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Abstract 
Prediction of the dynamic crossflow ultrafiltration rate of a protein solution such as 
milk poses a complex non-linear problem as the filtration rate has a strong dependence 
on both the solution physicochemical conditions and the operating conditions. As a 
result, the development of general physics-based models has proved extremely 
challenging. In this study an alternative dynamic neuro-fuzzy model for milk 
ultrafiltration that describes the variation in dynamic permeate flux decline with 
temperature, transmembrane pressure (TMP), fat percentage, pH and molecular weight 
cut off (MWCO) has been developed with the experimental data of the pilot spiral 
wound membrane test rig. By increasing the temperature, TMP, and pH the permeate 
flux is increased, and by increasing fat concentration the permeate flux is decreased. 
The MWCO variation indicates a paradoxical permeate flux. Additionally, a hybrid 
physical model for dynamic prediction of total resistance in the milk ultrafiltration by 
combination of two neuro-fuzzy (ANFIS) models and a physical model (BLA model) is 
developed. By increasing the TMP and fat concentration, the total resistance is 
increased. But by increasing the pH and temperature, the total resistance is decreased. 
Also, MWCO variation indicates a paradoxical total resistance value. 
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1- Introduction 
Ultrafiltration (UF) is a membrane process 
that retains soluble macromolecules such as 
proteins and anything larger, while passing 
solvent, ions, and other small soluble species 
[1]. Ultrafiltration has now become an 
increasingly important industrial process for 
the concentration, purification, or dewatering 
of milk or whey. One of the main problems 

with the ultrafiltration of protein solutions 
such as milk is the fouling of the membrane 
caused by the interactions between protein 
molecules as well as between proteins and 
the membrane surface. Adsorption on the 
pore walls and on the top surface of a 
membrane decreases the effective pore size 
and blocks pores. This leads to the formation 
of a secondary barrier that decreases 
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permeate flux and the transmission of protein 
molecules, and changes the separation 
characteristics of the actual membrane [2]. 
These, in turn, lead to increased operating 
cost and reduced process efficiency. As a 
result, prediction of permeate flux and total 
resistance of an ultrafiltration unit are 
essential for process design and control.  
Up to now, there have been many theoretical 
approaches to the prediction of the rate of 
crossflow ultrafiltration of protein solutions 
[2, 3]. These are based on a wide range of 
phenomena such as gel polarization, 
boundary layer resistance, inertial migration, 
shear induced hydrodynamic diffusion, 
scour, turbulent burst, friction force, particle 
adhesion, pore blocking, surface renewal and 
particle-particle interactions. Despite the 
complexity of the problem, each of these 
approaches has indeed been shown to be 
valid for certain types of process feeds and 
under certain conditions. However, these 
methods also have a number of limitations as 
listed below: 

(i) They require experimental data for 
hard-to-measure parameters. While 
this may not seem to be a practical 
limitation, the required equipment is 
usually especially sensitive instru-
ments and may not be readily 
available. 

(ii) None of the methods can describe the 
full flux–time (dynamic) behavior of 
the process; they often only predict 
the steady or pseudo-steady-state 
flux. 

(iii) Each one has been shown to be valid 
only for certain feeds and under 
special conditions [3-5].  

(iv) These models could not employ all 
parameters of the process into one 
formulation. 

Because of these limitations, alternative 
modeling methods are considered for direct 
process modeling from historical input-
output data. Artificial neural networks 
(ANNs) present one such paradigm that has 
shown a strong ability to model nonlinear 

