the are 
under the autocorrelation function of that 
function, 

 
dxxufufff )().(* −∫=                         (5) 

                 
normalized by the zero-lag value (x=0) 

of the autocorrelation function (i.e. its 
maximum): 

ACF        

0=
∫ +∞∞−

xf*f
dx)f*f( W = equivalent                                     (6) 

 

Using this definition, we calculate the 
effective length Leff (width Weff) of the 
fault from the 1D slip function that is 
computed by summing the slip values in 
the individual subfaults in down-dip 
(along-strike) direction.In order to obtain a 
uniform representation for all models and 
to facilitate the comparison among slip 
models, we bilinearly interpolate all 
models onto 1x

 
1 km grid spacing such that 

the spectral decays are directly comparable.  
First we apply the FACA algorithm to 

estimate the average decay parameters of 
the slip maps. In simulations the Gaussian 

ACF is not available model to describe 
heterogeneous slip in earthquakes, but the 
exponential and von Karman ACF provide 
an accurate description of the spectral 
decay. The inversion often recovers 
anisotropy with correlation length in along 
strike direction ,ax, being much larger than 
in down-dip direction, az, and the along-
strike Hurst exponent H is smaller that the 
downdip Hurst exponent, indicating that a 
single fractal dimension(D=3-H) may not 
be sufficient to model heterogeneous 
slipdistributions . 

Although the exponential and the von 
Karman ACF measure very similar 
correlation lengths, we generally observe 
that the von Karman ACF returns slightly 
lower misfits than the exponential ACF 
due to the additional free parameter (Hurst 
exponent H) in fitting the decay. It is 
important that the slip inversion process 
exerts a strong influence on the 
measurements of lengths scales (asperity 
sizes) or fractal dimensions of finite-source 
rupture models, using the stochastic 
approach presented in this paper or 
deterministic approach [Somerville et al., 
1999]. 

The results strongly depend on the 
limitations of finite-source inversion 
studies. In these inversions, the rupture 
plane is discretized into many subfaults 
where the size of the subfaults may depend 
on the rupture dimensions, on the 
availability, spatial distribution and 
frequency bandwidth of data, and the 
inversion method used. These data 
limitations (in spatial distribution, 
frequency, and quality) leave any slip 
inversion with a component of the model 
that can not be constrained by the data. 
Also, the resolution of the original models 
of slip may be an isotropic due to gridding 
or geometric effects. These factors taken 
together impose strong limitations on the 
range of spatial parameters present in the 
inferred slip distributions. Finite -source 
inversions also include smoothing 
constrains to stabilize the inversion. The 
amount of smoothing, however, is often 
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not a clear–cut objective choice, but rather 
a subjective one to avoid oscillatory slip 
maps. 

Measurements of asperity size, 
characteristic scale lengths or decay 
parameters, based on inferred finite-source 
models, are therefore only estimates of the 
true slip complexity during an earthquakes. 
Nevertheless, we believe that the 
characteristic scales we find from these 
slip models are likely to be representative 
of future earthquakes. In particular, since 
they are themselves derived from strong 

motion data, they can be used to simulate 
complex earthquake slip for strong motion 
prediction. Now we discuss the estimates 
of parameters (fractal dimension, D, Hurst 
exponent, H, and correlation lengths a , ax 
and az ) for 21 near - source rupture 
models (Table1). The results are listed in 
Table2 for each slip model, along with the 
effective source dimensions, Leff and Weff. 
We use these measurements to examine 
possible dependencies of parameters on 
source parameters (moment magnitude, 
Mw, fault length, Lef, fault width, Weff). 

 
Table 2. Estimates of effective source dimensions Leff and Weff; Fractal Dimension, D; 

Correlation Length, a; and Hurst Exponents, H, for slip models listed in Table 1 
 

 
 

No. 

