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Abstract

Accurate wind speed modeling is critical in estimating wind energy potential for harnessing wind power effectively.
The quality of wind speed assessment depends on the capability of chosen probability density function (PDF) to
describe the measured wind speed frequency distribution. The objective of this study is to describe (model) wind
speed characteristics using three mixture probability density functions Weibull-extreme value distribution (GEV),
Weibull-lognormal, and GEV-lognormal which were not tried before. Statistical parameters such as maximum error
in the Kolmogorov-Smirnov test, root mean square error, Chi-square error, coefficient of determination, and power
density error are considered as judgment criteria to assess the fitness of the probability density functions. Results
indicate that Weibull-GEV PDF is able to describe unimodal as well as bimodal wind distributions accurately
whereas GEV-lognormal PDF is able to describe familiar bell-shaped unimodal distribution well. Results show that
mixture probability functions are better alternatives to conventional Weibull, two-component mixture Weibull,
gamma, and lognormal PDFs to describe wind speed characteristics.
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Background
Growing global population along with fast depleting
reserves of fossil fuels is influencing researchers to search
for clean and pollution-free sources of energy such as
solar, wind, and bioenergies. Wind energy is a never end-
ing natural resource which has shown its great potential
in combating climate change while ensuring clean and ef-
ficient energy. Further, rapid advances in wind turbine
technology led to significant growth of wind power gener-
ation across the world. However, wind energy is more
sensitive to variations with topography and wind patterns
compared to solar energy. Wind energy can be harvested
economically if the turbines are installed in a windy area
and suitable turbine is properly selected. Wind speed
forecasting is a critical factor in assessing wind energy po-
tential and performance of wind energy conversion sys-
tems. Several probability density functions (PDFs) have
been used in literature to describe wind speed characteris-
tics which include Weibull, Rayleigh, bimodal Weibull,
lognormal, gamma, etc.

Islam et al. [1] used two-parameter Weibull distribu-
tion function for wind speed forecasting and assessed
wind energy potentiality at Kudat and Labuan, Malaysia.
Celik [2] used Weibull-representative wind data instead
of the measured data in time-series format for estimating
the wind energy and had shown that estimated wind en-
ergy is highly accurately. Celik [3] made statistical analysis
of wind data at southern region of Turkey and summar-
ized that Weibull model was better than Rayleigh model
in fitting the measured data distributions. Akdag et al. [4]
discussed the suitability of two-parameter Weibull wind
speed distribution and the two-component mixture
Weibull distribution (WW-PDF) to estimate wind speed
characteristics. Carta et al. [5] used WW-PDF because it is
able to represent heterogeneous wind regimes in which
there was evidence of bimodality or bitangentiality or, sim-
ply, unimodality. Maximum likelihood and least-square
methods were used to estimate WW-PDF parameters. In
[6], wind speed distributions were shown to be satis-
factorily described with a log-normal function, and in [7],
Weibull and lognormal distribution functions were used
to fit wind speed distributions. Kiss and Imre [8] used
Rayleigh, Weibull, and gamma distributions to model
wind speeds both over land and sea. They found that
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generalized gamma distribution, which has independ-
ent shape parameters for both tails, provides an ad-
equate and unified description almost everywhere.
Generalized extreme value (GEV) distribution that
combines the Gumbel, Frechet, and Weibull extreme
value distributions were used to model extreme wind
speeds [9-12]. In recent past, mixture distributions were
used to estimate wind energy potential that are quite ac-
curate in describing wind speed characteristics. Jaramillo
and Borja [13] used mixture Weibull distribution (WW)
to model bimodal wind speed frequency distribution.
Akpinar et al. [14] used mixture normal and Weibull dis-
tribution (NW), which is a mixture of truncated normal
distribution, and conventional Weibull distribution to
model wind speeds. Tian Pau [15] employed mixture
gamma and Weibull distribution (GW) which is a com-
bination of gamma and Weibull distributions, and also
mixture normal distribution (NN) which is a mixture
function of two-component truncated normal distribution
for wind speed modeling.
The objective of this study is to propose three new

mixture distributions, viz., Weibull-lognormal (WL),
GEV-lognormal (GEVL), and Weibull-GEV (WGEV) for
wind speed forecasting. Comparison of the proposed
mixture distributions with existing distribution functions
is done to demonstrate their suitability in describing
wind speed characteristics.
The rest of this paper is organized as follows: wind

distribution models and goodness of fit tests used in this
paper are presented in the section ‘Methods’. Results
derived from this study are discussed in ‘Results and dis-
cussions’ section. Details about the data used for the
analysis are given in this section. Conclusions are pre-
sented in the ‘Conclusions’ section.