complex processes. In previous works, ANNs 
were used for modeling the membrane 
process [3-7]. However, the resulting 
network of weight matrices is hard to 
interpret.  
A different data-driven approach, based on 
neuro-fuzzy paradigm, aims to merge 
traditional ANN with fuzzy logic in order to 
use both methods to their advantage. A 
neural network can approximate a function, 
but it is impossible to interpret the result in 
terms of natural language. The fusion of 
neural networks and fuzzy logic in neuro-
fuzzy models may provide learning as well as 
better interpretability. Engineers find this 
feature useful, because the models can be 
interpreted and supplemented more easily by 
process operators.  
However, fusion of neural networks and 
fuzzy logic does not completely solve the 
problem of interpretability as the overall 
approach generally remains one of “black 
box” models. Hybrid physical models aim to 
remedy this problem. In hybrid physical 
models, data driven models are combined 
with physical models. These models are 
called “grey box” models because they 
describe mechanisms of the process to a 
certain extent.  
In this study, a neuro-fuzzy model and a 
hybrid physical model are developed for the 
milk ultrafiltration process where the latter 
consists of two neuro-fuzzy models and a 
boundary layer adsorption model (resistances 
in series model). The aim of this work is to 
use the proposed black box and hybrid grey-
box modeling approach to study how 
operational and physicochemical properties 
affect dynamic permeate flux and the total 
resistance of milk ultrafiltration.  
 
2- Theory 
2-1- Fuzzy logic 
System modeling based on conventional 
mathematics is not well suited for dealing 
with ill-defined and uncertain systems. In 
contrast, a fuzzy inference system employing 
fuzzy if–then rules can model the qualitative 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Babazadeh, Mousavi, Akbarzadeh 

Iranian Journal of Chemical Engineering, Vol. 5, No. 2 5 
 

aspects of human knowledge and reasoning 
processes without employing precise 
quantitative analyses. Fuzzy set theory and 
fuzzy logic were established in 1965 by 
Zadeh in order to deal with the vagueness 
and ambiguity associated with human 
thinking, reasoning, cognition, and 
perception [8]. After Zadeh’s work on fuzzy 
sets, many theories in fuzzy logic were 
developed, and fuzzy modeling or fuzzy 
identification has been applied successfully 
to a number of applications [9, 10]. A fuzzy 
model is one that expresses a complex 
system in the form of fuzzy implications. In 
the fuzzy modeling of a process, a fuzzy 
model is built using the physical properties 
of a system, observed data, as well as 
empirical knowledge. A typical fuzzy logic 
system consists of four major components: 
fuzzification interface, fuzzy rule base, fuzzy 
inference engine, and defuzzification 
interface [11].  
The fuzzification interface (fuzzifier) 
converts numerical input data into suitable 
linguistic terms, which may be viewed as 
labels of the fuzzy sets. A fuzzy rule 
represents a fuzzy relation between two 
fuzzy sets. It takes a form such as “If X is A 
then Y is B”. Each fuzzy set is characterized 
by appropriate membership functions that 
map each element to a membership value 
between 0 and 1. A fuzzy rule base contains 
a set of fuzzy rules, where each rule may 
have multiple inputs and multiple outputs. 
Fuzzy inference can be realized by using a 
series of fuzzy operations. The 
defuzzification interface (defuzzifier) 
combines and converts linguistic conclusions 
(fuzzy membership functions) into crisp 
numerical outputs. Depending on the types of 
inference operations upon “if-then rules”, 
three types of fuzzy inference systems have 
been widely employed in various 
applications: Mamdani fuzzy models, Sugeno 
fuzzy models, and Tsukamoto fuzzy models. 
The differences between these three fuzzy 
inference systems lie in the consequents of 
their fuzzy rules, and thus their aggregation 

and defuzzification procedures differ 
accordingly [12].  
 
