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Abstract The uncertainty caused by the discontinuous

nature of wind energy affects the power grid. Hence,

forecasting the behavior of this renewable resource is

important for energy managers and electricity traders to

overcome the risk of unpredictability and to provide reli-

ability for the grid. The objective of this paper is to employ

and compare the potential of various artificial neural net-

work structures of multi-layer perceptron (MLP) and radial

basis function for prediction of the wind velocity time

series in Tehran, Iran. Structure analysis and performance

evaluations of the established networks indicate that the

MLP network with a 4-7-13-1 architecture is superior to

others. The best networks were deployed to unseen data

and were capable of predicting the velocity time series via

using the sliding window technique successfully. Applying

the statistical indices with the predicted and the actual test

data resulted in acceptable RMSE, MSE and R2 values

with 1.19, 1.43 and 0.85, respectively, for the best

network.
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Introduction

Environmental effects of fossil resources combined with

energy demand growth are important reasons for human-

ity’s recent desire for harnessing clean energy [1, 2]. High

potential, sustainability and availability are factors sup-

porting solar and wind energy, as potentially the most

applicable renewable energy sources around the world [3,

4]. In this regard, Fig. 1 presents an illustrative comparison

of the global average annual growth rate of renewable

energy utilization in 2010 and 2005–2010 [5].

To cover the uncertainty caused by the discontinuous

nature of wind resources, a reliable energy system is

required [6, 7]. Hence, forecasting the behavior of the wind

resource can be a crucial role for energy managers, policy

makers and electricity traders, to overcome the risk of

unpredictability, and to provide energy security, for energy

planning and handling energy storage policies including

economic dispatch. Furthermore, such forecasting gives

perspectives regarding time of operation, repair and

replacement of wind generators and conversion lines and

could help to shift towards optimum electrical networks.

Various approaches to forecast wind velocity and power

have been reported. Examples include autoregressive inte-

grated moving average (ARIMA) [8–10], nearest neighbor

search, polynomial regression, Bayesian structural break [11],

support vector machines (SVM) [12], Taylor Kriging [9], fuzzy

logic and artificial neural network (ANN) [13, 14], ARIMA–

Kalman [15], ARIMA–ANN [16] and wavelet derivatives such

as wavelet-GP, wavelet-ANFIS, wavelet-ANN and wavelet

packet [17–20]. These approaches are among the most utilized

methods to predict wind resource components. The ANNs have

resulted in acceptable performance compared to conventional

methods due to their robustness and capability to address

unpredictable complexities.
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The objective of this paper is to utilize various ANN

approaches to forecast the behavior of wind velocity time

series in Tehran, Iran. For this purpose, measured wind

velocity data of the region (at an altitude of 10 m) for

1 year (8,760 h) at 1-h intervals (averaged values of every

10 min) are provided by a meteorological ground station of

the Iran National Meteorological Organization, to predict

1,314 test data points after training multiple networks.

Regarding the sufficiency of the prediction size to be used

for evaluation of the proposed networks, Table 1 compares

the size of the predicted data of the present study to the

data size related to prediction goals of recent similar

studies. To check the accuracy of predictions, the output

results are evaluated via applying common statistical error

tests such as RMSE, MSE and R2 using the predicted

values and the actual data.

Sliding window technique, artificial neural networks

ANNs are of the most popular artificial intelligence tech-

niques. They imitate the human brain systems and learn

from examples. Applications of ANNs include but are not

limited to clustering, regression analysis, estimating func-

tions, fitness approximation, novelty detection, data pro-

cessing as well as time series prediction. ANNs are capable

of learning, memorizing and constructing relationships

among data. An ANN consists of processing units, layers

(input, output and hidden), neurons and transfer

(activation) functions. ANN units are connected by

weighted links that pass information and store the required

knowledge in hidden layers. An input (xj) of the network

travels thorough the connection and the link multiplies its

strength by a weight (wij) to generate xjwij which is an

argument of a transfer function (f). The transfer function

produces an output as yi = f(xjwij), where i is an index of

neurons in the hidden layer and j is an index of an input to

the neural network [22]. During a training process, ANNs

change weights to be trained for a minimum error and to

achieve defined stopping criteria such as a considered error

value, number of iterations, calculation time and validation

limits. Multi-layer perceptron (MLP) networks are of the

most common feed-forward estimator networks. These

provide a robust architecture for learning nonlinear phe-

nomenon. Feed-forward implies that neurons in continuous

layers send their output (signals) forward and only forward

connections exist [23]. MLP networks have been the most

used architecture both in the renewable energy domain and

in time series forecasting [24]. To predict values in MLP

networks, a fixed number p of previous observed velocity

values is considered as inputs of the network for each

training process while the output is the forecasted values of

the time series, which is the so-called the ‘‘sliding window

technique’’ (see Fig. 2). The mathematical model for

training the network can be expressed as:

yt ¼ w0 þ
XQ

j¼1

wj:f w0j þ
XP

i¼1

wi;j:yt�i

 !

where P and Q are the number of inputs and hidden nodes,

respectively, and j is the transfer function. Respectively,

‘‘wj, j = 0, 1,…, Q’’ and ‘‘wi,j, i = 1, 2,…, P & j = 1, 2,…,

Q’’ are the weight vectors from the hidden layer to the

output and the weights from the input to the hidden nodes.