Methods
Significance
The most suitable wind turbine model which needs to
be installed in a wind farm is selected by careful wind
energy resource evaluation. Accurate evaluation could
be done using best fit distribution model. Using inappro-
priate distribution models results in inaccurate estima-
tion of wind turbine capacity factor and annual energy
production which in turn leads to improper estimation
of levelized production cost [13]. Hence, it is important
to choose an accurate distribution model which closely
mimics the wind speed distribution at a particular site.

Wind distribution models
Wind distribution modeling requires analysis of wind
data over a number of years. To reduce the expenses
and time required to process long-term wind speed data,
it is desirable to use statistical distribution functions for
describing the wind speed variations. The primary tools

to describe wind speed characteristics are probability
density functions. The parameters of probability distri-
bution functions which describe wind-speed frequency
distribution are estimated using statistical data of a few
years. Many PDFs have been proposed in recent past,
but in present study Weibull, Lognormal, gamma, GEV,
WW-PDF, mixture gamma and Weibull distribution, mix-
ture normal distribution, mixture normal and Weibull
distribution, and three new mixture distributions, viz.,
Weibull-lognormal, GEV-lognormal, and Weibull-GEV
are used to describe wind speed characteristics. Para-
meters defining each distribution function are calculated
using maximum likelihood method.

Weibull distribution
The Weibull function is commonly used for fitting mea-
sured wind speed probability distribution. Weibull distri-
bution with two parameters is given by [1]:
Weibull PDF

f v; k; cð Þ ¼ k
c

v
c

� �k�1
exp � v

c

� �k
� �

ð1Þ

Weibull cumulative distribution function (CDF):

F v; k; cð Þ ¼ 1� exp � v
c

� �k
� �

ð2Þ

Weibull shape and scale parameters are calculated
using the maximum likelihood method [16] which is
given by:

k ¼
Xn

i¼1
vki 1n við ÞXn

i¼1
vki

�
Xn

i¼1
1n við Þ
n

" #�1

ð3Þ

where vi is the wind speed in time step i and n is the
number of data points. To evaluate (3) an iterative tech-
nique is used. Scale parameter is obtained by

c ¼ 1
n

Xn

i¼1
vki

� �1=k
ð4Þ

Generalized extreme value distribution
GEV distribution is a flexible model that combines the
Gumbel, Frechet and Weibull maximum extreme value
distributions [11,17]. GEV PDF is given by

e v; ζ; δ; 1ð Þ ¼ 1
δ

� �
1þ ζ v� 1ð Þ

δ

� ��1
ζ�1

exp � 1þ ζ v� lð Þ
δ

� �� �1
ζ

if ζ 6¼ 0

ð5Þ
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GEV CDF [17] is given by

E v; ζ; δ; lð Þ ¼ exp � 1þ ζ v� 1ð Þ
δ

� �� ��1
ζ

if ζ 6¼ 0

ð6Þ
GEV parameters are calculated using the maximum

likelihood method which maximizes the Logarithm of
likelihood function given by

LL ¼ 1n
Yn

i¼1
e vi; ζ; δ; lð Þf g ¼ Σn

i¼1 In e vi; ζ; 1ð Þf g ð7Þ

Lognormal distribution
Lognormal distribution is probability distribution of a
random variable whose logarithm is normally distributed.
Lognormal PDF is given by [18,19]

ln v;�; λð Þ ¼ 1

v�
ffiffiffiffiffiffi
2π

p exp
� 1n vð Þ � λ2
	 


2�2

" #
ð8Þ

Lognormal CDF is written as [18]

LN v;�; λð Þ ¼ 1
2
þ 1
2

erf
1n vð Þ � λ

�
ffiffiffi
2

p
� �

where

erf vð Þ ¼ 2ffiffiffi
π

p
Z v

0
exp �t2

	 

dt ð9Þ

Lognormal parameters λ and Φ estimated using max-
imum likelihood method which do not need an iterative
procedure are given by [20]

