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Abstract

Pen surface amendments for mitigating emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane
(CH4), and carbon dioxide (CO2), from beef cattle feedlots, were evaluated under controlled laboratory conditions.
Amendments were organic residues (i.e., sorghum straw, prairie grass, woodchip), biochar from those organic residues
and from beef cattle manure, and activated carbon. Manure samples were collected from several randomly selected
pens from two beef cattle feedlots in Kansas and used in the experiments, either as dry (0.10 g · g−1 wet basis water
content) or moist (0.35 g · g−1 wet basis). For each amendment, four different treatment levels (i.e., amounts of material)
were placed on top of manure samples in glass containers and analyzed for GHG emissions using a photo-acoustic
infrared multi-gas analyzer. From measured concentrations, emission rates were determined. For the dry manure
conditions, all amendment materials showed significant reduction of N2O and CO2 emissions compared to the control
(i.e., no amendment). For the moist manure conditions, none of the amendments showed significant effects on GHG
emissions during the first 8 days; at days 10 and 15 after application, however, the biochar materials performed
significantly better than the control (i.e., no surface amendment) in reducing N2O and CH4 emissions. No significant
difference was observed in GHG emissions when the amendments were placed on top or mixed within the top
surface layer of the manure.

Keywords: Biochar; Feedlot emission; Greenhouse gas emission; Greenhouse gas control; Organic residue; Surface
amendment

Background
Animal feeding operations (AFOs), such as open beef
cattle feedlots, emit a variety of air pollutants, including
particulate matter (PM), ammonia (NH3), odor, and
volatile organic compounds (VOCs) that have the poten-
tial to cause health problems to workers and neighbors.
In addition, they emit greenhouse gases (GHGs), includ-
ing carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O) [1], and their contribution to climate
change is a growing environmental concern [2]. Global
increases in anthropogenic CO2 concentrations are
largely due to fossil fuel use and industrial processes.
For CH4, increases have come through both industrial
and agricultural activities, whereas increases in N2O are

primarily from agricultural activities with soil manage-
ment as its main source [3,4]. Ruminant livestock opera-
tions are considered significant contributors to global
CH4 concentration [3,4].
Numerous factors can influence the emission of GHGs

from beef cattle feedlots. Woodbury et al. [5] reported
that pen surfaces in cattle feedlots were aerated and
highly organic and favorable for both mineralizing and
nitrification, while the sub-surfaces were compacted with
anaerobic zones making them susceptible to denitrifica-
tion. This co-existence of both nitrification and denitrifi-
cation processes in tandem have also been reported to
occur with manure composting [6,7]. However, the
process of denitrification and subsequent N2O emission
is highly variable with surface water content controlling
surface emission flux rates [8]. This observation is also
supported by Woodbury et al. [5], who found that de-
nitrifying enzyme activity was highly variable both
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seasonally and spatially. Aguilar [8] reported that moist/
muddy surface conditions (0.52 cm3 · cm−3) had the lar-
gest median emission flux of 2.03 mg · m−2 · h−1 com-
pared to either dry or flooded conditions with median
fluxes ranging from 0.10 to 0.16 mg · m−2 · h−1. The
highly variable nature of emissions from feedlot surfaces
has also been shown to occur for other compounds, in-
cluding NH3, VOCs, and CO2 [9].
Considering that cattle feedlots could potentially con-

tribute significantly to global N2O levels, some mitiga-
tion strategies must be undertaken to reduce emissions.
Nitrification inhibitors have been suggested as a possible
mitigation strategy and research has shown the effective-
ness of these compounds [10-14]. Nitrification inhibitors
are chemicals used to reduce the rate ammonium con-
verts to nitrate and they have been shown to be effective
in reducing N2O emissions from soils. However, costs
and animal safety issues make the use of nitrification in-
hibitors less attractive for AFOs. Alternatively, Adams
et al. [15] reported that the manipulation of manure car-
bon/nitrogen (C:N) ratio by direct application of organic
matter to the pen surfaces, might be an effective mitiga-
tion strategy used to decrease N losses. Consequently,
soil amendments that can change the C/N ratio might
be a cost-effective means of reducing GHG emissions
from cattle feedlots.
This study was conducted to evaluate the effectiveness

of surface amendments (i.e., organic residues and bio-
char) in reducing emission of GHGs from feedlot ma-
nure. The effects of manure water content (i.e., dry vs.
moist) and the means of application of the amendment
(i.e., topical vs. mixed) were also considered.

Methods
Experiments
A series of laboratory experiments was conducted to
evaluate the effectiveness of pen surface amendments in
reducing emissions of N2O, CH4, and CO2 from feedlot
manure. Amendments were organic residues (i.e., sor-
ghum straw, prairie grass, woodchip), biochar from
those organic residues and from beef cattle manure, and
activated carbon. Table 1 summarizes the experimental
parameters for the different experiments. Approximately
130 kg of manure was collected from several randomly
selected pens in two beef cattle feedlots in Kansas. The
collected manure was completely mixed and air dried
for several days until the average gravimetric water con-
tent (wet mass basis) reached approximately 0.10 g · g−1.
Large clods were removed manually from the dry ma-
nure and from the amendment materials. The dry ma-
nure and amendment materials were sieved using an
ASTM E-II No 4 (4.75 mm) standard sieve. For each
amendment, four different amounts of material were ap-
plied on top of manure samples within glass containers

and analyzed for GHG emissions using a photo-acoustic
infrared multi gas analyzer.
The elemental composition of each organic residue

and biochar is summarized in Table 2. The elemental
composition was measured by grinding a sample (30 g)
of each material to 0.5 mm using a sample mill (Model
3010–018, Udy Corp., Fort Collins, CO, USA) and then
analyzing each ground sample (2 to 3 mg ± 0.001 mg) in
an Elemental Analyzer (Model 2400, Series II Perkin
Elmer, Norwalk, CT, USA).