 
 

Leff 

 
 

Weff

Fractal 
 

D 

  Exponential 
 
 a       ax      az 

              Von Karman   
 

a       ax     az     H     Hx   Hz
1 11.0 11.0 1.8 5.2 5.2 5.0 4.0 4.0 3.8 1.2 1.2 1.2
2 66.0 32.0 2.2 19.5 23.0 12.2 15.8 18.5 10.2 0.8 0.8 0.8
3 22.0 7.0 2.3 4.7 7.2 2.7 3.8 6.7 2.3 0.8 0.7 1.0
4 33.0 21.0 2.1 11.4 13.8 9.2 9.1 10.8 7.4 0.9 0.9 0.9
5 22.0 8.0 2.8 5.5 9.9 3.5 6.5 12.6 3.7 0.3 0.2 0.5
6 136.0 97.0 2.3 50.1 57.4 38.6 41.4 42.2 34.8 0.7 0.9 0.6
7 22.0 11.0 2.6 6.3 7.2 4.8 6.0 7.8 5.1 0.5 0.5 0.5
8 24..0 12.0 2.5 6.7 7.8 4.8 6.7 6.8 5.4 0.5 0.7 0.3
9 15.0 11.0 2.4 5.2 6.4 4.6 4.9 5.6 3.9 0.6 0.8 0.8
10 9.0 8.0 2.2 3.2 3.5 3.0 2.9 3.2 3.4 0.8 0.7 1.2
11 17.0 8.0 2.0 5.4 7.4 3.6 4.2 8.4 2.9 1.0 0.3 1.0
12 26.0 10.0 2.3 6.6 10.0 4.0 5.7 10.0 3.5 0.7 0.5 0.7
13 51.0 11.0 2.3 10.6 24.2 5.1 10.5 17.6 4.5 0.5 0.7 0.7
14 14.0 15.0 2.4 9.4 13.2 5.8 10.8 18.0 6.1 0.3 0.2 0.4
15 37.0 14.0 2.6 9.4 13.2 5.8 10.8 18.0 6.1 0.3 0.2 0.4
16 22.0 24.0 2.2 10.0 9.1 10.6 8.3 7.4 9.1 0.8 0.9 0.8
17 22.0 22.0 2.3 10.1 10.5 10.5 7.7 8.7 9.8 1.0 0.9 0.7
18 85.0 19.0 2.6 17.5 33.2 7.9 17.6 33.9 7.6 0.5 0.5 0.6
19 54.0 27.0 2.4 15.9 22.0 10.3 14.6 19.8 9.5 0.6 0.7 0.6
20 23.0 12.0 2.4 6.6 7.7 4.7 6.6 6.7 5.3 0.5 0.6 0.2
21 25.0 11.0 2.6 6.4 7.1 4.9 6.2 7.5 5.4 0.6 0.5 0.6

 
Assuming that D>2 is not an artifact of 

the fault slip inversion method or the 
inversion for the decay parameters, the 
observation that D >2 has multiple possible 
interpretations: (1) non constant stress drop 
for subevents in a cascade earthquake 
source model [Frankel, 1991], (2) 

variability in rise time and/or rupture 
velocity is mapped into a more 
heterogeneous slip distribution [Herrero 
and Bernard, 1994], and (3) surfical 
geometrical complexity of fault systems 
extends to depth [Okubo and Aki, 1987; 
Aviles et al., 1987]. 
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For an earthquake source model 
consisting of a cascade of ruptures of 
different sizes the average stress drop over 
an area on the fault is assumed to be 
proportional to the standard deviation of 
the spatial variations in stress drop over 
that area [Frankel, 1991]. 

D>2 also implies that stress drop 
increases as the rupture size becomes 
smaller (smaller length scales). 

Although decreasing stress drop with 
increasing magnitude is not generally 
observed, it is in qualitative agreement 
with a study on strength of asperities 
[Sammis et al., 1999]. 

An alternative interpretation for D>2 is 
that it is an artifact that arises from finite-
source inversion methods that do not 
accurately recover the true variability in 
rise time or rupture velocity.  