λ ¼ 1
N

XN

i¼1
1n við Þ; �2 ¼ 1

N

XN

i¼1
1n við Þ � λ½ �2

ð10Þ

Gamma distribution
The probability density function of gamma distribution
is expressed using the below function [15]

g v; α; βð Þ ¼ vα�1

βαΓ αð Þ exp � v
β

� �
ð11Þ

The cumulative Gamma distribution function is given
by [20]

G v; α; βð Þ ¼
Z

vα�1

βαΓ αð Þ exp � v
β

� �
dv ð12Þ

Gamma distribution parameters are estimated using
maximum likelihood method that maximizes the loga-
rithm of likelihood function which is given by:

LL ¼ 1n
Yn

i�1
h vi; α; βð Þf g ¼

Xn

i�1
1n h vi; α; βð Þf g

ð13Þ

Two-component mixture Weibull distribution
The probability density function, which depends on five
parameters (v; k1, c1, k2, c2,w) is given by [5]

ff v; k1; c1; k2; c2;wð Þ ¼wf v; k1; c1ð Þ
þ 1� wð Þf v; k2; c2ð Þ ð14Þ

The cumulative distribution function is given by [5]

FF v; k1; c1; k2; c2;wð Þ ¼ wF v; k1; c1ð Þ
þ 1� wð ÞF v; k2; c2ð Þ ð15Þ

Relevant likelihood function is

LL ¼
Xn

i¼1
1n wf v; k1; c1ð Þ þ 1� wð Þf v; k2; c2ð Þf g

ð16Þ

Mixture gamma and Weibull distribution
The probability density function and cumulative distri-
bution function of the mixture gamma and Weibull dis-
tribution are given by [15]

h v; α; β; k; c;wð Þ ¼ wg v; α; βð Þ
þ 1� wð Þf v; k; cð Þ ð17Þ

H v; α; β; k; c;wð Þ ¼ wG v; α; βð Þ
þ 1� wð ÞF v; k; cð Þ ð18Þ

Relevant likelihood function is

LL ¼
Xn

i�1
1n wg v; α; βð Þ þ 1� wð Þf v; k; cð Þf g ð19Þ

Mixture normal distribution
The probability density function of singly truncated nor-
mal distribution is given by [15]

q v; μ; σð Þ ¼ 1

I μ; σð Þσ ffiffiffiffiffiffi
2π

p exp � v� μ2

2σ2

� �
for v ≥ 0;

ð20Þ
where I(μ,σ) is the normalization factor that leads the in-
tegration of the truncated distribution to one is
expressed as

I μ; σð Þ 1

σ
ffiffiffiffiffiffi
2π

p
Z 1

0
exp � v� μð Þ2

2σ2

" #
dv: ð21Þ

The cumulative truncated normal distribution is given
by

Q v; μ; σð Þ ¼
Z v

0

1

I μ; σð Þσ ffiffiffiffiffiffi
2π

p exp � v� μ2

2σ2

� �
dv

ð22Þ
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The mixture function of two component truncated nor-
mal distribution from the above can be written as [15]

r v; μ1σ1; μ2; σ2wð Þ ¼ wq v; μ1σ1ð Þ
þ 1� wð Þq v; μ2σ2ð Þ ð23Þ

The cumulative distribution function is given by

R v; μ1σ1; μ2; σ2wð Þ ¼ wQ v; μ1σ1ð Þ
þ 1� wð ÞQ v; μ2σ2ð Þ ð24Þ

Relevant likelihood function to estimate the five para-
meters is

LL ¼
Xn

i¼1
1n wq v; μ1σ1ð Þ þ 1� wð Þq v; μ2σ2ð Þf g

ð25Þ

Mixture normal and Weibull distribution
The probability density function of the mixture distribu-
tion comprising of truncated normal and conventional
Weibull is written as [15]

s v; μ; σ; k; cð Þ ¼ wq v; μ; σð Þ þ 1� wð Þf v; k; cð Þ ð26Þ
Its cumulative distribution function is given as