Also, w0j is the weight for each output between the input

and the hidden layer [25]. For network consistency and

reducing calculation time, input data should be normalized.

Fig. 1 Average annual growth

rate of renewable energy

capacity [5]

Table 1 Comparison of size of

predicted data
Study Prediction

size (h)

Ref. [20] 50

Ref. [21] 50

Ref. [16] 45

Present study 1,314
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Hence, the utilized data of the current study are normalized

before processing. Normalization can be performed as

follows:

Xnorm ¼
X � Xmin

Xmax � Xmin

Network structures

The performance of trained networks depends on their

architecture. The number of hidden layers, the number of

neurons, the type of utilized transfer functions, the size of

training and testing samples and the learning algorithms are

effective training parameters in addition to the utilized

stopping criteria. To find the best structure of the network

in this study, various network structures are evaluated.

Finding the best value/type for each network parameter

involves finding a value/type for that parameter which

minimizes the prediction error. In the same line, network

parameters and their evaluated values/types in the study are

given in Table 2. As noted earlier, a fixed number p of

previous observed velocity values are considered as inputs

to the network in each training process while the output is

the forecasted velocity values of the time series. Data

distribution for training, validation and test procedures is

considered as 70, 15 and 15 % of the entire data set,

respectively. The computation processes include training

(via the Levenberg–Marquardt (LM) algorithm [26]) and

evaluation of the results (via the statistical error indices),

which are performed in the MATLAB� environment.

Also, the same data are provided to various radial basis

function neural networks (RBFNNs) [27] for comparing

their best outcome to the best performance yielded from the

MLP networks trained by the LM algorithm. Regarding

structure of the trained RBFNNs, a greater range of neuron

numbers in the hidden layer is tested and compared to the

MLP networks. To identify the best structure of the

RBFNN, 0–25 neurons are examined in the hidden layer

and the performances calculated for each structure are

determined and compared in the results section.

Statistical indices for performance evaluation

The most common statistical indicators, including root mean

square error (RMSE), absolute fraction of variance (R2) and

mean square error (MSE), are utilized with the forecasted

data (vf) and the actual measured data (vm) to evaluate the

performance of the proposed predictor systems. Table 3

shows the utilized statistical indicators accompanied by their

relevant mathematical expressions.

Results and discussion

The results of training various networks with different

structures are presented in this section.

For MLP networks, Table 4 shows a summary of trained

structures with p = 4 input data and the related obtained

errors (RMSE and MSE) and R2 to find the best structure.

Regarding the utilized statistical indices, RMSE provides

information on the performance of the models, as it allows

Fig. 2 Sliding window technique in ANN [22]

Table 2 Effective parameters considered in training of MLPs in

preferred order

Effective parameter Values/types

No. of input neurons 1–10

No. of hidden layers 1–2

No. of neurons in hidden layer 1–13

Transfer functions Tansigmoid, Logsigmoid

Comparison function MSE

Table 3 Statistical indices and their related expressions

Statistical index Expression

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1

ðvi;m � vi;fÞ2
s

R2 Pn

i¼1
ðvi;m�vm;avgÞ�ðvi;f�vf;avgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðvi;m�vi;mÞ2½ ��

Pn

i¼1
ðv

i;f
�vf;avgÞ2

� �q

MBE 1
n

Pn

i¼1

ðvi;m � vi;fÞ
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a term by term comparison of the actual deviation between

the calculated and the measured values. The commonly

used parameter, R2, is a measure of the strength of the

relationship between values. It is a function of RMSE and

the standard deviation. Hence, to evaluate the performance

of the established networks, low error values (nearer to 0)

and high R2 values (nearer to 1) are favorable for an effi-

cient network.

According to the results, a network with 4-7-13-1

structure is chosen as the best MLP network of this study.

This network utilizes 4 input data in the input layer with 7

and 13 neurons in its first and second hidden layers to

predict the output. The activation functions of the first and

the second relevant hidden layers of this network are

Tansigmoid and Logsigmoid, respectively. The network

utilizes a linear function in its output layer to transfer the

data to the output.

Similarly, various RBFNN structures are examined to

find the related outperforming architecture. The perfor-

mances obtained for RBFNN structures with p = 4 input

and 0–25 examined neurons in the hidden layer are sum-

marized in Fig. 3.