Although dynamic rupture modeling 
indicates that both rise time and rupture 
velocity are spatially variable over the fault 
plane, finite-source inversion often treat 
them as being constant or slowly varying. 
In order to fit the data, the inversion may 
therefore map variability in rise time or 
rupture velocity into a more heterogeneous 
slip distribution. 

Independent evidence for D>2 is found 
in studies on the geometrical complexity of 
fault systems [Okubo and Aki, 1987; 
Aviles et al., 1987]. In particular, Okubo 
and Aki [1987] find D=1.3 for the mapped 
fault trace of the San Andreas Fault which 
translates into D=2.3 for the fault surface 
using Dsurface = Dtrace + 1 [Okubo and 
Aki, 1987], consistent with our 
measurement to D=2.3. 

In our opinion, the observation of D>2 
is probably attributable to a combination of 
incorrect mapping of rupture variability 
into the slip distribution as well as the 
geometric irregularity of the fault surface 
that is not accounted for in slip inversions.  

We find no evidence that the Hurst 
exponent depends on magnitude. It is 
interesting to note that the H estimates are 
close to H=0.5 for which the von Karman 
ACF is identical to the exponential ACF, 

explaining why both the exponential and 
the von Karman ACF provide similar fits 
to the observed decay, and generally result 
in similar correlation length estimates for a 
given slip model (Table2).  

The median estimates for H and D 
approximately satisfy, D=3-H, although 
they were derived using different 
approaches. H ~ 0.8 may again indicate 
that the constant stress drop model 
[Andrews, 1980b; Herrero and Bernard, 
1994] may not apply to the published slip 
maps. The observation that H>0.5 becomes 
important when simulating slip 
distributions under the condition of finite 
static self-energy. 
 
Correlation Lengths for Finite-Source 
Models 

In the following discussion, we will 
focus on the correlation length estimates 
for the von Karman ACF because (1) the 
Hurst exponents are found to be close to 
H=0.5 for which the von Karman ACF is 
identical to the exponential ACF, leading 
to similar correlation lengths estimates for 
the two ACFs and our conclusions hold for 
either ACF, and (2) we found that the von 
Karman ACF generally provides a better 
fit to the observed decay than the 
exponential ACF or the fractal model, and 
we therefore adopt the von Karman ACF 
as our preferred model to describe 
complexity of earthquake slip. Generally, 
statistical properties of earthquakes with 
multiple finite-source slip models seem to 
be recovered in a consistent manner, and 
the random field model we propose is able 
to capture this similarity. 

The correlation lengths we obtain are 
also similar to the asperity dimensions 
found by Somerville et al. [1999].  

While we have estimated stochastic 
properties of a slip distribution, their 
measurements are deterministic, and hence 
the two sets of measurements are no 
necessarily directly comparable. We find 
that for slip models with multiple, small 
asperities, we obtain short correlation 
lengths and low Hurst exponents. Likewise, 
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where Somerville et al [1999] find only 
one or two larger slip patches, we observed 
longer correlation lengths and larger Hurst 
exponents. In the deterministic model, the 
asperity size increases with source 
dimensions (magnitude), an observation 
that is confirmed by measurements in that 
larger earthquakes tend to have longer 

correlation lengths. We therefore conclude 
that the “characteristic length scales 
‘measured in this study agree qualitatively 
with those by Somerville [1999], though 
ours is a stochastic representation of slip 
complexity, whereas theirs is a 
deterministic one. 