S v; μ; σ; k; cð Þ ¼ wQ v; μ; σð Þ þ 1� wð ÞF v; k; cð Þ ð27Þ
Relevant likelihood function to estimate the five para-

meters is

LL ¼
Xn

i¼1
1n wq v; μ; σð Þ þ 1� wð Þf v; k; cð Þf g ð28Þ

Mixture Weibull and GEV distribution
The probability density function of the mixture distribu-
tion comprising Weibull and GEV functions which is ap-
plied for the first time to model wind speed distribution
is written as

t v; k; c; ζ; δ; lð Þ ¼ wf v; k; cð Þ
þ 1� wð Þe v; ζ; δ; lð Þ ð29Þ

Its cumulative distribution function is given as

T v; k; c; ζ; δ; lð Þ ¼ wF v; k; cð Þ
þ 1� wð ÞE v; k; c; ζ; δ; lð Þ ð30Þ

Relevant likelihood function to estimate the six para-
meters is

LL ¼
Xn

i¼1
1n wf v; k; cð Þ þ 1� wð Þe v; ζ; δ; lð Þf g

ð31Þ

Mixture Weibull and lognormal distribution
The probability density function of the mixture distribu-
tion comprising Weilbull and lognormal of functions

which is applied for the first time to model wind speed
distribution is written as

u v; k; c; λ;ϕð Þ ¼ wf v; k; cð Þ þ 1� wð Þl v; λ;ϕð Þ ð32Þ
Its cumulative distribution function is given as

U v; k; c; λ;ϕð Þ ¼ wF v; k; cð Þ
þ 1� wð ÞL v; λ;ϕð Þ ð33Þ

Relevant likelihood function to estimate the five para-
meters is

LL ¼
Xn

i¼1
1n wf v; k; cð Þ þ 1� wð ÞL v; λ;ϕð Þf g ð34Þ

Mixture GEV and lognormal distribution
The probability density function of the mixture distribu-
tion comprising GEV and lognormal functions which is
applied for the first time to model wind speed distribu-
tion is written as

v v; ζ; δ; l; λ;ϕð Þ ¼ we v; ζ; δ; lð Þ
þ 1� wð Þl v; λ;ϕð Þ ð35Þ

Its cumulative distribution function is given as

V v; ζ; δ; l; λ;ϕð Þ ¼ wE v; ζ; δ; lð Þ
þ 1� wð ÞL v; λ;ϕð Þ ð36Þ

Relevant likelihood function to estimate the five para-
meters is

LL ¼
Xn

i¼1
1n we v; ζ; δ; lð Þ þ 1� wð Þl v; λ;ϕð Þf g

ð37Þ

Goodness-of-fit tests
Goodness-of-fit tests are used to measure the deviation
between the predicted data using theoretical probability
function and the observed data. In this paper five statis-
tical errors are considered as judgment criteria to evalu-
ate the fitness of PDFs.

Kolmogorov-Smirnov test
The first one is the Kolmogorov-Smirnov test (K-S),
which is defined as the maximum error in cumulative
distribution functions [21].

K � S ¼ max C vð Þ � 0 vð Þj j ð38Þ
where C(v) and O(v) are the cumulative distribution
functions for wind speed not exceeding v calculated by
distribution function and observed wind speed data re-
spectively. Lesser K-S value indicates better fitness of the
PDF.
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R2 test
R2 test is used widely for goodness-of-fit comparisons
and hypothesis testing because it quantifies the correl-
ation between the observed cumulative probabilities and
the predicted cumulative probabilities of a wind speed
distribution. A larger value of R2 indicates a better fit of

the model cumulative probabilities F̂ to the observed cu-
mulative probabilities F. R2 is defined as [22]:

R2 ¼
Xn

i¼1
F̂ i � �F
	 
2

Xn

i¼1
F̂ i � �F
	 
2 þXn

i¼1
Fi � F̂ i
	 
2 ð39Þ

where �F ¼ 1
n

Xn

i¼1
F̂ i The estimated cumulative prob-

abilities F̂ are obtained from cumulative distribution
functions (CDFs).

Chi-square error
Chi-square error is used to assess whether the observed
probability differs from the predicted probability. Chi-
square error is given by

x2 ¼
Xn

i¼1

Fi � F̂ i
	 
2

F̂ i
ð40Þ

Root mean squared error
Root mean squared error (RMSE) provides a term-
by-term comparison of the actual deviation between

