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Abstract

Lennard-Jones-Devonshire equation of state is an old but theoretical based EOS. The
concept of the nearest neighboring molecules or coordination number is proposed to be
a function of temperature and volume, whereas it is a constant in the orviginal. The
dilute gas and hard sphere limits of molecules are employed to determine this function.
Improvement of this modification is demonstrated by property calculations for Lennard-
Jones fluid. Results of the modified LJD equation of state offer senior accord with
simulation data of Lennard-Jones fluid than those of the original version.
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1- Introduction

A liquid or a dense gas may be regarded
either as a very imperfect gas in which
multiple collisions are frequent (gas-like
approach) or as a distorted crystal in which
the long-range order has been lost (crystal-
like approach) [1]. A good example of the
gas-like approach is virial theory, that is at
present of no value in making practical
numerical calculations in high-density region,
because of possible difficulties in
convergence in the liquid range [1].

There are two main types of crystal-like
approaches: (i) cell theories, in which a liquid
is regarded as a distorted crystal with no
molecule located at or near each lattice point,
and (i1) hole theories, in which it is realized
that liquids differ from crystals in that, some
lattice sites are vacant [2].

Lennard-Jones and Devonshire (LJD)
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equation of state belongs to a general class of
cell theories [3]. In this theory, a liquid is
treated like a solid in which molecules no
longer vibrate harmonically about their lattice
sites, but are allowed to wander throughout a
space bounded by their neighboring
molecules. A number of modifications have
been proposed in order to improve agreement
of results of LID theory with experimental
data [1,4]. This theory has also been
modified to predict solid-liquid and liquid-
vapor phases transitions, simultaneously
[4-5]. LID equation of state has been used to
calculate solid free energy in order to predict
solid-liquid equilibrium [6]. According to
Sadr-Lahijany et al [7] there is evidence for a
liquid-liquid phase transition found using a
LJD-like cell theory. Configurational
properties of water clathrates are studied
using mont carlo and multidimensional
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integration and compared with LJD theory
[8].

LIJD theory has been used to obtain an
equation-of-state (EOS) for chain molecular
systems. Interactions of the central segment
with second and third shells of neighbors are
taken into account. Application of this theory
to polymer glasses of diverse structures is
found to be quite successful in explaining
PVT behavior over a wide range of
temperatures both at atmospheric and
elevated pressures [9]. The cell theory of LID
has been re-analysed and it has been shown
that, in addition to critical point originally
reported for 12-6 potential, model exhibits a
further critical point. The latter has been
introduced as a more appropriate liquid-gas
critical point [10]. Recently Anderson
investigated an application of Lennard-
Jones and  Devonshire theory for
consideration of intermolecular potential
between guest molecules and host molecules
for hydrates formation in which Langmuir
constants can be computed, either using
experimental data or from ab initio data. This
method was used to predict existing mixed
hydrate phase equilibrium data without any
fitting parameters [11].

2- Theory

According to LJD theory, N rigid spheres
occupy a total volume ¥ and are arranged in
form of a face-centered cubic lattice. Each
molecule in the lattice has twelve nearest
neighbors, where the distance between two
neighboring molecules is presented by a. The
cell corresponding to this volume is
dodecahedral [1, 4-5], and each molecule is
wandering in its cage or cell formed by its
nearest neighbors. The nearest neighbors
occupy midpoints of twelve edges of an
imaginary cube constructed about any given
molecule. The volume per molecule, v =V/N,
is related to distance between nearest
neighbors as follows:

v=d/\2 (1)
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According to original LJD theory, the
wanderer molecule has interaction with its
nearest neighbors. Under such conditions free
volume, v, is just that volume available to
center of the wandering molecule. Molecular
partition function of LJD theory is given by
the following equation [1, 3, and 5]:

O = exp(-N @(O)2kT) [ m kKT/W ) vy )]
(2)

where N is number of molecules, T is
absolute temperature, m is mass of molecule,
h is Plank’s constant, v, is free volume, and
finally exp(-Ne(0)2kT) is  considered
interaction between all atoms when stay on
their lattice occupation position with respect
to a zero energy level, in which distance
between all N atoms is infinity. ¢(@0) is
obtained by using Lennard-Jones (6—12) pair
potential function (L-J (6—12)) [4]. Also by
integrating L-J (6—12) pair potential function
over all angels between a central molecule
and its nearest neighbors, v, can be calculated
[1, 5, 10, 11]. By using v, and ¢(0)in
equation (2) and upon substituting for the
partition function, Q, in equation (3):