2-2- Neural Networks 
Algorithms for analytic computer codes in 
engineering systems are usually complicated, 
involving the solution of complex differential 
equations. These programs usually require 
large computer power and need a 
considerable amount of time to give accurate 
predictions. Instead of complex rules and 
mathematical routines, artificial neural 
networks are able to learn the key 
information patterns within a multi-
dimensional information domain. In addition, 
they are fault tolerant in the sense that they 
are able to handle noisy and incomplete data, 
are able to deal with nonlinear problems, and 
once trained can perform predictions and 
generalizations at high speed. A neural 
network is a computational structure, 
consisting of a number of highly 
interconnected processing elements (or 
nodes) that produce a dynamic response to 
external input or stimuli. Neural networks 
were originally developed as approximations 
of the capabilities exhibited by biological 
neural systems, and they are based on a 
connectionist structure and mathematical 
functions that imitate the architecture and 
functions of the human brain. An artificial 
neural network consists of interconnected 
artificial neurons, interacting with one 
another in a concerted manner. Much of the 
interest in neural networks arises from their 
ability to learn to recognize patterns in large 
data sets. This is accomplished by presenting 
the neural network with a series of examples 
of the conditions that the network is being 
trained to represent. The neural network then 
learns the governing relationships in the data 
set by adjusting the weights between its 
nodes. In essence, a neural network can be 
viewed as a function that maps input vectors 
to output vectors. A multi-layered feed-
forward back-propagation algorithm is used 
as the current case. Input–output pairs are 
presented to the network, and weights are 
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adjusted to minimize the error between the 
network output and the actual value. The 
back-propagation training algorithm is an 
iterative gradient algorithm, designed to 
minimize the mean square error between the 
predicted output and the desired output. The 
flow chart of the back-propagation learning 
algorithm is illustrated in Fig. 1 [13, 14].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The algorithm of training a back 
propagation network 
 
 
2-3- Adaptive neuro-fuzzy inference system 
(ANFIS) 
While fuzzy logic performs an inference 
mechanism under cognitive uncertainty, 
computational neural networks offer exciting 
advantages, such as learning, adaptation, 
fault tolerance, parallelism, and 
generalization. To enable a system to deal 
with cognitive uncertainties in a manner 
more like humans, neural networks have 
been engaged with fuzzy logic, creating a 
new terminology called neuro-fuzzy method 
[15]. Takagi and Hayashi pioneered 
augmentation in development of neuro-fuzzy 
technology in the last decade. Similarly, Jang 
developed ANFIS (Adaptive Neuro Fuzzy 

Inference Systems) in the early 90s [16]. As 
the name suggests, ANFIS combines the 
fuzzy qualitative approach with the neural 
networks adaptive capabilities to achieve a 
desired performance. ANFIS are fuzzy 
models put in the framework of adaptive 
systems to facilitate learning and adaptation. 
Such systems can be trained with no need for 
the expert knowledge that is usually required 
for the design of the standard fuzzy logic. 
Fig. 2 shows the ANFIS architecture. A first 
order TSK fuzzy model is used as a means of 
modeling fuzzy rules into desired outputs: 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic of a neuro-fuzzy structure 
 
If X1 = Ai and Xn= Bj then fi = piX1 + qiXn +ri 
 
where pi , qi and ri are design parameters to 
be determined during the training stage. In 
the presentation, a circle indicates a fixed 
node whereas a square indicates an adaptive 
node. An adaptive node means that the 
parameters are changed during adaptation or 
training. This architecture is a five-layered 
feed-forward neural structure, and the 
functionality of the nodes in these layers is 
summarized as follows: 

1. All the nodes in the first layer are 
adaptive. Each neuron in this layer 
corresponds to a linguistic label and 
the output equals the membership 
function of this linguistic label: 
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OL1i = µAi(X1) (1) 
 

2. The nodes in layer 2 are fixed (not 
adaptive). Each node in this layer 
estimates the firing strength (wi) of a 
rule, which is found from the 
multiplication of the incoming signal: 

 
OL2i = wi = Ai(X1)µBj(Xn) (2) 
 

3. The nodes in layer 3 are also fixed 
nodes. Each node in this layer 
estimates the ratio (wi) of the ith 
rule’s firing strength to sum of the 
firing strength of all rules, j. They 
perform a normalization of the firing 
strength from the previous layer. The 
output of each node in this layer is 
given by: 

 

∑ =

−

== i
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i
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w
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4. All the nodes in layer 4 are adaptive 

nodes. The output of each node in this 
layer is the product of the previously 
found relative firing strength of the i 
th rule (referred to as defuzzifier or 
consequent parameters) and the rule 
(a first order polynomial for first 
order Sugeno model): 

 
)(4 1
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Where pi, qi and ri are design parameters 
(referred to as consequent parameters since 
they deal with the then-part of the fuzzy 
rule).  