Table 1 Computed parameter values of different
probability density functions

PDF Station
42056

Station
46012

Station
46014

Station
46054

Weibull k 2.8941 1.8549 1.7047 1.9541

c 7.7429 6.2994 6.9481 9.1251

GEV ζ −0.1033 −0.0439 −0.0226 −0.3184

δ 2.4400 2.5942 3.0363 4.2437

l 5.7867 4.1868 4.4836 6.6940

Lognormal λ 1.8467 1.5285 1.5929 1.8877

Φ 0.4643 0.6836 0.7607 0.7418

Gamma α 5.8742 2.7481 2.3127 2.5656

β 1.1778 2.0348 2.6804 3.1673

WW w 0.0610 0.0001 0.5197 0.4556

k1 3.1485 1.8549 3.1775 4.6263

c1 7.8370 6.2994 10.0174 12.1321

k2 1.4328 1.3170 1.8689 1.7374

c2 5.9625 1.4795 4.1004 5.1573

GW w 0.6058 0.0721 0.6233 0.4399

α 12.6779 4.0155 2.3876 2.3507

β 0.6129 0.4728 1.8325 1.9608

k 2.3200 2.0125 3.3603 4.4201

c 6.3285 6.6370 10.2677 11.9500

NN w 1.0000 0.5122 0.8013 0.5256

μ1 6.8866 6.8843 6.5127 11.3795

σ1 2.6108 3.4583 4.0899 2.5038

μ2 0.0487 3.7791 1.6113 4.0575

σ2 1.0933 2.3035 2.4630 2.8832

NW w 0.0501 0.0749 0.3818 0.4756

μ 2.6721 8.3953 9.6324 11.4904

σ 6.0388 3.2149 2.9104 2.4729

k 3.1093 1.8491 1.8421 1.7367

c 7.7920 6.0395 4.5859 5.7013

WGEV w 0.9797 0.2878 0.5800 0.5037

k 3.0702 2.1500 1.8891 1.7168

c 7.8205 2.7925 4.2977 5.5608

ζ 0.5375 −0.0704 −0.2131 −0.3100

δ 1.2598 2.3404 2.7420 2.6007

l 1.4598 5.6512 8.3962 10.4755

WL w 0.5978 0.9026 0.8301 0.6502

k 2.5095 2.0329 1.9671 3.7812

c 7.0528 6.6999 7.7545 11.4111

λ 2.0333 0.6824 0.8508 1.1627

Φ 0.2564 0.6347 0.6293 0.7333

GEVL w 0.6006 0.7307 0.5929 0.6781

ζ −0.1743 −0.0896 −0.2394 −0.3702

δ 2.3409 2.4933 3.3233 3.4051

Table 1 Computed parameter values of different
probability density functions (Continued)

l 5.0583 5.2851 6.5856 9.0274

λ 2.0746 0.8904 1.1108 1.1501

Φ 0.2461 0.6823 0.6766 0.7403

Table 2 Statistical errors for different distribution
functions of Station 42056

PDF K-S error R2 x2 RMSE PDE

Weibull 0.0275 0.9980 0.0010 0.0057 0.0035

GEV 0.0460 0.9925 0.0060 0.0102 8.8948

Lognormal 0.0994 0.9545 0.0400 0.0209 32.4888

Gamma 0.0675 0.9827 0.0127 0.0138 10.0000

WW 0.0192 0.9993 0.0002 0.0037 −0.1558

GW 0.0111 0.9998 0.0005 0.0018 −0.1072

NN 0.0189 0.9994 0.0001 0.0030 −0.4768

NW 0.0180 0.9993 0.0003 0.0037 −0.0559

WGEV 0.0201 0.9992 0.0002 0.0039 −0.6804

WL 0.0118 0.9998 0.0005 0.0019 −0.0331

GEVL 0.0098 0.9998 0.0003 0.0017 −0.2688
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observed probabilities anead predicted probabilities. A
lower value of RMSE indicates a better distribution func-
tion model.

RMSE ¼ 1
n

Xn

i¼1
Fi � F̂ i
	 
2� �1=2

ð41Þ

Power density error (PDE)
The relative error between the wind power density cal-
culated from actual time-series data and that from the-
oretical probability function is expressed as [23]

PDE ¼ PDtp � PDts

PDts

� �
∗100 ð42Þ

where PDts is the wind power density calculated from
actual time-series data which is given by

PDts ¼ 1
2
ρ �v3 ð43Þ

where PDtp is the wind power density based on a theor-
etical probability density function fn(v) which is given by

PDtp ¼ 1
2
ρ

Z
v3fn vð Þdv ð44Þ

Results and discussion
Wind speed data from four wind stations were used in
evaluating different PDFs to assess their suitability. Wind
speed data provided by National Data Buoy Center [24]
at five stations 42056 (Yucatan Basin), 46012 (Half
Moon Bay, 24NM South Southwest of San Francisco,
CA), 46014 (PT Arena, 19NM North of Point Arena,
CA), and 46054 (Santa Barbara W 38 NM West of Santa

Barbara, CA) are used for wind speed analysis. Ten-
minute mean wind speed data recorded at 5 m above
the sea level are used for present studies.