Experiment 1 - topical application of organic residues and
biochar on moist manure
Experiment 1 considered the effects of topical applica-
tion of organic residues and biochar on moist manure.
Samples were prepared by mixing 238 g of dry manure
(0.10 g · g−1 water content wet basis) and 92 g of water
at 22°C in 1-L wide-mouth glass containers, which were
used as static flux chambers (SFCs). The water content
of the moist manure was 0.35 g · g−1 wet basis, which is
similar to the average manure water content for pen sur-
faces observed in the field [8]. The moist manure was
then compacted at 1.1 g · cm−3. Containers were kept
uncapped in an enclosed space at approximately con-
stant humidity and temperature for stabilization pur-
poses during a period of 12 h before treatment
application (Figure 1b). In this experiment, amendments
were woodchip, sorghum straw, prairie grass, woodchip
biochar, sorghum straw biochar, and prairie grass bio-
char (Figure 1a). Biochars were obtained from gasifica-
tion of the organic residues in a laboratory updraft
reactor.
The prepared glass containers were randomly selected

and fixed amounts (treatments) of the amendment were
applied on top of the compacted manure within the con-
tainers, as indicated in Table 1. The containers with ma-
nure but without any amendment served as the control.
The amendment materials showed large differences in
wet bulk density (Table 1). Due to the small volume of
the containers (1 L) used in the experiment, treatments
were designed such that each would result in the same
headspace volume for all amendment materials. There-
fore, for each amendment material, treatments consisted
of different thicknesses of the material applied on top of
the manure within the containers. There were four treat-
ments (i.e., 0 mm or control, 1 mm, 3 mm, and 5 mm),
with three replicates each. The amount of amendment
corresponding to each treatment was computed based
on the actual wet bulk density of each amendment. As a
consequence of the different wet bulk densities, the
same treatment for different amendments required dif-
ferent masses per unit surface area (Table 1).
The initial gas sampling of each container was per-

formed 45 min after treatment application. Before
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sampling, the headspace of each glass container was
flushed with ambient air to ensure that GHG concentra-
tions were at ambient levels [16]. Then, the container
being sampled was capped and immediately, air from its

headspace was circulated through a photo-acoustic
infrared multi-gas analyzer or PIMA (Model 1312,
AirTech Instruments, Ballerup, Denmark) [17,18] equipped
with optical filters for measuring N2O, CH4, and CO2,

Table 1 Experimental parameters

Experiment Manure conditions (wet basis) Amendment

Water
content (g · g−1)

Bulk density
(g · cm−3)

Material Wet bulk
density (g · cm−3)

Treatment

Amount
(mm or g)

Mass/Surface area
(kg · m−2)