P=kT(31nQ/0V)r 3)

LJD equation of state is obtained as the
following form:

Z=1+[2C/T*] [(1+2g, /g)v* *-(1+2g,, /g)v¥7]
4)

where C is number of  first nearest
neighboring molecules that is equal to 12 for
a face-centered cubic lattice. Terms of
T*=kT/e and v*=v/o’ are reduced tem-
perature and specific volume, respectively,
where ¢ and o are energy and size parameters
of LJ potential function [4]. In equation (4) g,
grand g, are given by the following integrals:
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g=1[" »7 exp [(C/TH(1p)v

2 m(y)v¥7)]dy Q)
g=1" 7 exp [H(C/THAGNVF?
-2 myv¥?)]1()dy
(6)
gn=[" V" exp[-(C/THAM)*’
2mev¥)Impdy  (7)
where

1) = (1+12y+25.2y°+12y° +y")(1-y)"°-1

®)
m(y) =(1+ (1 -3) " -1 ©)
y=rd (10)

LJD equation of state, Equation (4), can also
be presented in another form when
interaction of the wanderer molecule with the
first three neighboring shells of molecules is
considered [1]:

Z=1+(2C/T¥)[(1.011+ 2 G, /G) v¥*
- (1.2045+ 2 G,, /G) v¥?]
(11)

In a face-centered cubic lattice, the first shell
of neighbors has 12 molecules at distance a,
the second shell has 6 molecules at a distance

a2 , and the third shell has 24 molecules at

a distance a+/3 . In Equation (11), functions
G, G, G, are integrals like those of g, g, gn
respectively, except functions /(y) and m(y)
are replaced by functions L(y) and M(y)
respectively as:

LO)=1()+(1/128)I6/2)+(1/7291(/3)  (12)
ME)=m®)+(1/16)m(/2)+(2/27)m(/3)  (13)
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where /(y) and m(y) are given by Equations
(8) and (9) respectively.

3- Modification of Lennard — Jones -
Devonshire theory

The two crucial tests for a derived theoretical
equation of state are its ability to meet both
dilute gas and high temperature (hard sphere)
limits [12-13]. The former limit is usually
investigated by the second virial coefficient
[13], whereas the latter limit is examined by
comparing equation of state with the
Carnahan-Starling equation of state [14].

The second virial coefficient, B,, can be
obtained by wusing the compressibility
coefficient Z, through the following relation
[13]:

By = lim [(Z-1)V] (14)

V—>w

According to equation (4) second virial
coefficient, B, is equal to zero [1]. Also
compressibility factor Z given by Equation
(4), approaches unity in a limit of high
temperature (7" — o). These results show the
shortcomings of LJD equation of state in
these limits, and can be attributed to
assumptions made in this theory. In this
theory number of nearest neighboring
molecules is considered as a constant. This is
a characteristic of lattice type that applied for
determining the molecular arrangement.
Although, for solids this can be a reasonable
assumption, in the case of liquids and gases it
can not be accepted. It is a well-known fact
that coordination number or number of
nearest neighboring molecules in liquids and
dense gases is generally a function of
temperature and density [15].

In this work the following general
temperature and volume functionality for
coordination number C is introduced:

C = C(T* v¥) (15)

By using Equation (15) new expressions for
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vrand ¢(0) are easily derived and substituted
in Equation (2) to obtain a new partition
function of LJD theory. Then by
differentiating new partition function with
respect to V at constant temperature the
modified LID compressibility factor will be
obtained as:

Z=Z1- 0.5 (0 C/Ov)r (V/ITH[v¥? (1+2
g1/8) -2 v (1+2g, /g)]
(16)

Where Z;;p has the same form given by
Equation (4) in which C is a function of
temperature and volume. It is worth noting
that Equation (16) is obtained for the case
that the effect of the first shell of neighboring
molecules is considered. A similar relation
can be obtained when the effect of the first
three shells of neighboring molecules is
considered. It should be pointed out that a
number of various functions for C can be
proposed in which the second virial
coefficient and (or) high temperature limits
of LJD EOS are existed. However any
proposed function for C, has to satisfy the
following conditions:

lim . (C/v*)= finite (17)

v¥—>o0

lim,._ (C/T*)= finite (18)

lim,._,. (C)=C, (19)

* *
-V cp

Where v,, is proposed as reduced closed pack
volume of cells, and C, is the coordination
number in closed pack volume, both are the
characteristics of the lattice model structure.