Scaling of correlation Lengths with Source Dimensions 
 

Table3.Coefficients for the Scaling of the von Karman Correlation Lengths a With Source Parameters; 
Moment Magnitude, Mw, Fault Length, Leff, and Fault Width, Weff, Separated With Respect to Faulting 

Style 
Equation FM Slope 

(b1) 
Intercept 

(b0) 
Standard 
Deviation 

Correlation 
Coefficient 

 
log(a)=b0+b1Mw 

 

SS 
DS 
AL 

0.47 
0.47 
0.46 

-2.32 
-2.32 
-2.30 

0.16 
0.15 
0.16 

0.87 
0.89 
0.86 

 
a=b0+b1 Leff 

SS 
DS 
AL 

0.19 
0.28 
0.24 

1.78 
0.51 
0.74 

1.30 
1.42 
2.03 

0.90 
0.93 
0.87 

 
 
 
 
 
Circular 
Average 

 
a=b0+b1 Weff 

SS 
DS 
AL 

0.94 
0.43 
0.42 

-2.12 
0.65 
2.24 

0.12 
0.19 
0.16 

0.79 
0.95 
0.81 

 
log(a)=b0+b1Mw 

 

SS 
DS 
AL 

0.60 
0.47 
0.52 

-2.95 
-2.27 
-2.51 

0.21 
0.15 
0.20 

0.85 
0.87 
0.80 

 
a=b0+b1 Leff 

SS 
DS 
AL 

0.33 
0.36 
0.35 

3.61 
0.61 
1.99 

1.70 
0.75 
1.10 

0.89 
0.97 
0.92 

 
 
 
Along- 
strike 

 
a=b0+b1 Weff 

SS 
DS 
AL 

1.60 
0.53 
0.48 

-2.57 
1.19 
5.99 

1.61 
0.88 
1.80 

0.80 
0.90 
0.78 

 
log(a)=b0+b1Mw 

 

SS 
DS 
AL 

0.30 
0.34 
0.34 

-1.35 
-1.53 
-1.55 

0.16 
0.18 
0.19 

0.88 
0.87 
0.85 

 
a=b0+b1 Leff 

SS 
DS 
AL 

0.06 
0.21 
0.15 

2.76 
1.33 
1.46 

0.35 
0.79 
1.47 

0.82 
0.93 
0.87 

 
 
 
 
Downdip 

 
a=b0+b1 Weff 

SS 
DS 
AL 

0.44 
0.36 
0.36 

-0.06 
0.74 
0.86 

0.72 
0.80 
0.81 

0.88 
0.99 
0.98 

SS, strikeslip; DS, dipslip; AL, all mechanisms. 
A careful analysis of the correlation 

lengths in Table 2 suggests that a, ax, and 
az depend on source dimension. The 
regression of ax on fault length Leff, and az 
on fault width Weff can be used to establish 
simple scaling relations between these 
source parameters, which in turn are useful 
to estimate the correlation length for future 
earthquakes. The results shown in Table3 

suggest a simplified scaling as 
 

ax ~ 2.1 + 0.34 Leff   
                                                                 (7) 
az ~ 1.1 + 0.34 Weff 
 

in which the slope of b1= 0.34 in (7) 
indicates that correlation lengths scale 
linearly with effective source dimension. 
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For earthquakes with small aspect ratio 
Leff/Weff, (7) yields roughly isotropic 
correlation lengths, while for earthquakes 
with large aspect ratios (i.e., great strike-
slip earthquakes) the correlation length 
along-strike is larger; (7) also implies the 
ratio (ax/Leff) ~ 0.34. For dip-slip 
earthquakes, this ratio remains constant 
over the given magnitude range, while for 
strike-slip earthquakes the ratio increases 
with increasing magnitude, with az/Weff  
perhaps saturating at Mw ~ 7.0. In case of 
circular-averaged (a) or along-strike (ax) 
correlation length, the slope of the 
regression is about 0.5, indicating that the 
correlation length increases with 
magnitude in a self-similar fashion. 
Although the estimates in down dip 
direction deviate from this apparent self-
similarity, We hypothesize a simplified 
relation between the correlation length and 
moment magnitude (Table 3) as: 
 
Log (ag) ~ -2.2 + 0.50 Mw 
                                                                 (8) 
Log (ag) ~ -1.2 + 0.34 Mw  
 