1 Topical application of organic residues
and biochar on moist manurea

0.35 1.1 WC 0.36 0, 1, 3, 5 mm 0, 0.36, 1.08, 1.80

SS 0.14 0, 1, 3, 5 mm 0, 0.14, 0.42, 0.71

PG 0.12 0, 1, 3, 5 mm 0, 0.12, 0.35, 0.58

WCB 0.41 0, 1, 3, 5 mm 0, 0.41, 1.23, 2.05

SSB 0.16 0, 1, 3, 5 mm 0, 0.16, 0.48, 0.79

PGB 0.14 0, 1, 3, 5 mm 0, 0.14, 0.43, 0.71

2 Topical application of biochar and
activated carbon on moist manurea

0.35 1.1 WCB 0.41 0, 1, 3, 5 mm 0, 0.41, 1.23, 2.05

SSB 0.16 0, 1, 3, 5 mm 0, 0.16, 0.48, 0.79

PGB 0.14 0, 1, 3, 5 mm 0, 0.14, 0.43, 0.71

PMB 1.02 0, 1, 3, 5 mm 0, 1.02, 3.05, 5.08

LMB 0.53 0, 1, 3, 5 mm 0, 0.53, 1.59, 2.65

EAC 0.62 0, 1, 3, 5 mm 0, 0.62, 1.86, 3.09

PAC 0.38 0, 1, 3, 5 mm 0, 0.38, 1.14, 1.89

3 Topical application of organic residues
and biochar on dry manureb

0.10 0.48 WC 0.36 0, 1, 3, 5 mm 0, 0.36, 1.08, 1.80

SS 0.14 0, 1, 3, 5 mm 0, 0.14, 0.42, 0.71

PG 0.12 0, 1, 3, 5 mm 0, 0.12, 0.35, 0.58

WCB 0.41 0, 1, 3, 5 mm 0, 0.41, 1.23, 2.05

SSB 0.16 0, 1, 3, 5 mm 0, 0.16, 0.48, 0.79

PGB 0.14 0, 1, 3, 5 mm 0, 0.14, 0.43, 0.71

4 GHG emission from organic
residues and biocharsc

- - WC 0.36 0, 10 g 0, 1.5

SS 0.14 0, 10 g 0, 1.5

PG 0.12 0, 10 g 0, 1.5

WCB 0.41 0, 10 g 0, 1.5

SSB 0.16 0, 10 g 0, 1.5

PGB 0.14 0, 10 g 0, 1.5

PMB 1.02 0, 10 g 0, 1.5

LMB 0.53 0, 10 g 0, 1.5

EAC 0.62 0, 10 g 0, 1.5

PAC 0.38 0, 10 g 0, 1.5

5 Mixing of organic residues and
biochars with manurea

0.35 0.60 LMB 0.53 0, 20 g 0, 3.0

EAC 0.62 0, 20 g 0, 3.0

6 Adsorption as mechanism of GHG
mitigationd

- - WCB 0.41 0, 25 g 0, 3.8

LMB 0.53 0, 60 g 0, 9.0

EAC 0.62 0, 50 g 0, 7.5

WC, woodchip; SS, sorghum straw; PG, prairie grass; WCB, woodchip biochar; SSB, sorghum straw biochar; PGB, prairie grass biochar; PMB, pellet manure biochar;
LMB, loose manure biochar; EAC, extruded (pellet)-activated carbon; PAC, powder-activated carbon. aControl was moist manure with no amendment (0.35 g · g−1

gravimetric water content wet basis and 1.1 g · cm−3 wet bulk density). bControl was dry manure with no amendment (0.10 g · g−1 gravimetric water content wet
basis and 0.5 g · cm−3 wet bulk density). cTwo controls and one treatment per material. Control 1 was indoor air. Control 2 was moist manure with no amendment
(0.35 g · g−1 gravimetric water content wet basis and 1.1 g · cm−3 wet bulk density). dControl was indoor air.
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m-long Teflon tubes as inflow and outflow to the glass
container, as shown in Figure 1c. Readings of the head-
space concentrations were taken every 50 s from 0 to
10 min. Gas emissions were determined for each con-
tainer. Sampling was conducted once a day for 3 days
within a 5-day period (i.e., days 1, 3, and 5, with the
day of treatment application serving as day 1). During
this period, containers were kept uncapped in an
enclosed space at approximately constant humidity
and temperature conditions (Figure 1b). For each sam-
pling day, the laboratory air temperature and pressure
were recorded with liquid-in glass thermometer and
barometer, respectively. Manure gravimetric water
content and temperature from each container were
also measured during the sampling period.

Experiment 2 - topical application of biochar and
activated carbon on moist manure
Based on results from Experiment 1, Experiment 2 was
conducted to further evaluate the effectiveness of differ-
ent biochars in mitigating GHG emission from moist

manure. Sample preparation, treatments, and the experi-
mental setup were similar to those for Experiment 1.
However, sampling was conducted once a day for 6 days
within a 15-day period (i.e., days 1, 3, 5, 8, 10, and 15).
In addition to the biochars in Experiment 1 (i.e., wood-
chip, sorghum straw, and prairie grass biochars), Experi-
ment 2 also included manure biochar and activated
carbon as amendments.

Experiment 3 - topical application of organic residues and
biochar on dry manure
Experiment 3 was conducted to evaluate the effectiveness
of several amendment materials in mitigating GHG emis-
sions from dry manure. In this experiment, 238 g of dry
manure (0.10 g · g−1 water content wet basis and 0.55 g ·
cm−3 wet bulk density) were placed into 1-L glass con-
tainers; no water was added. Amendments and treatments
were the same as those for Experiment 1. Control was dry
manure without any amendment. Gas sampling was per-
formed in the same fashion as for Experiments 1 and 2;
however, in this case, sampling was conducted once a day
for 3 days within a 5-day period (i.e., days 1, 3, 5).

Table 2 Elemental composition of the materials used as surface amendments

Material Composition (%) C/N

Carbon Hydrogen Nitrogen Sulfur

Woodchip (WC) 46.85 6.13 0.53 1.03 89:1

Sorghum straw (SS) 43.11 5.93 0.92 1.04 47:1

Prairie grass (PG) 44.19 6.07 0.90 1.10 49:1

Woodchip biochar (WCB) 59.82 2.42 0.94 0.40 64:1

Sorghum straw biochar (SSB) 58.38 1.63 1.13 0.28 52:1

Prairie grass biochar (PGB) 63.32 2.51 1.65 0.43 38:1

Pellet manure biochar (PMB) 10.39 0.46 1.05 0.31 10:1

Loose manure biochar (LMB) 14.13 0.51 0.92 0.25 15:1

Pellet-activated carbon (EAC) 83.44 0.43 0.83 0.41 101:1

Powder-activated carbon (PAC) 86.69 0.53 0.54 0.06 162:1

Figure 1 Photographs of the experiment. (a) Amendment materials, (b) glass containers with the compacted moist manure, within a plastic
container with water at the bottom to maintain constant manure water content, and (c) measurement set up.
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Experiment 4 - GHG emission from the organic residues
and biochars
To assess the potential contribution of the amendments to
the GHG emission, 10 g of each amendment material were
placed in 1-L glass containers. Treatments were the or-
ganic residues and biochars. Two controls were considered:
(1) empty containers and (2) containers containing moist
manure with gravimetric water content of 0.35 g · g−1 wet
basis and bulk density of 1.1 g · cm−3. Each treatment had
two replications. All amendment materials used in the pre-
vious experiments were assessed (Figure 1a). Gas samples
were collected once a day for 3 days within a 5-day period
(i.e., days 1, 3, and 5).

