Iranian Journal of Chemical Engineering
Vol. 5, No. 3 (Summer), 2008, IAChE

Multi-objective Genetic Optimization of Ethane Thermal
Cracking Reactor

D. Salari, A. Niaei® and S. R. Nabavi

Chemical Process Technology Laboratory, Department of Applied Chemistry and Chemical
Engineering, University of Tabriz, Tabriz, Iran.

Abstract

An industrial ethane thermal cracking reactor was modeled assuming a molecular
mechanism for the reaction kinetics coupled with material, energy, and momentum
balances of the reactant-product flow along the reactor. To carry out the multi-
objective optimization for two objectives such as conversion and ethylene selectivity, the
elitist non-dominated sorting genetic algorithm was used. The Pareto optimum set was
obtained successfully and finally the effect of the decision variable was discussed.
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1- Introduction

Thermal cracking of light hydrocarbons such
as ethane, propane, n-Butane, i-Butane and
their mixtures are the main processes for the
production of olefins. Hydrocarbon feed
stock mixtured with the process steam are
introduced into tubular reactors (cracking
coils) with short residence times and high
temperatures. The process steam is basically
an inert gas that serves the purpose of
increasing olefin selectivity and reduces coke
formation by reducing the hydrocarbon
partial pressure. The paraffin feed stock is
thermally cracked into mainly olefins,
aromatics, methane and hydrogen. The
homogeneous  cracking reactions  are
endothermic and need energy input in order
to reach gas temperatures as high as
800 -900°C at the coil outlet.

The heat required for endothermic reactions
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is provided via radiation burners in the
sidewall or long flame burners in the bottom
of the furnace. Thus, several cracking coils
are placed vertically inside a fire box and
heated with  hydrogen/methane  fueled
burners. The reactions are quenched in the
transfer line exchanger (TLX) and steam is
generated. Steam is superheated and feed
stock and process steam are preheated with
the flue gas in the convection section of the
furnace [1]. Ethylene monomer is one of the
base petrochemicals that form the building
blocks of the petrochemical industry and is
produced in the largest volume among them.
The bulk of ethylene produced is used in the
production of plastics, primarily
polyethylene. Moreover, it is an ideal base
material for many other petrochemicals, as it
is readily available at low cost and high
purity, and usually reacts with other low cost
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materials —such as oxygen and water.
Therefore, it can be perceived that even a
small improvement in the processing of
ethylene has the potential of bringing a high
dividend to the petrochemical industry.

There are several reports on the optimization
of thermal cracking plants. Optimal operation
of ethylene plants at variable feed conditions
has been reported by Eliceche et al [2-3].
Dynamic optimization of the production
period of thermal cracking has been used
with respect to coke formation in cracking
coil and TLX. The standard SQP package has
solved the optimization problem [4].
Shahrokhi et al reported the simulation and
optimization of naphtha thermal cracking in a
pilot plant [5]. In another work, optimal
temperature profile has been used in the
control of propane thermal cracking [6]. Lim
et al developed the optimal decoking
scheduling strategies for the industrial
naphtha cracking furnace system. The
problem has been formulated as an MINLP
[7]. In this work the elitist nondominated
sorting genetic algorithm (NSGA-II) is used
for the optimization of the thermal cracking
of ethane. Simultaneous maximization of two
objective functions such as ethane conversion
and ethylene selectivity are carried out using
NSGA-II.