5. Layer 5 has only one node, and it 
performs the function of a simple 
summer. It computes the overall 
output as the summation of all 
incoming signals from layer 4: 
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The results are then defuzzified using a 
weighted-average procedure. The ANFIS 
architecture is not unique. Some layers can 
be combined and still produce the same 
output. In this ANFIS architecture, there are 
two adaptive layers (layers 1 and 4). Layer 1 
has modifiable parameters related to the 
input membership function. The parameters 
in this layer are called premise parameters. 
Layer 4 has also three modifiable parameters 
(pi, qi and ri) pertaining to the first order 
polynomial. These parameters are called 
consequent parameters. The task of the 
training or learning algorithm for this 
architecture is to tune all the modifiable 
parameters to make the ANFIS output match 
the training data. A training method such as 
back-propagation or a hybrid learning rule 
which combines the gradient method and the 
least squares is employed to find the 
optimum value for the parameters of the 
membership functions and a least squares 
procedure for the linear parameters on the 
fuzzy rules, in such a way as to minimize the 
error between the input and the output pairs 
[17].  
 
2-4- Hybrid modeling 
The basic principle of transforming a black-
box model from being ‘‘opaque’’ to 
‘‘translucent’’ is to incorporate physical 
knowledge about the process being modeled 
into the box. Thompson & Kramer [18] 
provided a helpful taxonomy for such 
‘‘shading’’ of the box, suggesting five ways 
represented in the three following items in 
which it can be achieved. 
 
Decomposition (modular) 
The modular approach is based on dividing 
the model into sub-models based on physical 
insight, which are subsequently incorporated 
into the structure of the system. This 
approach is often used in both science and 
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engineering, and affects the dimension of the 
model in fuzzy logic and neural networks 
[19]. For example, rather than model a 
process as a large network, with every input 
possibly affecting every output, a modular 
approach constructs a model for each process 
unit. The sub-networks are then connected 
according to the structure and functions of 
the whole sub-unit process. The result is a 
modular network with fewer parameters, 
easier training, reduction of infeasible 
input/output interactions, and easier 
interpretation. 
 
Serial semi-parameterization 
A semi-parametric model consists of a prior 
parametric model with a fixed structure 
derived from either first principles, existing 
empirical correlation or mathematical 
transformation. The second part is a 
nonparametric model connected in series, 
such as a neural network, which estimates the 
intermediate variables to be used in the 
parametric model. A schematic diagram is 
shown in Fig. 3. 
 
 
 
 
 
 

Figure 3. Schematic of serial semi-parameterization 
 
 
Parallel semi-parameterization 
A parallel semi-parametric model is based on 
the same concept as the previous approach, 
but the outputs of the neural network and the 
parametric model are combined to determine 
the total model output. The neural network is 
trained on the residual or the incremental 
variations between the data and the 
parametric model to compensate for any 
uncertainties due to the inherent process 
complexity. Because the neural networks 
operate over a much reduced range of output 
variations, the problem of generalization is 
not so severe since the input/output ranges 

are the same. A schematic diagram is shown 
in Fig. 4. 
 
 
 
 
 
 
 
 
Figure 4. Schematic of parallel semi-parameterization 
 
 
The above two approaches can be combined 
together to produce a ‘‘hybrid’’ semi-
parametric model as shown in Fig. 5. The 
default parametric model compensates for 
sparse data and improves extrapolation, the 
neural network compensates for uncertainty, 
and the bias of the default model and the 
parametric output model enforces equality 
constraints upon the output. 
In this study, a serial semi-parameter model 
was used for predicting the total resistance of 
milk ultrafiltration. 
 