Experiment 5 - mixing of biochars with manure
Experiment 5 was conducted to evaluate the effective-
ness of biochars in mitigating GHG emissions when
mixed within the top manure layer. Amendment mate-
rials to mitigate GHG emissions from pen surfaces in
beef cattle feedlots are meant to be placed on the pen
surfaces; however, with animal activity, some of the
amendments are expected to be mixed with the top sur-
face layer of the moist and loose areas of the pen, while
others will remain on the top of the harder and drier
pen surfaces. Fixed amounts of manure and water, as de-
scribed in experiment 1, were mixed in the 1-L glass
containers within 2 min (0.35 g · g−1 wet gravimetric water
content and 0.66 g · cm−3 wet bulk density). As soon as
each manure sample was prepared, the treatment was
mixed within the first 5-cm top layer in the container.
Treatments included 20 g of manure biochar and 20 g of
activated carbon. Control was moist manure without any
amendment. There were two replications for each treat-
ment. Gas samples were collected once a day for 4 days
within a 10-day period (i.e., days 1, 3, 5, and 10).

Experiment 6 - mechanism of GHG emission reduction
Experiment 6 was conducted to determine if gas adsorp-
tion is a possible mechanism in mitigating GHG emis-
sion from pen surfaces. In this experiment, 500-cc glass
containers were used as sealed chambers, in which,
150 cc of standard N2O gas (3.5 ppm) were injected into
the container. Amendment materials (treatments) were
woodchip biochar, loose manure biochar, and activated
carbon. They were first oven-dried at 125°C for 12 h to
desorb any trace gases. During sampling, 25, 60, and
50 g of woodchip biochar, manure biochar, and activated
carbon, respectively, were placed into the containers and
capped with a lid prepared for syringe sampling. The
control treatment was an empty container with indoor
air. There were two replications for each treatment. The
amendments’ masses were computed to allow a head-
space volume of 400 cc. Within 2 min after treatment
preparation, 3-cc air samples were collected from the

containers and analyzed for N2O concentration using a
GC (Model GC-14B, Shimadzu Scientific Instrument,
Columbia, MD, USA). The GC had a Porapak-Q (80/100
mesh) stainless steel column (3.175 × 10–3 m diameter
by 1 m length), electron-capture detector, and UHP/zero
nitrogen carrier gas. The oven, injector, and detector
temperatures were 60°C, 100°C, and 300°C, respectively,
as described by Bremer [19]. The first sample was consid-
ered as the base line N2O concentration for each treatment.
As soon as the first sample was collected, 100 cc of air were
extracted from the containers and then, 150 cc of N2O
3.5 ppm standard gas were injected into each container. In
this manner, a low positive pressure was always present in
the containers even after the final sampling event. Ten mi-
nutes after the N2O standard gas injection, a second 3-cc
headspace air sample was collected from each container
and analyzed in the GC for N2O concentration. Fifty mi-
nutes later, gas sampling was repeated. After the first day,
headspace gas sampling was then repeated once a day for 4
more days within a 6-day period (i.e., days 2, 3, 4, and 6).
As soon as the last gas samples were taken, the con-

tainers were placed into an oven (Model OV-500B-1, Blue
M Electric Co., Blue Island, IL) and heated to reach differ-
ent temperatures (35°C, 40°C, and 75°C). Each temperature
setting was kept for 2 h and then, 3-cc gas samples were
taken from the containers and analyzed in the GC for N2O
gas concentration. Finally, once the final temperature was
reached and gas samples collected, the oven was turned
off, letting the containers to cool down to room
temperature (23°C) for 24 h. A final gas sample was col-
lected from each container and analyzed in the GC.

Data analysis
The emission flux from each container was calculated
from mass balance, that is

F ¼ k V=Að Þ ΔC=Δtð Þ; ð1Þ

where k is a conversion constant,V is headspace volume,
A is surface area, and ΔC/Δt is the change in gas con-
centration with time within the enclosed space. In general,
the relationship between gas concentration and time within
the enclosed space was linear; as such, the slope (S) of the
linear regression between gas concentration and time was
used to represent ΔC/Δt (ppm ·min−1). For experiments in-
volving moist manure (experiments 1, 2, and 5), the average
R2 values ± standard deviation for the linear relationship be-
tween gas concentration and time were 0.99 ± 0.01, 0.99 ±
0.01, and 0.90 ± 0.20 for N2O, CO2, and CH4, respectively.
In general, the gas emissions depended on their previ-

ous day’s flux. To account for the correlation between
emission flux values, the Autoregressive One, AR(1),
structure was used on the residuals. Data were analyzed
using Proc Glimmix of SAS [20] using a 5% level of
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significance. P values were adjusted by Tukey [21].
When the Type III test of fixed effects indicated no sig-
nificant (treatment) × (time) interaction, the treatment
effects were analyzed and compared to the control.
When (treatment) × (time) interaction was significant,
analysis was done based on sampling days.