Where ag is either circular-averaged or 
along strike correlation length. The relation 
in (8) are very similar to results of a study 
in which the characteristic subevent sizel 
was estimated based on source-parameter 
modeling [Beresnev and 
Atkinson,2001].They find that l sales with 
magnitude as  

 
Log (l) = -2 + 0.4 Mw                          (9) 
 
And reanalyzing the catalog of events 

of Somerville et al [1999] they find  
                                                                                      
Log (l) = -2 + 0.5 Mw                        (10) 
 
Interpreting l as the asperity size. The 

simple linear scaling presented in (8), (9), 
and (10) for the correlation length, subfault 
size and asperity size, respectively, suggest 
a fundamental property of extended-source 
earthquake models, namely, that the 
characteristic length scales with earthquake 

magnitude. This property can be used to 
estimate the characteristics of hypothetical 
future earthquakes, but it also may be 
interpreted in terms of the rupture physics. 
 
Additional Data to Constrain Slip 
Complexity  

We propose what additional data may 
be useful to constrain the fractal dimension 
or correlation lengths of earthquake slip, 
and we then discuss the implications of our 
results for dynamic rupture propagation. 
Limitations in resolution and accuracy of 
slip inversions limit the accuracy of the 
measured fractal dimension and correlation 
length, particularly at high wave numbers. 
It is therefore important to identify other 
data that may be useful to constrain the 
nature of earthquake slip complexity. 
Perhaps the most intuitive source of data 
are measurements of surface slip for large 
earthquakes. These one-dimensional 
surface-slip distributions could be analyzed 
both deterministically (i.e., correlating 
measured surface slip with imaged slip at 
depth) and stochastically (i.e., measuring 
correlation lengths and fractal dimension), 
and hence could provide additional insight 
into earthquake source complexity. The 
disadvantages of such surface-slip 
measurements, however, are their highly 
irregular spatial sampling, their large 
uncertainties [Hough et al., 2000], and the 
fact that such data exist only for very large 
earthquakes. We suspect, therefore, such 
data may be only of limited use to study 
earthquake source complexity. Analyzing 
the spatial distribution of microseismicity 
is another possible approach for studying 
the spatial complexity of earthquake slip 
and stress. The spatial distribution of a 
values and b values, as imaged by Wiemer 
and Katsumata [1999], for example, could 
help to illuminate the spatial complexity of 
stress drop [Frankel, 1991]. Of course, 
microearthquake locations are also subject 
to uncertainties, so it would be most useful 
to work with a catalog of high-precision 
earthquake locations, Such data are only 
available in very well-instrumented regions 
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(e.g., California, Japan, and  Taiwan), but 
could potentially help to constrain 
earthquake source complexity, particularly 
in terms of the geometric fault plane 
complexities. 
 
Discussion  

Uniform correlation lengths for all 
magnitudes would lead to problems in 
accommodating the slip (seismic moment) 
present in large earthquakes. If correlation 
lengths were about constant over a wide-
magnitude range, a large earthquake would 
be comprised of many small, localized 
zones in which almost all the moment has 
to be released. These areas would have 
very large stress drops, yet would have to 
rupture in isolation from the surrounding 
high-slip areas in order to maintain short 
correlation lengths. It would be difficult to 
support such behavior from a rupture 
dynamics view point where neighboring 
points of the fault interact strongly with 
each other, and hence are unlikely to allow 
isolated rupture zones of large stress drops. 
These arguments lead us to believe that the 
increasing correlation length for larger 
earthquakes is not an artifact due to the 
fault slip inversions (due to coarser fault 
discretization and longer periods for larger 
earthquakes), but rather a real property of 
the earthquake source. 