 
 
 
 
 
 
 

Figure 5. ‘‘Hybrid’’ semi-parametric model 
 
3- Experimental setup 
3-1- Membrane system 
Ultrafiltration of milk samples was carried 
out using the pilot plant UF-MF membrane 
system (Biocon Company, Moscow, Russia). 
It consists of a feed tank, centrifugal pump, 
flow meter, spiral wound module, two 
pressure gauges, tubular heat exchanger, 
temperature sensor and two control valves. 
The membrane was composed of Polysulfone 
amide, MWCO 10, 20, 50 KD, with an 
external diameter of 0.052 m, membrane 
length 0.47m providing a membrane area 
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CP layer 

Cake layer 

rfR

ifR

mR
Membrane 

Permeation flux 

0.33 m2. The two pressure gauges measured 
the pressure at the inlet (Pi) and outlet (Po) 
of the module. These gauges were positioned 
as close to the inlet and outlet of the 
membrane as physically possible. A 
temperature probe was attached to the feed 
tank and used for monitoring temperature 
during each run. The tem-perature of the feed 
was continuously controlled by heat 
exchanger. An electronic balance and a 
container were used to record the weight of 
permeate every 30s for its flux calculation. 
 
3-2- Fouling resistances 
The transport of pure water through a 
membrane is by viscous flow. The membrane 
hydraulic resistance can be described by 
Darcy’s Law:  
 

ww
m J

TMPR
μ

=  (6) 

 
where wμ  is pure water viscosity, Jw is pure 
water flux through a clean membrane and 
TMP is the transmembrane pressure, which 
can be calculated for a crossflow 
ultrafiltration as follows: 
 

p
oi PPPTMP −

+
=

2
 (7) 

 
where Pi and Po are inlet and outlet pressures, 
respectively, and Pp is filtrate (or permeate) 
pressure. The total hydraulic resistance (RT) 
to permeate flux was calculated by applying 
the resistance-in-series model (see Fig. 6) or 
boundary layer-adsorption model as follows: 
 

pp
T J

TMPR
μ

=  (8) 

where pμ  is the permeate viscosity and Jp is 
the permeate flux. In fact, the total hydraulic 
resistance is the sum of membrane hydraulic 
resistance and overall fouling resistance. 
Therefore, 
 

FmT RRR +=  (9) 
 

m
pp

F R
J

TMPR −=
μ

 (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Schematic of resistance in series model 

 
The overall fouling resistance (RF) can be 
represented as the sum of the two 
components on the basis resistance-in-
resistance model: resistance due to reversible 
fouling (Rrf) and resistance due to 
irreversible fouling (Rif). The fouling 
resistances were determined as: 
 

m
wfwf

if R
J

TMPR −=
μ

 (11) 

 
ifFrf RRR −=  (12) 

 
where wμ  and Jwf are viscosity and flux of 
clean water through a fouled membrane, 
respectively. At the end of each run, the 
membrane unit was firstly flushed with 
distilled water in the same conditions that 
each run and water flux (Jwf) was measured 
for the calculation of irreversible fouling 
resistance (Rif ). 
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3-3- Experimental procedure 
Skim milk powder, used throughout the 
experiments, was reconstituted in warm 
distilled water (about 50°C). Twelve 
kilograms of reconstituted skim milk was 
prepared for each run. The same batch of 
dried milk was used in the all experiments to 
ensure that changes in measured parameters 
did not result from the variation in milk 
composition. The heat treatment used for the 
milk samples before the ultrafiltration 
process was pasteurization at 72°C for 15 s. 
The experiments were performed in five 
groups. Only one of five parameters of 
MWCO, fat content, pH, temperature, and 
TMP was varied for any group. All 
experimental runs were carried out twice and 
the results averaged. For each set of 
processing conditions, the feed tank was first 
recycled with warm distilled water at 
processing temperature to warm up the 
system and evaluate the water flux, then it 
was recycled with the milk sample at a given 
temperature. The chosen TMP was set by 
two control valves. The permeate flux and 
total hydraulic resistance were measured and 
recorded every 30s. After each run, the 
membrane unit was cleaned according to the 
recommendation of the manufacturer and the 
water flux of the cleaned membrane was 
measured at the end of the cleaning process. 
The cleaning procedure stopped when the 
original water flux was restored, otherwise 
fouling was not completely removed and the 
flushing cycle was repeated until the flux 
returned. 
 