2- Elitist non-dominated sorting genetic
algorthm

Most chemical engineering problems require
the optimization of several objective
functions, and hence, require the use of
multiobjective  optimization  techniques.
Traditionally, multiobjective functions are
reduced to a single objective function by
various methods and then solved as a single
objective optimization technique. All of these
methods depend on the user’s decision to
specify weights to the different objective
functions, and are therefore highly dependent
on the judgment of the user. Thus the user
must have good knowledge on fixing the
priority for the different objective functions
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to form a single objective function from
multiple objective functions. The user may
change the priorities and solve the problem to
get a number of solutions. The set of all the
solutions is known as the Pareto optimal set.
But the Pareto optimal set cannot be obtained
simultaneously in a single run. Genetic
algorithm has the advantage of obtaining the
Pareto optimal set in a single run [8].
NSGA-II starts with a population of random
solution (Npop). In the Nth iteration the
offspring population is first created by using
the parent population and the usual genetic
operators—reproduction, recombination and
mutation. Thereafter, both populations are
combined together to form a new population
of size 2Npop. A non-dominated sorting
procedure is then applied to classify the
entire  population into a number of
hierarchical non-dominated fronts. In the
final stage, the final population with the size
of Npop is selected using crowding distance
sorting and the next generation is started [9].
In recent years multi-objective genetic
optimization has been used in many areas of
chemical engineering. Rajesh et al have used
non dominated sorting genetic algorithm
(NSGA) to maximize the export steam and
hydrogen production rate in a hydrogen
production plant using steam reforming of
methane by optimizing gas temperature,
pressure and composition in a steam
reformer, as well as the temperature of the
high temperature and low temperature shift
converters [10]. Silva and Biscaia have used
GA to obtain a Pareto optimal set of
temperature and initiator feed so as to
maximize the monomer conversion and
minimize the residual initiator concentration
for a bath styrene polymerization process
[11]. Application of NSGA in reaction
engineering has been reviewed by Nandasana
etal [12].

Multiobjective evolutionary computation has
been used in the epoxy polymerization
process, and the combination of
minimization or maximization of objectives,
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such as the number average molecular
weight, polydispersity index and reaction
time has been considered [9]. Bhutani et all
have reported multiobjective optimization of
an industrial hydrocracking unit. The NSGA-
I has been wused for simultaneous
maximization and minimization of two
objective functions using eight decision
variables [13]. In another work, optimization
of an industrial low density polyethylene
tubular reactor has been carried out using
NSGA-IL. The simultaneous maximization of
monomer conversion and the minimization of
normalized side product has been considered
for optimization [14]. Sankararao and Gupta
[15] have reported multiobjective opti-
mization of pressure swing adsorbers (PSA)
for air separation. The optimization process
was used for two two-objective problems and
a four objective function problem in the
operation of PSA.

3- Model formulation and sensitivity
analysis

A multiobjective optimization study with
NSGA-II requires execution of the thermal
cracker model for each member of its
population over a certain number of
generations. Because the number of
population typically ranges from 50 to 100
and the number of generations needed to find
a reasonably good Pareto can be more than
200, a typical study involves computation of
the steam cracker model 10,000-20,000
times. Such a huge computational load makes
the molecular mechanism of cracking
reactions look more attractive, as it results in
nonstiff differential equations and hence
requires lower computational times, although
it’s obtained in a tradeoff with prediction
accuracy. In this study the molecular
mechanism which involves with 7 of reaction
and 8 molecular species was considered. The
reaction mechanism proposed by Froment et
al assumed that reactions are elementary, and
therefore, the order of each reaction
corresponds to molecularity.
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The set of used continuity equations for the
various process gas species including the
energy and momentum equations were as
follows:

Mass balance:

dF’ nd?
J _ t
- (Z%J y 1)

Energy balance:
dar
2 FCy
J
(2)
Momentum balance:
1 dP d
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M mB n.G’ RT dz dz M,
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with the friction factor:
Re—()‘z
=0.092 + i (4)
¢ 7R,

and for the tube bends as:

¢ = (0.7 + 0.35%](0.051+ O.IQij

b

)

A detailed description of the applied
mathematical model can be seen elsewhere in
[16].

A sensitivity analysis was performed with the
mathematical model to note the effects of
some key variables identified as the decision
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variables in the subsequent optimization
study on the reactor performance. The
variables are the temperature (Tj,) and
pressure (Pj,) of the ethane-steam mixture at
the inlet to the radiation section; the steam-to
ethane (mass) ratio (SR); and the ethane flow
rate (Fj,) to the reactor. The values of each of
these variables were varied within a
preassigned domain, while the others were
kept constant, to note the effects of variation
on some calculated quantities that show the
reactor performance. These quantities are the
conversion (X) of ethane, and the selectivity
of ethylene (Sc,H4), which together defines
the extent and the quality of the reaction
process.