Results and discussion
Experiment 1 - topical application of organic residues and
biochar on moist manure
For each treatment and control, emissions of N2O and
CH4 increased with sampling day; the increase was gener-
ally much higher from sampling days 3 to 5 than from
samplings day 1 to 3. The emissions of CO2, on the other
hand, did not change much with sampling day. Figure 2
shows results of GHG emissions from moist manure
amended with woodchip and woodchip biochar. Statistical
analysis showed significant (treatment) × (time) interac-
tions, as such, comparison of treatments with control was
based on sampling days. In general, topical application of
the organic residues on the manure sample showed some
reduction, although not significant, in emissions. However,
the biochars at 3- and 5-mm levels significantly reduced
GHG emissions at sampling day 5; CO2 emissions were
also significantly reduced on day 5 even with a 1-mm
amendment of woodchip biochar (Figure 2).

Experiment 2 - topical application of biochar and
activated carbon on moist manure
Similar to experiment 1, there were significant (treat-
ment) × (time) interactions. As such, treatment effects
were analyzed based on sampling days. Topical application

of 3 mm and 5 mm of loose manure biochar (Figure 3b)
and pellet manure biochar (Figure 3c) showed similar ef-
fects as pellet-activated carbon (Figure 3a) in reducing
N2O emissions after day 10. For all sampling days, N2O
emission flux from the control was larger than those from
the 3-mm and 5-mm treatments of both manure biochars,
as also occurred with the three treatments of pellet-
activated carbon (Figure 3a). However, in the case of ma-
nure biochars, those differences were significant only on
day 15, while activated carbon significantly reduced N2O
emissions starting at day 10. Powder-activated carbon, as
expected, showed the same behavior in GHG reduction as
pellet-activated carbon. The 3-mm treatment of loose ma-
nure biochar and pellet manure biochar, compared to the
control, reduced N2O emissions by 63% and 57%, respect-
ively, on day 15. The reduction was slightly lower than
that from the 3-mm treatment of activated carbon, which
had a reduction of 73%. Reductions of N2O emissions by
activated carbon and manure biochar increased with sam-
pling day (Figure 3a, b, c). Moreover, with the exception of
activated carbon, the 1-mm treatment did not result in
any significant reduction in N2O emission flux possible
because of poor surface covering.
The 3-mm and 5-mm treatments of woodchip biochar

also resulted in significant reduction of N2O starting at day
10 (Figure 3d). Moreover, 5-mm treatment of prairie grass
biochar also reduced N2O emissions on day 15 (Figure 3f).
No treatment of sorghum straw biochar showed any sig-
nificant effect on N2O emissions (Figure 3e). Among bio-
char materials, the 3-mm treatment of loose manure
biochar was best in reducing N2O emissions from the
moist manure on day 15 (Figure 3b).
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Figure 3 Effects of topical application of biochar and activated carbon on GHG emissions from moist manure. (a) effect of EAC in N2O
flux, (b) effect of LMB in N2O flux, (c) effect of PMB in N2O flux, (d) effect of WCB in N2O flux, (e) effect of SSB in N2O flux, (f) effect of PGB in
N2O flux, (g) effect of EAC in CH4 flux, (h) effect of LMB in CH4 flux, (i) effect of PMB in CH4 flux, (j) effect of WCB in CH4 flux, (k) effect of SSB in
CH4 flux, (l) effect of PGB in CH4 flux, (m) effect of EAC in CO2 flux, (n) effect of LMB in CO2 flux, (o) effect of PMB in CO2 flux, (p) effect of WCB
in CO2 flux, (q) effect of SSB in CO2 flux, (r) effect of PGB in CO2 flux. Within the same day, treatments with the same letter or those with no
letters are not significantly different at α = 5%.
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The reduction in N2O emission with biochar-amended
manure is not surprising since previous research on bio-
char have reported significant reductions in N2O emis-
sions from soils [22,23]. Taghizadeh-Toosi [24] reported
reductions in N2O fluxes by as much as 70% for pasture
soils following the incorporation of 3 kg · m−2 of biochar
into the soil. In addition, others have shown that emis-
sions of N2O decreased as soil was amended with in-
creased amounts of biochar [25,26]. Even in rice paddy
soils amended with biochar, there was a significant re-
duction (51%) in total N2O emission, but higher levels of
biochar amendments did not necessarily decrease N2O
emission rates [27,28].
Effects of application of biochar on CH4 emissions

were generally similar to those of N2O emissions. Appli-
cation of 3 mm and 5 mm of manure biochars showed
significant reductions of CH4 emissions compared to the
control on day 15 (Figure 3h, i). All three treatments of
activated carbon (Figure 3g) and prairie grass biochar
(Figure 3l) resulted in significant reduction of CH4 emis-
sion on day 15. The 1-mm and 3-mm treatments of sor-
ghum straw biochar (Figure 3k) also showed significant
reduction of CH4 emission on day 15. The 3-mm treat-
ment of activated carbon showed significant reduction of
CH4 emission on day 15 at 72% compared to the control
treatment, while pellet manure biochar, loose manure
biochar, sorghum straw biochar, and prairie grass bio-
char had significant reductions of 73%, 63%, 39%, and
47%, respectively, on day 15. There was no significant
reduction in CH4 emission treated with woodchip bio-
char. This is supported by Aguilar-Chávez et al. [22]
who also did not find any significant effect on CH4 emis-
sions due to application of biochar to agricultural soils.
In the case of CO2, the three treatments of activated