For example v*,, and C, are equal to 1/ V2
and 12, respectively, in a face-centered cubic
lattice. The above conditions can guide us to
the convenient functions for coordination
number.

Therefore the simplest expression for C that
can satisfy conditions (17)-(19) is proposed
as follows:

a
C=Cot (5 + a;T*) (v¥-v*,,)
1

*
ch

) (20)

1
+612T*(F-

where a, a;, and a, are adjustable
parameters, which their values obtained by
calculations.

Now, one can substitute equation (20) in
equation (16) in order to obtain a new version
of LJD equation of state, as:

Z=1+ [% (Cot % +aT*) (v*v*y) + axT™* (L*-L)] [(1+2g; /Qv¥"= (1+2g, /gv*?]-
v

a
T*

0.5/(

cp

2 +a1)v*—% T (1+2g) /2)-2v%2 (1+2g,, /2)] Q1)

When the interaction of the wanderer molecule with the first three neighboring shells of

molecules is considered:

Z=1+ [% (Qﬁr% +a, TH(v*vy) + a T* (i*-i )] [(1.011+2G, /G)v*¥*~(1.2045 + 2G,, /G)
1% 1%

a()

cp

V¥2] 0.5 = +a)v¥)-22 T (1.011+2G) /G)-2v7 (1.2045+2G,, /G)] (22)
\%

%

T #

Iranian Journal of Chemical Engineering, Vol. 5, No. 3

55



The Modified Lennard-Jones and Devonshire Equation of State

It is worth noting that two parameters among
three parameters a,, a; and a, in Equation
(20) may be found using the following
conditions:

(0P/3 V). =(6°P/8 V?)7.=0 (23)

Integrals g, g5, and g, are functions of the
coordination number C, as well as state
variables 7 and V. Also these integrals must
be solved numerically,. Due to the
mathematical complexity it is too difficult to

apply conditions of equation (23) on
equations (21) or (22). As an alternative
method, a,, a; and a,, may be obtained by
correlating equation (21) to simulation data
of Lennard-Jones fluid [12].

Application of presented theory can be
demonstrated by property calculations as well
as study the second virial coefficient and high
temperature limits.

An expression for internal energy, U, based
on equation (21) is given by the following
equation:

= 05— ra T *cp)+a2T*(% VL v (1+2¢) /g)-2 (14280 /0)]

p

(24)

where [/ * is internal energy of ideal gas limit. Similarly when the interaction of the wanderer

molecule with the first three neighboring shells of molecules is considered, we get the following
expression for internal energy based on equation (22):

U]‘Wg = 0.5[(= a: +a1T*)(V*—v*cp)+azT*(i* *L V][V (1.011+2G; /G)-2v¥ (1.0245+
T 1% \% p
2G, /G)] 25)

The limit of dilute gas can also be considered by the second virial coefficient. As it was shown
earlier, in original LJD equation of state second virial coefficient is equal to zero. However the
above mentioned limit can be obtained by the modified LID theory (equation 22), as the follows:

Bo/&’=lim [(Z-D)V]= - 4.964(a,T** +a,) (26)

V—>0

Also presented theory is applied to study high temperature limit. This limit can also be
considered as hard sphere limit of molecules. According to original LJD, compressibility factor Z
approaches unity in limit of high temperature (7— o). This limit can be predicted by modified
LJD theory (equation 22), as the follows:

lim 7=7" = 1R2a[v¥v¥! 40.25vF T ](1.011+2G™/G™ v 2a,[vH ! —(v/6®) ! +0.5vF ]
(1.2045+2G" ,/G") v*? (27)

In Equation (27) superscript As indicates the limit for 7 goes to infinity. It should be noted that Z
is equal unity where C is a constant according to original LID theory.
The above mentioned limits can be calculated provided parameters of equation 20 are available.
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(Calculations:

Performance of the proposed modification
can be demonstrated by comparison of results
of modified LJD and original LJD equation
of state with simulation data of LJ fluid. In
this work internal energy and compressibility
factor are chosen to comparison. Available
simulation data for Z and U of LJ fluid are
those of Verlet (1967) [16]. Extensive
calculations indicate that the three-shell
modification improves results of LID theory
[1]. Therefore we wuse the three shell
modification expressions for compressibility
factor and internal energy, given by equations
(22) and (25), respectively. Table 1
represents results of compressibility factor Z,
and internal energy U, for modified this work
and original LJD theory. Also, reported in
this table are simulation data [16] for LIJ
fluid. In order to obtain results of table 1 for
modified LID we need to have in hand a,, a;,
and a, parameters of equation (20), which
can be obtained by minimization of the
following function:

A=5{[(Zsi-Z.)/Zsi]*+[(Us-U)/U]?} (28)

where subscript s and ¢ represent simulation
data and calculated wvalues, respectively.
Summation in equation (28) is extended over
all data points. The following results are
obtained for parameters of equation (20):

a,=1.27021; a;=-2.77872; a;=-6.17568

According to Table 1, modified LJID shows a
superior agreement with simulation data
especially for Z, rather than original LJD. In
the above calculations it is assumed that
relations between numbers of neighboring
molecules of the first three shells are as given
by the face-centered cubic lattice model. In
this lattice model first shell has 12, the
second one has 6 and the third has 24
neighboring molecules. Thus, provided
number of molecules in the first neighboring
shell is C, these values for second and the
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third shells are C/2 and 2C, respectively.

The variation of C with reduced temperature
and volume is presented by Figure (1) for
four different values of (v/v.,) versus reduced
temperature 7* According to this figure
coordination number is increased with
temperature at constant density. The same
result will be obtained when density is
reduced at constant 7* Both results are
emphasized on the behavior that is expected
for the variable coordination number concept
in this work.

Figure 2 shows reduced second virial
coefficient (B,*) given by equation (26)
versus reduced temperature (7%). Also
reported in this figure is B,* according to
original LJD, which is equal to zero for all
temperature.

In Figure 3 compressibility factor (Z ) versus
v* at high temperature limit (hard sphere) is
presented for modified (equation 27) and
original LJD.

In Figures 2 and 3 reduced second virial
coefficient and compressibility factor at high
temperature limit are equal to zero for
original LID, which it means that this theory
can not exhibit good representation at dilute
gas and high temperature (hard sphere)
limits. They are reasons for short comings of
LID.

4- Conclusion

A temperature and volume dependence
function was proposed for coordination
number of LJD equation of state. Simulation
data of Lennard-Jones fluid were used to
determine this function. The modified
equation of state could predict second virial
coefficient and hard sphere limits, whereas
original equation of state failed to predict
these limits. In spite of the simplicity of this
modification, results were in acceptable
agreement with simulation data. The study of
coordination number around the critical point
will be dealt with in a future work.
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Table 1 Compressibility factor Z, and reduced internal energy (U-U")/NKT as a function of reduced temperature 7*
and reduced aensity p*

p* T* VA (U-U*)/NKT
Simulation | Original | Modified | Simulation | Original Modified