One could argue that the observed 
correlation length scaling is merely 
determined by the overall extent of the 
source (geometry), and that at smaller 
length scales the slip function is purely 
self-affine (fractal) with a fractal 
dimension D arising from scale-
independent rupture dynamics. We take an 
alternative view that the correlation length 
of the two-dimensional slip distribution of 
an earthquake is governed by length scales 
in the rupture process other than the 
overall source extent and that these may 
not be purely fractal .An earthquake will 
contain length scales spanning many 
orders of magnitudes, from the grain-size 
scale to total fault length. Geometric 
irregularities (fault bends, jogs, Offsets) 

usually occur at lengths scales of 10
2
–10

4 

m and smaller. These ‘‘static’’ length 
scales will influence the characteristic 
lengths during an earthquake. It is also 
likely that the stress conditions on the 
rupture plane prior to and during the 
earthquake significantly influence the final 
characteristic scales, leading to the 
observed scaling of the correlation lengths 
with source dimensions (seismic moment). 

Moreover, the dynamics of earthquake 
rupture will also affect the correlation 
distances of the final slip distribution. If an 
earthquake encounters a strong asperity 
early in the rupture, the seismic load 
[Andrews, 1985] may not be sufficiently 
large to break the asperity, and the rupture 
is arrested early, resulting in a small 
earthquake with a short correlation 
distance. If the earthquake manages to 
break that asperity, its size and moment 
would grow, and the rupture would have a 
large area of slip. This scenario would 
result in a longer correlation distance for a 
somewhat bigger earthquake. Similarly, 
late into the rupture (when the seismic load 
is larger), stress drops may become large 
locally, and the rupture may become more 
difficult to stop and hence run to longer 
distances with significant slip, effectively 
increasing the correlation length of the 
final slip for large earthquakes. Therefore, 
in order to generate heterogeneous slip 
distributions for scenario earthquakes, with 
a certain magnitude or length, using 
Equation (7) and (8) we may calculate the 
corresponding correlation lengths, then the 
P (K) is computed and the two dimensional 
slip function can be obtained .The final slip 
function in space can then be tapered at 
edges of the fault to avoid large slip values 
at the edges of the fault since they lead to 
infinite large stress changes. 
 
Conclusions 

We have developed an approach to 
characterize spatial complexity of 
earthquake slip imaged infinite-source 
rupture inversions. The characterization of 
slip heterogeneity as a spatial random field 
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successfully captures correlation lengths. 
In the case of slip being fractal, we find no 
indication that the fractal dimension, D, 
depends on other source parameters, and 
we conclude that D is independent of 
seismic moment. In contrast to the constant 
stress-drop model (D=2), the observation 
D>2 may imply size-dependent stress drop 
for subevents within an earthquake 
incorrect mapping of variability in rupture 
velocity and/or rise time into a more 
heterogeneous slip distribution, or 
extension of geometric fault trace 
complexity to depth. Our preferred model 
is the von Karman ACF for which the 
correlation lengths a, ax, and az increase 
with increasing earthquake size. 
Independent studies [Somerville et al., 
1999; Beresenv and Atkinson, 2001] are 
consistent with the increase of 
characteristic scale lengths with increasing 
magnitude that we have found. Simplified 

scaling relations imply that correlation 
lengths scale linearly with source 
dimension, in agreement with Beresenv 
and Atkinson, [2001].The spatial random 
field model for earthquake slip may be 
used to generate scenario earthquakes for 
strong motion prediction. We generate 
spatially variable slip distributions using 
the spectral synthesis method. It is 
important to note, however, that each 
realization of heterogeneous earthquake 
slip is subject to the condition that the 
static strain energy associated with the slip 
distribution remains finite. This condition 
ensures that stresses can not become 
infinite (though locally they may become 
very large). Strong motion synthetics 
computed from these simulated slip 
distributions, assuming simple kinematic 
rupture parameters show the utility of the 
model for strong motion prediction. 

 
 

Figure1.Slip distributions from finite-source models, illustrate the variability of slip on the rupture plane. 
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Figure2. An example of the spatial random field model, generated with identical phasing to facilitate the 
comparison. The correlation lengths are considered a = 5 km for the Gaussian, exponential, and von 
Karman ACF; for the von Karman model, H=0.8; and for the fractal case, D = 2.2. 
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