carbon (Figure 3m) resulted in significant reduction of
CO2 emissions during the whole experimental period,
with the larger reduction obtained from the largest
amount of activated carbon placed on the moist manure
surface, i.e., 5-mm treatment (3.09 kg · m−2). The 5-mm
treatment of woodchip biochar (Figure 3p) also signifi-
cantly reduced CO2 emissions but only at day 15. No
other material/treatment combination significantly influ-
enced CO2 emissions from moist manure.
Differences in CO2 emissions from soil amended with

several biochars have been reported as a result of the
differences in the biochars used [22]. Cayuela et al. [23]
reported that biochar, used as soil amendment, was the
most stable residue with the lowest CO2 loss with re-
spect to the total C added. Rogovska et al. [26] reported
that biochar sequestered large amounts of highly stable
C, but either increased or decreased CO2 emissions from
the soils, depending on soil characteristics. Scheer et al.
[29] reported no significant differences in net fluxes of
GHGs between biochar-amended pastures and control

plots. In that study, the biochar from cattle feedlot manure
was applied at a rate of 1 kg · m−2 to a depth of 10 cm and
the GHG emission was measured 28 months later.

Experiment 3 - topical application of organic residues and
biochar on dry manure
Figure 4 summarizes the emissions from the dry manure
samples as affected by application of biochars. As ex-
pected, emissions from the dry manure samples were
considerably lower than those from the moist manure
samples (Figures 2 and 3). Even though emissions were
small, all amendment materials showed significant re-
duction in N2O and CO2 emissions. The three treat-
ments of prairie grass and sorghum straw significantly
reduced N2O emissions. For the woodchip biochars, only
the 3-mm and 5-mm treatments showed significant ef-
fect in reducing N2O emissions. This might be a conse-
quence of the poor surface area coverage by the 1-mm
treatment of woodchip biochar.
In the case of CH4, only the three treatments of prairie

grass and sorghum straw biochars significantly affected
CH4 emissions but only during the first day of the ex-
periment. This result was possibly a consequence of the
low emission flux of CH4 from the substrate due to its
low water content. Note that for experiment 3, the ma-
nure samples were not compacted so that conditions
were likely aerobic, which may significantly reduce de-
nitrification or methanogenesis, the main mechanisms of
N2O and CH4 formation in the soil, respectively [30,31].
In the case of CO2, the three treatments of all amend-

ments, with the exception of the 1-mm treatment of
woodchip biochar, significantly reduced CO2 emission
flux (Figure 4g, h, i). Under aerobic conditions, most soil
microorganism use O2 as an electron acceptor, releasing
CO2 into the atmosphere [31].

Experiment 4 - GHG emission from the organic residues
and biochars
Table 3 summarizes the GHG emissions from the
amendment materials, tested without manure, and the
control. Emissions from the organic residues and bio-
chars were not significantly different from those for con-
trol 1 (indoor air). Also, emissions of all three GHGs
from the amendment materials were significantly lower
than those from control 2 (moist manure). As such,
there was no significant contribution of GHGs from the
organic materials and biochars when used as soil
amendment.

Experiment 5 - mixing of biochars with manure
Table 4 summarizes the GHG emissions from the con-
trol and from the manure biochar and activated carbon
treatments. Both manure biochar and activated carbon
significantly reduced emissions of N2O and CO2
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compared with the control. There was no significant re-
duction of CH4 emission flux; nevertheless, as in experi-
ment 2, at day10, there was significant reduction in CH4

emission flux for both moist manure treatments com-
pared with the control. The manure biochar showed
similar effect as pellet-activated carbon in reducing N2O
emissions (Table 4) and their mitigating effect increased
with time. These results suggest that mixing the biochar
with the top loose and moist surface layers in the pens
would be at least as good as or better than the topical ap-
plication of the amendments in controlling GHGs from
pen surfaces. In this experiment, the manure samples were
not compacted, which could help explain the larger fluxes
compared with those from experiments 1 and 2.
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Figure 4 Effects of topical application of biochars on greenhouse gas emissions from dry manure. (a) effect of WCB in N2O flux, (b) effect
of SSB in N2O flux, (c) effect of PGB in N2O flux, (d) effect of WCB in CH4 flux, (e) effect of SSB in CH4 flux, (f) effect of PGB in CH4 flux, (g) effect
of WCB in CO2 flux, (h) effect of SSB in CO2 flux, (i) effect of PGB in CO2 flux. Within the same day, treatments with the same letter and those
with no letters are not significantly different at α = 5%.

Table 3 Mean emissions of greenhouse gases from the
amendment materials themselves

Treatment Flux (mg · m−2 · h−1)

N2O CH4 CO2

Control-1 (indoor air) 0.01 a 0.00 a 0.7 a

Control-2 (moist manure) 6.00 b 2.01 b 5782 b

Loose manure biochar 0.01 a 0.00 a 11.7 a

Pellet-activated carbon 0.03 a 0.00 a 70.3 a

Pellet-manure biochar 0.01 a 0.00 a 2.8 a

Powder-activated carbon 0.03 a 0.00 a 46.8 a

Prairie grass 0.02 a 0.00 a 9.0 a

Prairie grass biochar 0.03 a 0.00 a 43.0 a

Sorghum straw 0.04 a 0.00 a 69.5 a

Sorghum straw biochar 0.04 a 0.00 a 82.0 a

Woodchip 0.02 a 0.00 a 13.8 a

Woodchip biochar 0.02 a 0.03 a 21.5 a

Values are mean fluxes for the 5-day experimental period. Mean values followed
by the same letter within a specific GHG are not significantly different at α = 5%.