 
4- Modeling procedure 
4-1- Multidimensional neuro fuzzy modeling 
In this study, some experimental data of the 
spiral wound ultrafiltration test rig are used 
[3, 20]. MATLAB’s fuzzy toolbox version 
2.2.1 is used for modeling. The data are 
extracted from 19 tests of milk ultrafiltration 
in various operational and physicochemical 
conditions. The total data set consists of a 
matrix with 1050 rows and 7 columns, the 

first six columns being the inputs of the 
neuro- fuzzy system and the seventh column 
being the dynamic flux of permeate, the net’s 
output. The data set is separated in two, the 
training data set and testing data set. The data 
set is divided at random. Two neuro-fuzzy 
models are established. In the first model, 
two Gaussian membership functions, and in 
the second one, three Gaussian membership 
functions are used for inputs. The schematic 
of the models is shown in Fig. 7. The models 
were trained using the training data set, and 
later tested using the testing data set. For 
comparing the models, the sum of squared 
errors (SSE), mean of squared errors (MSE), 
root mean of squared errors (RMSE), Akaike 
goodness of fit criterion (AIC) and Schwarz 
goodness of fit (SIC) [21-23] were calculated 
using testing and training data sets by 
Equations 13-17: 
 

∑ −=
n

j
jjp JJSSE 2

exp,, )(  (13) 

 

n

JJ
MSE

n

j
jjp∑ −

=

2
exp,, )(

 (14) 

 

n

JJ
RMSE

n

j
jjp∑ −

=

2
exp,, )(

 (15) 

 

n
k

n
SSEAIC 2log +⎟

⎠
⎞

⎜
⎝
⎛=  (16) 

 

n
nk

n
SSESIC )log(log +⎟

⎠
⎞

⎜
⎝
⎛=  (17) 

 
where jpJ ,  is the estimated permeate flux in 
point j, 

jJexp,
 is measured permeate flux from 

the experimental data in point j, n is the 
number of data points, and k is the number of 
modeling parameters. 
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4-2- Hybrid physical model 
To construct a hybrid physical model, two 
neuro-fuzzy models are combined with the 
boundary layer adsorption model to predict 
total resistance of process in any time. For 
this purpose, the neuro-fuzzy model with 
three membership functions is used to predict 
permeate flux and another neuro-fuzzy model 
is made to predict viscosity in any time in 
terms of TMP, temperature, fat%  and pH 
variations. The schematic of this latter model 
are shown in Fig. 8. The schematic of the 
complete hybrid model are shown in Fig. 9.  

5- Results and discussion 
In this work, the application of neuro-fuzzy 
approach for dynamic prediction of permeate 
flux decline is tested for ultrafiltration of 
milk at different physicochemical and 
operational conditions. The modeling results 
are presented for flux decline in training and 
testing stages in Fig. 10 and Table 1. The 
models 1 and 2 in Table 1 are made with two 
and three membership functions respectively. 
Figure 10 illustrates goodness of fit of model 
2 for training and testing stages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Schematic of multidimensional neuro-fuzzy model for predicting permeate flux 
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Figure 8. Schematic of neuro-fuzzy model for viscosity prediction 
 
 
 
 

 
 
 

Figure 9. Schematic of hybrid physical model 
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a) Training 
 
 

 
b) Testing 

 
Figure 10. Comparison of model results (--) with experimental data (o) for model 2 

 
 
 
As shown in Fig. 10a and 10b, there is an 
excellent agreement between the model 
predictions (solid lines) and the experimental 
data (o) of full time-dependent Jp in the 
training and testing state. Table 1 indicates 

the errors of the two models and the criterion 
of fit goodness, AIC, and SIC. Calculating 
SSE, MSE and RMSE indicates good results, 
especially for model 2. 