Furthermore, the three additional variables
such as residence time, average reaction
temperature, and average reaction pressure
were calculated along with the performance
variables to develop a clearer understanding
of the effects of the decision variables. These
three variables were calculated in the
following way:

. (” dl.jjdx
g :I : RT(x)
0 X
Faan @+ L F ) |75
(6)
_[T(x)dx
L=t )
jP(x)dx
F,= OT ®)

The range of each decision variable was as
follows: Inlet temperature (700-900K), inlet
pressure (290-500kPa), steam ratio (0.25-0.5)
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and inlet feed rate (0.019-0.025 kmol/s). The
outcome of the entire analysis is presented in
Figure. 1.

The sensitivity analysis of the inlet
temperature shows that an increase in
temperature resulted in increased ethane
conversion and decreased ethylene selectivity
(Figurel). The main reason behind the sharp
conversion increment is the increase in
average reaction temperature and decrease in
average pressure. Low residence time and
low pressure improve selectivity, but in the
present case, the influence of the high
reaction  temperature, which  reduces
selectivity, had a more dominant effect. On
the other hand, the effect of reaction pressure
on the cracker performance is not very
substantial. An increase in pressure increased
the ethane conversion while decreasing the
ethylene selectivity. An increase in pressure
most prominently influenced the residence
time, as can be seen in Figure 1. It seems that
high residence time and high reaction
pressure had a contradictory effect on the
reaction.

Steam reduces the reaction pressure in two
ways: by acting as a diluent, it decreases the
partial pressures of the reactants, and by
increasing the overall flow rate through the
reactor, it increases the total pressure drop as
well. Consequently, as the SR increased, the
conversion decreased and the selectivity
increased. The net residence time decreased
as the net flow rate through the reactor
increased and the reactor dimensions
remained the same. Decreases in the
residence time and the reaction pressure
counteracted each other and resulted in little
or insignificant variation of the conversion.
Increasing the ethane feed rate sharply
decreased the conversion while increasing the
selectivity. The main reason for the former is
the sharp decrease in residence time as flow
rate increased. The rise in selectivity resulted
from the decreased reaction temperature,
reaction pressure, and residence time.
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Figure 1. Sensitivity of ethane conversion, ethylene selectivity, residence time, average temperature and average
pressure in the reactor to decision variables.

4. Optimization problem

From the reaction point of view, the most
pertinent objectives are to maximize the
ethylene production and minimize the
production of side products. Therefore, the
conversion of ethane and selectivity of
ethylene were chosen as the objectives. In the
sensitivity analysis section, it was observed
that the conversion and selectivity vary in
opposite directions. Hence, the conversion of
ethane and selectivity of ethylene were
chosen as the objectives so that a
nondominated set of solutions could be
obtained from a multiobjective optimization.
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Accordingly, the optimization problem was
formulated to maximize conversion and
selectivity simultaneously. But NSGA-II is
based on minimization of the problem.
Therefore, the maximization problem was
transformed to a minimization one as
follows:

1
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As with many optimization methods, NSGA-
II requires a set of operators to carry out the
optimization. In this study the simulated
binary crossover (SBX) and polynomial
mutation were used for creating a new
population. Deb [17] has developed these
operators for real GA. The following steps
were used for its implementation:

i) Generate random number u, €[0,1) for

each gene in a chromosome.
ii) Calculate spread factor as shown

below:
L
(2u, ) if u,<0.5
— 1
ﬂql - 1 1+T7(7
— otherwise
2(1-u,)

an

i) ,qu is then used to find the offspring

as follows:

xi(l’tJrl) = 05[(1 + ﬁqi)xi(l’t) + (1 - Iqu)xi(z’t)]
xi(z’tﬂ) = 05[(1 - ﬁqi)xi(l’t) + (1 + ﬁqi)xi(z’t)]

(12)

Where, fdenote the generation number. The
polynomial mutation is a polynomial function
similar to that of the SBX operator. The
mutated gene of a string is found to be:

Le+l) 1,t+1 U AN
pD = x4 (XY — xS, (13)

1

Where the parameter 6_1 is calculated using
the equations below:

B (2}”. )1/(77m+1) 1

1

1-[20-m)]"" ifr,>05

ifr <0.5

(14)
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A detailed description of these operators and
NSGA-II algorithm are available in [18].