Table 4 Mean emissions of GHGs under mixed moist
manure/amendment condition

Treatment Flux (mg · m−2 · h−1)

N2O CH4 CO2

Control (no amendment) 12.05 a 2.05 a 1,2051 a

Loose manure biochar mixed
with moist manure

8.71 b 1.52 a 9,151 b

Activated carbon mixed with
moist manure

8.11 b 1.58 a 6,735 c

Values are mean fluxes for the 10-day experimental period; column means
followed by the same letter are not significantly different at α = 5%.
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Figure 5 plots the headspace concentration of N2O in
the different containers without (control) and with amend-
ments. For all containers, a known amount of N2O (i.e.,
150 cc, 3.5 ppm) was injected into the containers at 0.17 h.
As soon as the N2O was injected, measured concentration
of N2O for the control (indoor air without any amendment)
increased from 0.48 to 1.65 ppm. For containers with treat-
ments (i.e., woodchip biochar, manure biochar, and acti-
vated carbon), the increase in concentrations after injection
of the same standard N2O gas was significantly lower. No
further significant changes in N2O concentrations were ob-
served after the first hour of the experiment (Figure 5). The
significant difference in N2O concentration might be a con-
sequence of several mechanisms, including adsorption.
When biochar materials are added to the soil, they are able
to adsorb organic molecules through several mechanisms
[32]. Peng et al. [33] reported activated carbon with high
pore volume as a good N2O adsorbent.
To confirm that adsorption was a possible mechanism for

N2O concentration reduction within the containers, once
the 120-h period of gas sampling at room temperature
(23°C) was completed, each container still capped was
heated to 35°C, 40°C, and 75°C. Then, gas samples were

drawn from the container headspace and immediately ana-
lyzed for N2O concentration in a GC. Results indicated that
at temperatures higher than room temperature (23°C), the
N2O concentration within the containers increased but
remained relatively constant for a given temperature (Figure 6).
Apparently, the adsorbed N2O at room temperature was
released at higher temperature, but once that temperature
stabilized, there was no any additional desorption.
Figure 7a shows the concentrations of N2O inside the

heated containers with biochars. For each material and
control, there was no significant change in N2O concen-
trations when samples were heated from 23°C to 40°C. At
temperatures larger than 40°C, however, all materials
showed significant N2O desorption. Moreover, N2O con-
centrations for the control did not significantly change
with increasing temperatures. These results confirm that
there was no chemical reaction between the biochar and
the N2O injected into the containers, suggesting that the
main mechanism responsible for the increase in N2O con-
centration within the containers when heated was desorp-
tion. Therefore, adsorption is a possible mechanism for
the reduction of N2O emission from the manure treated
with biochar and/or activated carbon in the previous ex-
periments. Once the containers were cooled to room
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Figure 5 Nitrous oxide concentrations at headspace of containers without (control) and with amendments. A known amount of N2O was
injected into each container at 0.17 h.
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temperature, the final N2O concentrations decreased to
levels comparable to those for the 23°C-to-40°C range.
The higher manure temperature in pen surfaces in a

beef cattle feedlot in Kansas during 15 consecutively
months was 40.5°C [8]. The lack of significant change in
N2O gas concentration within the containers when
temperature rose from 23°C to 40°C is useful because
this suggests that the GHGs adsorbed on the amend-
ment materials in the feedlot surfaces would not be des-
orbed even during the higher summer temperatures.
Moreover, the fact that there was a significant difference
in N2O gas concentration within the containers between
the treatments (amendment materials) and the control
(Figures 5 and 7a) supports the hypothesis that the bio-
char materials can be used as surface amendments to re-
duce GHG emissions from pen surfaces of beef cattle
feedlots, even though a significant effect in GHG reduc-
tion was observed only from days 10 and 15 after bio-
char application (Figure 3).
As expected, significant N2O desorption was observed

when substrates were heated (Figure 7a); in the interval
from 40°C to 75°C, all materials reached the N2O con-
centration of the control. This suggests that at 75°C,
both biochar and activated carbon have at least released
100% of the N2O previously adsorbed. Figure 7b repre-
sents the N2O gas desorption from the amendment ma-
terials themselves without any external addition of N2O
gas standard into the containers. At 23°C, the N2O con-
centration in all containers with the three amendment
materials was significantly lower than the one in the
control at the same temperature. This finding suggests
that the amendment materials adsorbed part of the N2O
concentration present in the indoor air within the con-
tainers. When containers were heated from 23°C to 40°C,
there was no significant gas desorption from the amend-
ment materials. Once the temperature exceeded 40°C,
a larger amount of N2O was released from the ma-
terials, reaching the N2O concentration of the control.
Therefore, because the materials did not react at temper-
atures between 23°C to 40°C, no gas desorption is

expected from the biochars in the field since tempera-
tures did not commonly reach 40°C [8].
The adsorption capacities of selected amendment ma-