To test the best structures of the trained RBF and MLP

networks, the identified structure from each approach is

separately deployed to the same unknown test data, which

were not utilized in the training process. Table 5 shows the

performance results related to the outperformed structures

of MLP (4-7-13-1) and RBFNN (4-25-1), considering the

same test data.

Figure 4 illustrates the agreement of the actual target

values and the predicted outputs for the outperformed

structure of RBFNN (4-25-1) after de-normalization of the

data. Along the same line, Fig. 5 illustrates the outper-

formed structure of MLP (4-7-13-1).

Evaluation of the statistical indices demonstrates

acceptable predicted outputs and also the flexibility of both

approaches when large changes occur. However, as shown

in Table 5, the 4-7-13-1-MLP network performs better than

the 4-25-1-RBFNN network, according to its higher R2

value and lower MSE and RMSE values. Figure 6 illus-

trates a schematic structure of this selected network and its

components.

For the outperformed structure of MLP network,

applying the statistical indices with the predicted and the

actual test data results in acceptable RMSE, MSE and R2

values (considering similar previous studies, including

Refs. [9, 14, 15]) of 1.19, 1.43 and 0.85, respectively. As

can be seen in the error histogram of this network (Fig. 7),

the largest error values range between -1 and 1, which

indicates acceptable overestimation and underestimation

values. Also, the standard deviation of error is 1.1951 and

the symmetric shape of the error histogram around the zero

point (following a normal distribution pattern) ensures low

error values (near zero) for the sum of overestimated

(positive values) and underestimated (negative values)

data, when the sum of predicted velocities in a given period

is desired.

Fig. 3 Performance summary of trained structures with all (train,

validation and test) data using RBFNN

Table 5 Performance comparison of the best MLP and RBF trained

structures

Network Best structure R2 RMSE MSE

MLP 4-7-13-1 0.85 1.19 1.43

RBF 4-25-1 0.83 1.36 1.84

Table 4 Performance summary of trained structures with all (train,

validation and test) data using MLP

Transfer function No. of neurons

in hidden layers

MSE RMSE R2

Logsig 4 1.5303 1.2371 0.8397

Logsig 5 1.4863 1.2191 0.8421

Logsig 7 1.4689 1.2120 0.8442

Logsig 10 1.4890 1.2203 0.8426

Logsig 13 1.4854 1.2188 0.8427

Tansig 4 1.4896 1.2206 0.8418

Tansig 5 1.4758 1.2148 0.8433

Tansig 7 1.4770 1.2153 0.8438

Tansig 10 1.4749 1.2145 0.8435

Tansig 13 1.4796 1.2164 0.8434

Tansig–Logsig 7–7 1.4742 1.2142 0.8436

Tansig–Logsig 7–13 1.4430 1.2012 0.8472

Tansig–Logsig 10–7 1.4586 1.2077 0.8454

Tansig–Logsig 10–13 1.4697 1.2123 0.8442

Logsig–Tansig 13–7 1.4544 1.206 0.8458

Logsig–Tansig 7–13 1.6862 1.2985 0.8221

Bold row in table indicates the outperforming MLP network of the

present study
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Conclusions

Forecasting the behavior of the wind resource can provide

valuable information for energy managers, energy policy

makers and electricity traders, as well as times of

operation, repair and replacement of wind generators and

conversion lines. However, reliable power generation and

effective integration of wind energy systems into the

power distribution grid are affected by the intermittent

and nonlinear nature of the wind resource. Accurate

Fig. 4 Agreement of the actual and the predicted test outputs using RBF

Fig. 5 Agreement of the actual and the predicted test outputs using MLP

Fig. 6 The best established

network and its components
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forecasting of wind velocities not only can address the

challenges such as adverse shocks in conventional power

units caused by excessive wind speed but also can provide

useful information regarding voltage and frequency

instabilities resulting from variation in wind power. ANNs

are robust tools with advantageous capabilities for

addressing the unpredictable complexities of nonlinear

phenomena such as the stochastic behavior of the wind

resource, which cannot be handled by conventional

methods accurately. In this paper, wind velocity data for

1 year at 1-h intervals are utilized to train various artifi-

cial neural network (ANN) architectures for prediction of

wind velocity data of Tehran, Iran. Structure analysis and

performance evaluations of the established networks

determine that the MLP network with a 4-7-13-1 archi-

tecture is superior to others. The best network was

deployed to the unseen data and found to be capable of

predicting velocity data via the sliding window technique

successfully. Applying the statistical evaluation indices

with the predicted and the actual test data results in

acceptable RMSE, MSE and R2 values of 1.19, 1.43 and

0.85, respectively. Predictions of wind power density or

wind energy density, which are related to wind velocity,

as well as comparing the performance of the ANN with

other forecasting approaches, merit further investigation

as an extension of the present study.
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