Table 1. comparison of errors and goodness of fit criterion between two models calculated with the training and 
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testing data set 
Errors 

 
 models 

Training Testing 

 SSE MSE RMSE SIC AIC SSE MSE RMSE SIC AIC 
Model  1 125.7684 0.2414 0.4913 -0.3647 -1.0835 162.9881 0.3122 0.5588 -0.1054 -0.8243 
Model  2 25.945 0.049798 0.22315 6.1857 -0.0631 48.4608 0.0928 0.3047 6.8105 0.5617 

 
 
 
The results of modeling using ANFIS for the 
permeate flux (Jp) at various transmembrane 
pressures (TMP) are shown in Fig 11. It can 
be seen that the magnitude of Jp varies 
significantly with TMP and time. By 
increasing the TMP, permeate flux is also 
increased. 
The results of modeling using ANFIS for the 
permeate flux (Jp) at various temperatures 
and time are shown in Fig 12. By increasing 
the temperature, permeate flux is increased. 
At any time, the steepness is greater in 30°C 
- 40°C. Optimum temperature is about 40°C. 
This figure also shows that the complex 
behavior (non-linearity) of the Jp-time 
profile is well represented by the ANFIS. 
The results of modeling using ANFIS for the 

permeate flux (Jp) at various fat percentages 
is shown in Figure 13. It can be seen that by 
increasing fat percentage, the permeate flux 
is decreased but the slopes of these decreases 
are not very great. In the fat percentage of 
0.5% to 1.5% the decrease of permeate flux 
is greater.  
The results of modeling for the permeate flux 
(Jp) at various pH is shown in Figure 14. It 
can be seen that, by increasing the pH, the 
permeate flux is increased. This is because of 
approaching the isoelectric point of main 
proteins of milk, which is below pH=5.6 
[24], and in the isoelectric point, the 
solubility of milk proteins is minimum. The 
present result is the same as the results of 
other researchers [25, 26]. 

 
 

 
 

Figure 11. Permeate flux as a function of TMP and time. Jp (10e-6) is in m3/m2.s 
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Figure 12. Permeate flux as a function of temperature and time. Jp (10e-6) is in m3/m2.s 
 
 
 
 

 
 

Figure 13. Permeate flux as a function of fat% and time. Jp (10e-6) is in m3/m2.s 
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Figure 14. Permeate flux as a function of pH and time. Jp (10e-6) is in m3/m2.s 
 
 
The results of modeling for the permeate flux 
(Jp) at different MWCO is shown in Fig 15. 
The variation of permeate flux by various 
MWCO is paradoxical. At first, by increasing 
the MWCO the permeate flux is increased, 
but after MWCO=30, the flux is decreased 
where the MWCO is increased. This 
phenomenon happens, probably, because of 
the alteration of the fouling mechanism in 
various MWCO. At first, the fouling 
mechanism is gel-cake formation, and then 
mechanism changes to pore plugging. The 
MWCO increase results in the pore size 
increase, so some macromolecules can 
penetrate the pores and clog them [27]. 
For a deeper study a hybrid model is 
represented too. In this model two of the 
previous neuro-fuzzy models are combined 
with a physical model to predict the total 
resistance of the ultrafiltration process.  
The results of the hybrid model are presented 
in Figs 16-20. In Figure 16 the results of 
modeling for the total resistance are 
presented in terms of the various TMP and 
time. It can be seen that, increasing TMP also 
increases the total resistance. This 