� Wind data of over the period 2008 to 2010 is used
for wind station 42056.

� For station 46012, wind data over a period of 10 years
(2001 to 2010) is used for statistical analysis.

� Wind data of station 46014 over a period of three
years (2008 to 2010) is analyzed for wind
distribution modeling.

� For wind station 46054 data over the period (1999
to 2000) is used for statistical analysis.

In the present study, suitability of the PDFs is assessed
using goodness-of-fit tests. All computational proce-
dures are carried out in MATLAB software package.

Figure 1 Predicted and observed wind frequencies of Station 42056.

Table 3 Statistical errors for different distribution
functions of Station 46012

PDF K-S error R2 x2 RMSE PDE

Weibull 0.0169 0.9994 0.0009 0.0035 0.4728

GEV 0.0328 0.9969 0.0009 0.0079 1.6274

Lognormal 0.0838 0.9742 0.0310 0.0165 42.9656

Gamma 0.0458 0.9941 0.0082 0.0084 12.2546

WW 0.0169 0.9994 0.0009 0.0035 0.4726

GW 0.0107 0.9998 0.0003 0.0023 −0.3121

NN 0.0208 0.9992 0.0006 0.0057 −0.2180

NW 0.0156 0.9995 0.0009 0.0034 0.0310

WGEV 0.0082 0.9999 0.0002 0.0013 −0.1954

WL 0.0108 0.9998 0.0004 0.0024 −0.2721

GEVL 0.0116 0.9998 0.0001 0.0030 0.4372
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Computed parameter values of different PDFs used for
all the four stations are presented in Table 1.
The mean and standard deviation of observed wind

speed for Station 42056 are 6.91888 m/s and 2.56768 m/s,
respectively. Wind frequency histogram resembles familiar
bell-shaped curve; hence, Weibull PDF fits the observed
distribution well. The statistical parameters for fitness
evaluation of PDFs currently analyzed are presented in
Table 2. All the PDFs except lognormal, GEV, and gamma
are able to describe the wind speed characteristics well
which is evident from their small power density errors
shown in Table 2. Considering K-S error, χ2 error, RMSE
and PDE, the distribution functions lognormal, GEV and
Gamma have large errors indicating their inadequacy in
modeling wind speeds. Results presented in Table 2
show clearly that proposed mixture GEVL PDF provided
the best fit of observed wind speed distribution. From

Figure 1, it is evident that GEVL distribution provides a
close fit throughout the entire wind speed spectrum
when compared to other distributions. The higher value
of R2 and the lower values of K-S error, RMSE and chi-
square error indicate that proposed GEVL distribution is
more accurate than other PDFs in modeling wind speeds
of Station 42056.
Station 46012 has a mean and standard deviation of

5.59185 m/s and 3.13391 m/s, respectively, for the
observed wind speed. Statistical errors, K-S, R2, χ2, and
RMSE given in Table 3 indicate that proposed mixture
WGEV distribution provides best fit for the observed
wind frequency distribution, which is closely followed by
GW, WL, GEVL, and WW mixture distributions. Conven-
tion PDFs such as lognormal and gamma, over predicted
wind speeds which are in the range of 2 to 5 m/s and 13 to
24 m/s, respectively. These PDFs have under predicted

Figure 2 Predicted and observed wind frequencies of Station 46012.

Figure 3 Predicted and observed wind frequencies of Station 46014.
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IDspeeds between 5 to 11 m/s. Apart from WGEV and WL,
other mixture PDFs and conventional PDFs over predicted
wind speeds in the range of 3 to 5 m/s which are reflected
by the overestimated predicted probabilities as depicted in
Figure 2. Results indicate that mixture PDFs perform better
compared to conventional single PDFs.
Mean and standard deviation of wind speed for Station

46014 are 6.19907 m/s and 3.71888 m/s, respectively.
From Figure 3, it is seen that WGEV, WG, WW, and
WN distributions are able to model wind speed charac-
teristics better than other PDFs. All other distributions
have either over- or under-predicted wind speeds apart
from these three. Results presented in Table 4 clearly
show that, considering K-S error, χ2, and RMSE, GW
PDF has the smallest error followed by WGEV, WW,
and NW. If R2 error is considered, GW has a value very
close to 1.0, confirming its superiority in performance
followed by WGEV, WW, and NW distributions.