5- Constraints handling

Constraints, in general, are the integral part
of most of the real world optimization
problems. Most applications use an external
penalty term, which penalizes infeasible
solutions. Many classes of constraints
handling methods for gas exist [12]. In this
study the distance based static penalty
method was used for constraint handing. The
optimization is subject to the following
constraints:

T <1300 K
P, 2>120 kPa

out —

(15)

where T and P

> . are reaction temperature
and outlet pressure. The upper limit of the
reaction temperature is bound by metallurgy
of the radiant coil. If the temperature exceeds
1300 K, the coil can rupture so the upper
limit of the temperature at any point along
the reactor length was fixed at 1300 K. The
outlet pressure constraint was gained by the
suction pressure of the cracked gas
Compressor.

All of the computations were performed on a
personal computer with a Dual Core AMD
Athlon 64 X2, 3016 MHz (15 x 201) 6000
processor and 2G of SDRAM. The average

CUP time taken for each study was 8 min.

6- Results and discussion

The primary outcome of multiobjective
optimization is the Pareto optimal set of
solutions depicting tradeoffs between the
competing objectives. In addition, values of
the decision variable and the trends of
variation of these variables with respect to
the objectives are important as well. In the
following sections the Pareto set that was
obtained in optimization is depicted, and
further studies were carried out on tuning of
NSGA-II parameters.
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6.1 - Simultaneous maximization of ethane
conversion and ethylene selectivity

The Pareto-optimal set obtained by
maximizing the ethane conversion and the
ethylene selectivity is presented in Figure 2,
which shows that the Pareto set generated by
NSGA-II was smooth and well distributed
over a wide range. Of the solutions in the
initial population, some were infeasible, but
the constrained nondominated sorting method
brought the entire population into the feasible
region by few generations.

Figure 2 shows only the feasible solutions of
the initial population. It can be noted that the
feasible solutions are not far from the final
Pareto set, from the initial population itself.
This is because of the starkly contradictory
nature of the objectives, for which
simultaneous decreasing of both objectives is
not possible below a certain limit. This limit,

the Pareto of simultaneous minimization of
selectivity and conversion, is also presented
in Figure 2.

6.2 - Effect of NSGA-II parameters on Pareto
front

The Pareto presented in Figure 2 was the best
obtained from experimentation with different
combinations of NSGA-II parameters. Figure
3 shows the effect of the number of
generations on the Pareto front. It can be
seen that by increasing this parameter the
Pareto front can be improved, but when the
number of generations is set on 400
generations, it is obvious that a minor change
has taken placed in the Pareto front, and
furthermore, it can take more CUP time.
Therefore, 200 generations was selected for
further studies.

Figure 2. Pareto set obtained for the simultaneous maximization and minimization of ethylene selectivity and ethane

conversion. Also, feasible points of initial population are plotted. 77, =77, = 0.01, Npop=50.

Iranian Journal of Chemical Engineering, Vol. 5, No. 3
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Figure 3. Effect of number of generations on Pareto front. 7, =7, =0.01, Npop=50.

The effect of crossover and mutation
probability distribution is depicted in Figure
4. The probability distribution index is a non-
negative real number. A higher value of
n.allots a higher probability for creating near

parent solutions and its small value permits

far-away solutions to be selected as offspring
and speed of convergence. Whereas its lower
value helps in the initial stages, when an
exhaustive search is needed, convergence
speed slightly decreases.

Figure 3. Effect of crossover and mutation probability distribution on Pareto front. N;=50, Ngen=200.
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Like 7., the distribution index for

polynomial mutation 7, is also a non-
negative real number. The greater the value,
the greater the change invariable. Figure 3

shows that decreasing 7, and 7, less than

0.01 results in only minor changes in the
Pareto front. Therefore the value of 0.01 was
selected for both distribution indexes. This
shows that the Pareto obtained from all of
these studies ultimately reach the same front,
albeit with minor variations, mainly in Pareto
ranges. This is an attribute of NSGA-II that
has a low sensitivity to tunable parameters
[18].