phenomenon probably occurs as a result of 
increased fouling and compaction of the 
fouling layer.  
The results of modeling the variation of total 
resistance in terms of temperature are shown 
in Fig. 17. By increasing temperature, total 
resistance is increased. This is owing to the 
solubility reduction and denaturation of milk 
proteins with temperature enhancement in 
this temperature range. Consequently, 
fouling is increased, increasing total 
resistance [28]. 
The variations of total resistance versus pH 
are seen in Fig. 18. Decreasing pH increases 
total resistance. This is due to increasing 
concentration polarization and fouling with 
pH reduction [26, 29-31].  
In Figure 19, the results of modeling for 
variation of total resistance in terms of fat 
percentage are presented. The results indicate 
that by increasing fat percentage, the total 
resistance is increased. This increase is faster 
in fat percentages below 1.5%. After that 
point, with increasing fat percentage, the 
total resistance does not increase 
significantly. 
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The results of hybrid modeling for total 
residence variation in various MWCO are 
presented in Figure 20. As shown in the 
figure, with the variation of MWCO the total 

resistance indicates paradoxical variation. 
This is because of the changing of the fouling 
mechanism described above. 

 
 

 
 

Figure 15. Permeate flux as a function of MWCO and time. Jp (10e-6) is in m3/m2.s 
 
 
 
 

 
 

Figure 16. Total resistance as a function of TMP and time 
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Figure 17. Total resistance as a function of temperature and time 
 
 
 

 
 

Figure 18. Total resistance as a function of pH and time 
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Figure 19. Total resistance as a function of fat% and time 
 
 
 

 
 

Figure 20. Total resistance as a function of MWCO and time 
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6- Conclusion 
The possibility of using the neuro-fuzzy 
approach is investigated to predict dynamic 
permeate flux decline in milk ultrafiltration 
as a function of operating time, trans-
membrane pressure, temperature, pH, fat 
percentage, and MWCO. Due to the 
complexity of milk ultrafiltration prediction 
using conventional methods, these alternative 
models allow a unified approach that can be 
used for the analysis of the process and 
design of new applications. 
The modeling results indicate that a complete 
profile of the milk ultrafiltration performance 
can be predicted using the ANFIS structure. 
By increasing the temperature, TMP, and pH 
the permeate flux is decreased. By increasing 
the fat percentage, the flux is decreased. The 
variation of MWCO indicates paradoxical 
changes in the permeate flux. A model with 
two-membership functions indicates a better 
result according to AIC and SIC goodness of 
fit criterion, but this model’s error is also 
greater. 
For further study, a hybrid physical model 
for predicting the total resistance of the 
process is represented. The results indicate 
that by increasing the TMP, temperature, and 
fat percentage, the total resistance is 
increased; but by increasing the pH, total 
resistance is decreased. The MWCO 
variation indicates a different total resistance 
value too. 
The future direction of this research is the 
prediction of permeate flux and total 
resistance using statistical, physical, and 
other hybrid models, and then the 
comparison of the results with these of the 
present paper. 
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Nomenclature 
AIC Akaike goodness of fit criterion 
ANFIS adaptive neuro fuzzy inference 

system 
f logistic sigmoid activation 

function 
J flux, m3/m2.s 
H  hidden layer 
MSE mean of squared errors 
MWCO molecular weight cut off, kD 
O output 
OL output layer 
p design parameter (consequent 

parameter) 
q design parameter (consequent 

parameter) 
r design parameter (consequent 

parameter) 
t time, s 
T temperature, ◦C 
TMP transmembrane pressure, kPa 
R resistance  
RMSE root mean of squared errors 
SIC Schwarz goodness of fit criterion 
SSE sum of squared errors 
w wiring strength of a rule 
W weights 
X input 
Y target activation of the output layer 
Greek symbols 
α learning rate 
δ error for output neuron 
θ threshold between the input and 

hidden layers 
η momentum factor 
ρ density, Kg·m-3 
µ dynamic viscosity , N·s·m-2 
Subscripts 
exp experimental 
F fouling  
I input 
if irreversible fouling  
m membrane 
o output 
rf reversible fouling 
p permeate  
T total 
w water 
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