terials were estimated from the results. From Figure 5,
N2O concentrations within the containers remained
relatively constant over time, indicating that the adsorp-
tion capacity of the amendment materials might have
been reached. Based on the average gas concentration,
the adsorption capacity of each material was computed
with respect to the control. Estimated adsorption capaci-
ties (<0.1 μg N2O/g of material) were orders of magnitude
lower than the reduction in N2O emission observed from
experiment 2 (Figure 3a, b, d). As such, adsorption did not
appear to be the main N2O mitigation mechanism.
From previous studies for soils, other possible N2O

mitigation mechanisms [34] include NH4
+ immobi-

lization, NO3
− adsorption, and NH4

+ adsorption (Figure 8).
The NH4

+ immobilization mechanism is related to the C/
N ratios of biochars. Table 2 shows that with the excep-
tion of manure biochar, all other amendments have a C/
N ratio greater than 20:1, which represents low N con-
tent [35]. When the biochars are mixed with the ma-
nure, the microorganisms’ activity is expected to
increase due to the extra C. Because the amendments
have low N contents [35,36], the microorganisms will
likely immobilize part of the available inorganic N
(NH4

+) in the manure surface. Once the NH4
+ is used, ni-

trification and denitrification will decrease, with a net ef-
fect of reduced emissions of N2O [36] from the manure.
This is supported by Adams et al. [15], who reported
lower N losses in feedlot pens under increased surface
manure C/N ratio as result of the application of sawdust
on pen surfaces. Other researchers have reported linear
relationship between the organic matter content and the
amount of N preserved in the manure [37]. Therefore,
as manure C content increases, it is expected that less N
will volatilize from the manure surfaces.
The N2O mitigation mechanisms related to NO3

− ad-
sorption by the biochar (Figure 8) is supported by previ-
ous studies on soil, drinking water, and wastewater.

0.0

0.5

1.0

1.5

2.0

2.5

23 35 40 75

N
2O

 C
on

ce
nt

ra
tio

n 
(p

pm
)

Temperature (°C)
Control Woodchip Biochar

a

0.0

0.5

1.0

1.5

2.0

2.5

23 30 40 75

N
2O

 C
on

ce
nt

ra
tio

n 
(p

pm
)

b

Manure Biochar Activated Carbon

Figure 7 Nitrous oxide concentrations inside containers with amendment materials. (a) effect of temperature on desorption of N2O after
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on NO3
− leaching in soil, reported significant NO3

− ad-
sorption on the biochar. Yao et al. [39] reported that sev-
eral biochars significantly adsorbed NO3

− from soils, with
removal rates of up to 3.7%. Nunell et al. [40], in a study
of NO3

− removal from wastewater using activated carbon,
reported high NO3

− adsorption on wood saw dust acti-
vated with potassium hydroxide. They reported that a
combined effect of carbon surface chemistry (high basic
functional groups and low acidic groups) and carbon
porous characteristics were responsible for the NO3

− ad-
sorption. In a study of NO3

− removal from drinking
water, Mizuta et al. [41] reported that the bamboo char-
coal was 15% more effective in adsorbing NO3

− than
commercial activated carbon.
As previously indicated, another possible N2O mitiga-

tion mechanism is nitrification inhibition through the
adsorption of NH4

+. Yao et al. [39] reported that nine
biochars significantly adsorbed NH4

+, with removal rates
of up to 15.7%.
Based on results from those studies, biochar and acti-

vated carbon can adsorb N2O, NO3
−, and NH4

+. If the
adsorbed NH4

+ from manure is not available for micro-
bial activity, nitrification inhibition might result, with a
reduction of NO3

− generation. If NO3
− is also directly

adsorbed onto the biochar and not available for micro-
bial activity, a net denitrification reduction is expected.
The net result would be a reduction on N2O emission
rates.

Conclusions
Highlights

� Organic residues and biochar were evaluated in
controlling GHGs from feedlot manure.

� Applying organic residues on feedlot manure had
limited effects on GHG emissions.

� Applying biochar or activated carbon on feedlot
manure reduced GHG emissions.

� Adsorption did not appear to be the primary
mechanism for the N2O emission reduction.

This research evaluated, under controlled laboratory
conditions, the effectiveness of application of organic
residues, biochar, and activated carbon in controlling
emissions of N2O, CH4, and CO2 from beef cattle feedlot
manure. The following conclusions were drawn:

1. Topical application of organic residues (i.e., prairie
grass, sorghum straw, and woodchip) and biochar
on dry manure showed significant reduction of
N2O and CO2 emissions but did not affect CH4

emission. When applied on moist manure, the
organic residues did not significantly affect GHG
emission.

2. Topical application of biochar did not show
significant reduction of GHG emissions for the first
8 days. From days 10 and 15, application of biochar
materials significantly reduced N2O and CH4

emissions compared with the control (i.e., no
amendment). Biochar from manure (loose or
pelletized) appeared to be the most promising
material for reducing GHG emissions from pen
surfaces because their effect was similar to that of
activated carbon.

3. The method of application of biochar (i.e., topical vs.
mixed) did not significantly influence the
effectiveness of the material in reducing GHG
emissions.

4. Adsorption on biochar or activated carbon appeared
to be a mechanism for reducing N2O emission from
feedlot manure; however, other mechanisms (e.g.,
NH4

+ immobilization, NO3
− adsorption, and NH4

+

adsorption) might be important in N2O mitigation.

Figure 8 Possible mechanisms for mitigation of N2O emission from feedlot manure by biochar or activated carbon.
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