Among the Pareto fronts depicted in Figure
3, one representing set was found to be the
widest and was plotted in Figure 2. It shows
that, whereas the maximum ethane
conversion had nearly reached 1, the
maximum achievable selectivity was about
0.83.

It can also be observed in Figure 2 that as
high conversion was achieved with moderate
sacrifice in selectivity, achieving high
selectivity required a much higher sacrifice in
conversion. For a continuous process, the
unreacted ethane can be separated and
recycled back, but if ethane is converted to

S02H4 S02H4

SCzH4 SCzH4

any undesirable product, a loss is incurred.
Thus, lower conversion is perhaps more
acceptable than lower selectivity. On the
other hand, if the process can be operated to
recover side products such as propylene and
butadiene, which are higher-value products,
even high conversion might become a
profitable option [19].

The best operating point can thus be
determined after additional information, viz.,
the value of byproducts. The capital and
operating costs, the controllability of the
process variables, the results of hazard and
safety analyses, etc., is made available and
analyzed in a comprehensive way. The Pareto
(Figure 2), however, brought out the intended
outcome of multiobjective optimization, i.e.,
a wide range of competing options for
operation.

6.3 - Decision variables corresponding Pareto
front

Whereas the Pareto portrayed the competing
nature of the objectives, the decision
variables can be plotted against selectivity
and conversion (Figures 4-5) to quantify their
role in realizing the objective values.

Figure 4. Decision variables corresponding to the Pareto in Figure 2.
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ScaHs ScoHy

SCzH4

Figure 5. Some calculated variables (T,y, P,y, t;) corresponding to the Pareto in Fig 2.

Moreover, they can be used to establish the
fidelity of the optimization results as well.
Figure 4 shows a decrease in the inlet
temperature of the ethane-steam mixture with
increasing selectivity, a behavior that was
expected in light of the sensitivity analysis
results.

The nature of the variation of the inlet feed
flow rate complies with the findings in the
sensitivity analysis section with relatively
lower values for high conversion and higher
values for high selectivity. The inlet pressure
also has high values at lower selectivity and
higher conversion. The high-pressure values
toward very high conversions were probably
chosen to increase the residence time and, as
a result, the conversion.

The decision variable values in Figures 4 and
5, although having clear trends, are relatively
scattered in nature when compared to the
smooth variation of the Pareto front
generated (Figure 2). This can be ascribed to
the fact that more than one combination of
multiple decision variables had similar
effects on one or more of the objective values
[19]. Minor scattering can be attributed to the
compensatory effects on one another. For
example, lower residence time (Figure 5) can
be compensated by a high average
temperature or a high average pressure, to
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result in the same conversion.

7- Conclusion

Optimization of an ethane thermal cracking
reactor using two objective functions such as
ethane conversion and ethylene selectivity
was successfully performed using a GA-
based optimizer, NSGAIL. The study
produced a wide gamut of optimal
operational options for the ethylene reactor,
revealing a qualitative, as well as quan-
titative, relation of the reaction process with
the operation variables. This demonstrated
both the individual and combined roles
played by reactor temperature, reactor
pressure, and residence time in achieving the
objectives. In general, a multiobjective
optimization study is beneficial for unders-
tanding the performance tradeoff of
conflicting objectives and decision variables
and for producing a wide range of optimal
solutions.

Nomenclature

C, heat capacity, J/mole K

d, tube diameter, m

F molar flow rate, mole/hr

G total mass flux of the process gas,
kg/m’s

—AH  heat of reaction, J/mole
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M, average molecular weight, kg/mole

N,,  number of population

N,,  number of generations

P total pressure kPa

R gas constant, J/mol k

R, radius of tube bend, m

Re Reynolds number

r reaction rate in Pyrolysis process,
mole/m’s

S stoichiometry factor

T temperature, K

z axial reactor coordinate, m

Greek letters

n unit conversion factor

n. crossover distribution parameter

n, mutation distribution parameter

- parameter of tube bend

A angle of bend in degree
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