data [16] LJD LJD data LJD LJD
0.88 1.095 3.48 0.74 3.20201 -5.66 -5.82 -5.45
0.88 0.94 2.72 -0.14 2.62580 -5.84 -6.91 -6.45
0.88 0.591 -0.18 -4.72 -0.15541 -6.53 -1163 -10.48
0.85 2.889 4.36 3.54 4.49577 -4.25 -1.63 -1.47
0.85 2.202 4.2 3.07 4.36076 -4.76 -2.37 -2.22
0.85 1.214 3.06 0.82 2.88252 -5.6 -5.00 -4.73
0.85 1.1 2.78 0.43 2.58870 -5.69 -5.44 -5.15
0.85 0.8 1.64 -1.12 1.47378 -5.94 -7.20 -6.77
0.85 0.782 0.98 -2.02 0.86289 -6.04 -8.21 -7.67
0.85 0.786 0.99 -1.97 0.89076 -6.05 -8.16 -7.63
0.85 0.760 0.78 -2.26 0.70413 -6.07 -8.47 -7.90
0.85 0.719 0.36 -2.76 0.38045 -6.12 -9.00 -8.37
0.85 0.658 -0.2 -3.66 -0.18577 -6.19 -9.92 -9.17
0.85 0.591 -1.2 -4.95 -0.96889 -6.26 -11.16 -10.26
0.75 2.849 3.1 2.86 3.32843 -4.07 -1.48 -1.44
0.7 1.304 1.61 0.69 1.73244 -5.02 -3.97 -3.91
0.7 1.069 0.9 -0.34 0.90674 -5.19 -4.99 -4.91
0.75 1.071 0.89 -0.33 0.91578 -5.17 -4.98 -4.89
0.75 0.881 -0.12 -1.69 -0.17687 -5.31 -6.22 -6.09
0.75 0.827 -0.54 -2.22 -0.59649 -5.38 -6.68 -6.53
0.65 2.557 2.14 2.28 2.36483 -3.78 -1.48 -1.52
0.65 1.585 1.25 1.23 1.46992 -4.23 -2.68 -2.74
0.65 1.036 -0.11 -0.57 -0.11940 -4.52 -4.38 -4.50
0.65 0.9 -0.74 -1.38 -0.82152 -4.61 -5.12 -5.27
0.55 2.645 1.63 2.06 1.81990 -3.24 -1.18 -1.27
0.5426 3.26 1.86 2.25 1.97412 -3.0 -0.88 -0.96
0.5426 1.404 0.57 0.81 0.62049 -3.63 -2.53 -2.72
0.5426 1.326 0.42 0.65 0.46327 -3.66 -2.70 -2.91
0.5 1.36 3.4 0.79 0.46043 -3.38 -2.40 -2.64
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Table 1. (Continue)
p* T* Z (U-U*)/NKT
Simulation | Original | Modified | Simulation | Original Modified

data LJD LJD data LJD LJD
0.45 4.625 1.68 2.19 1.78722 -2.22 -0.43 -0.54
0.45 2.935 1.38 1.92 1.51738 -2.6 -0.84 -0.96
0.45 1.744 0.74 1.28 0.86734 -2.9 -1.62 -1.81
0.45 1.764 0.76 1.3 0.88657 -2.89 -1.59 -1.79
0.85 1.71 0.74 1.25 0.83354 -2.95 -1.65 -1.86
0.85 1.552 0.75 1.07 0.65548 -2.98 -1.85 -2.09
0.85 1.462 0.41 0.97 0.45428 -2.72 -1.76 -2.07
0.85 1.424 0.38 0.93 0.39971 -2.73 -1.81 -2.14
0.85 1.62 0.58 1.12 0.57596 -2.31 -1.37 -1.67
0.75 1.418 0.4 0.92 0.34124 -2.21 -1.6 -1.97
APE% 9152 2.87 7.4 6.19

APEY% =

100 Msim _Mcal 2
nd Z ( Msim )

ngis number of data point, M is property and subscripts sim and cal are simulation data and calculated, respectively.

16
/Y, =1.15
155/ —-rn yfy,=1.35
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—— v/, =2
DAL 1
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=
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= 145 -
s 1 I
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E 14+ - I
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185, =" ]
4
13- /
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Figure 1. Coordination number C versus 7* for different reduced volumes.
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Figure 2. Reduced second virial coefficient (B,*) versus reduced temperature (7%), solid line is this work and (*) is
original LID.
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Figure 3. Compressibility factor at high temperature limit (Z™) versus reduced volume v*
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Nomenclature

g; gl; gm
G, G, Gy
h

k

1(y), m(y)

L(y), M(y)

TQOv=S3

= <
§YSay

p*

y
zZ

The distance between two
neighboring molecules

Constants of proposed equation
for coordination number

Second virial coefficient

Reduced second virial coefficient
Cood ination number (a constant
in LJD Theory)

Functions of y

Functions of y

Plank’s constant

Boltzmann constant

Functions of vy, defined by
equations 8 and 9, respectively
when interactions with only the
first shell of nearest neighbors are
considered.

Functions of vy, defined by
equations 12 and 13, respectively
when interactions with the first
three shells of nearest neighbors
are considered.

Mass of a molecule

Number of molecules

Pressure

Partition function

The distance of the wandering
molecule from its lattice site
Temperature

Reduced Temperature

Internal energy

Total volume

Specific volume (V/N)

Closed pack volume

Reduced volume (v/c”)
Dimensionless distance (r*/a’)
Compressibility factor

Greek Letters

€ Energy parameter in pair potential
function

c Energy parameter in pair potential
function

¢(r) Total intermolecular force when the
wanderer is at distance r from its
lattice point
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