Wind regime of Station 46054 has bimodal distribu-
tion with mean and standard deviation of 8.1261 m/s
and 4.2390 m/s, respectively. Compared to conven-
tional single PDFs, mixture PDFs have performed well
in modeling the wind speeds. Lognormal, gamma,
Weibull, and GEV fared poorly in describing the wind
characteristics compared to other mixture PDFs. As
seen from Figure 4 and statistical parameters from
Table 5, two component mixture Weibull distribution
(WW) provided the best fit for the observed wind
data, closely followed by proposed mixture function
WGEV.
Figures 1 to 4 show that mixture PDFs fit much better

than the conventional Weibull, lognormal, and gamma
distributions. Proposed mixture distributions GEVL for
Station 42056 and WGEV for Station 46012 have out-
performed other existing mixture and conventional sin-
gle distributions. For Station 46054, WW distribution

Table 4 Statistical errors for different distribution
functions of Station 46014

PDF K-S error R2 x2 RMSE PDE

Weibull 0.0330 0.9962 0.0004 0.0074 3.0473

GEV 0.0473 0.9913 0.0006 0.0121 2.4164

Lognormal 0.0729 0.9778 0.0246 0.0138 29.4110

Gamma 0.0447 0.9938 0.0024 0.0081 12.7017

WW 0.0111 0.9998 0.0002 0.0021 −0.0177

GW 0.0087 0.9999 0.0001 0.0018 0.5776

NN 0.0396 0.9973 0.0002 0.0096 −0.1938

NW 0.0122 0.9998 0.0003 0.0024 −0.2683

WGEV 0.0108 0.9998 0.0001 0.0021 0.1171

WL 0.0238 0.9986 0.0001 0.0049 2.1816

GEVL 0.0153 0.9994 0.0003 0.0045 0.7699

Figure 4 Predicted and observed wind frequencies of Station 46054.

Table 5 Statistical errors for different distribution
functions of Station 46054

PDF K-S error R2 x2x2 RMSE PDE

Weibull 0.0804 0.9789 0.0172 0.0158 4.0047

GEV 0.0562 0.9886 0.0008 0.0137 −3.2096

Lognormal 0.1293 0.9317 0.0601 0.0242 10.3370

Gamma 0.1026 0.9633 0.0304 0.0188 11.4088

WW 0.0089 0.9999 0.0000 0.0019 −0.0171

GW 0.0112 0.9997 0.0000 0.0032 0.3890

NN 0.0149 0.9997 0.0000 0.0037 0.0305

NW 0.0108 0.9997 0.0000 0.0031 0.1555

WGEV 0.0093 0.9999 0.0000 0.0022 0.0499

WL 0.0208 0.9986 0.0005 0.0070 1.6018

GEVL 0.0191 0.9991 0.0002 0.0059 0.8829
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provided a better fit than others, while WGEV being the
close second best fit.

Conclusions
In the present article, a comparison of distribution mod-
els has been undertaken for describing wind regimes of
four wind stations. Common conventional PDFs and
mixture PDFs along with three proposed new mixture
PDFs, viz., WGEV, GEVL, and WL are used for wind
speed modeling. It is shown that conventional PDFs,
such as Weibull, lognormal, and gamma, are inadequate;
hence, mixture functions are used to model the observed
wind speed distributions better. Though the superiority
of proposed mixture functions in Station 46014 is not
very significant, the proposed mixture distributions
GEVL for Station 42056 and WGEV for Station 46012
have provided better fit of the empirical data than other
existing mixture distributions. For Station 46054, both
WW and WGEV are found more suitable for describing
wind speed distributions than other distributions. The
performance difference between WW and WGEV distri-
butions is not significant for this station. Results show
clearly that proposed mixture PDFs, WGEV and GEVL,
provide viable alternative to other mixture PDFs in de-
scribing wind regimes. Mixture PDFs which include
GEV are able to provide close fit, particularly for high
speed ranges of the wind spectrums. This is critical for
wind speed applications as wind power is proportional
to the cube of wind speed. Hence, mixture combinations
of GEV with other conventional distributions need to be
tried out for further analysis.
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