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Abstract This paper deals with the analysis of the per-

formance of different wind turbines using the Similitude

Theory. Wind turbine performance was determined as a

function of geometrical similarity coefficient, which is

related to all parameters of the Similitude Theory. There-

fore, a mathematical model simplification is possible in the

‘in similitude’ wind turbines comparison. The mathemati-

cal model for wind turbine performance is based on BEM

Theory, and its efficacy was verified several times by

comparing different wind turbine experimental data. The

original mathematical model was modified to take into

account Similitude Theory parameters. The model is able

to determine which wind turbine is most suited to particular

design specification. This work presents power and torque

curves, power and torque coefficients as functions of

rotational speed and wind velocity. All the results are

function of the geometrical similarity coefficient. With this

methodology it is possible to maximize the power coeffi-

cients of a wind turbine, and it is possible to identify a

family of wind turbines, geometrically different, but with

the same high performances.

Keywords BEM theory � Horizontal axis wind turbine �
Flow similitude

List of symbols

R Rotor radius [m]

# Twist angle [�]

a Angle of attack [�]

D Rotor diameter [m]

/ Incoming flow direction angle [�]

x Angular velocity [s-1]

a Axial induction factor [–]

a0 Tangential induction factor [–]

r Blade local radius [m]

V0 Wind velocity far up stream [m/s]

N Rotor normal force [N]

(V0)effective Wind axial velocity immediately before the

rotor [m/s]

U Absolute blade tangential velocity [m/s]

Ueffective Tangential component of wind velocity

relative to the blade [m/s]

hg Geometrical similarity coefficient [–]

hc Kinematic similarity coefficient [–]

n Rotational velocity [r/min]

cq Torque coefficient [–]

Nb Number of blades [–]

q Air density [kg/m3]

Ma Mach number [–]

l Kinematic viscosity [Pa s]

F Prandtl tip loss factor [–]

CN Normal force coefficient [–]

k Tip speed ratio [–]

kr Local tip speed ratio [–]

c Airfoil chord [m]

CL Airfoil lift coefficient [–]

CD Airfoil drag coefficient [–]

cp Power coefficient [–]

T Torque [Nm]

P Power [W]
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V1 Airfoil relative wind velocity [m/s]

Re Reynolds number [–]

r Rotor solidity [–]

I Turbulence intensity [–]

Abbreviations

BEM Blade element momentum

AEP Annual energy production

DOE/NREL US Department Of Energy/National

Renewable Energy Laboratory

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional

CSU Colorado State University

OSU Ohio State University

DUT Delft University of Technology

Subscript

A Wind turbine ‘‘A’’

B Wind turbine ‘‘B’’

Introduction

Wind turbine performance evaluation is important in

optimal wind turbine design for specific installation sites.

Therefore, the performances of many turbines should be

evaluated to make the best choice. Accordingly, a fast and

reliable design tool is crucial for quickly evaluating dif-

ferent wind turbine performances. Nowadays, this tool is

a mathematical model based on Blade Element Momen-

tum Theory (BEM Theory). These tools are implemented

as 1D codices and they are extremely fast in terms of

computer running times. Mathematical models based on

BEM Theory are mono-dimensional (1D) codes making

them very fast but losing some precision. Thus, the best

trade-off between precision and running time must be

found.

Nowadays, a lot of university and industrial researchers

are working on making BEM codes more precise, and

optimizing mathematical models and their implementation

[1–11]. Consequently, computer codes based on BEM

Theory are becoming so fast and precise that they are

commonly used in universities and industry as design tools

and wind turbine performance evaluators. These models

are very powerful for studying wind turbine performance as

a function of turbine geometry in a very short time.

However, some critical BEM Theory implementation

issues [12–24] should also be faced up to and solved. These

critical issues cause numerical instabilities that yield non-

convergent codes. Various authors have treated these crit-

ical issues in different ways obtaining different solutions.

The best solution is high code precision. The critical issues

relate to the correct mathematical representation of the

tangential and axial induction coefficients [25] of the 2D

aerofoil lift and drag coefficients [26, 27] as well as the

radial fluxes along the turbine blades. The latter are 3D

phenomena and it is difficult to account for them in a 1D

model. This can be done using specific mathematical

expedients [13].

In this work, the authors modified an existing BEM

Theory-based mathematical model [12] for wind turbine

performance evaluation, adapting it to parametric dimen-

sional analyses. The advantage of this relates to being able

to evaluate wind turbine performance in fluid dynamic

similarity conditions.

Flow similitude laws applied to wind turbines

Using the Buckingham Theorem [28, 29] wind turbine

performance can be made analogous through the results

obtained for other wind turbines by imposing similitude

conditions. The scientific literature makes two distinc-

tions: (a) determining wind turbine (under study) perfor-

mance using the performance data of a scaled-down

turbine (model) obtained experimentally, (b) studying

wind turbine performance as a function of environmental

conditions.

To validate an ‘in similitude’ study, geometrical, kine-

matic and dynamic similarity must be verified at the same

time. This occurs when non-dimensional wind turbine

numbers are shared by two turbines. These numbers are:

rotor solidity r, Reynolds number Re, Tip Speed Ratio k,

Mach number Ma, lift coefficient CL, drag coefficient CD

and ambient turbulence intensity I.

Fig. 1 Homologous sections of two wind turbines in a fluid dynamic

similarity condition
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Geometrical similarity

To have two geometrically similar wind turbines, the

dimensional ratio of homologous sections (see Fig. 1)

should be constant as in Eq. (1).

DB=DA ¼ hg ð1Þ

The ratio between homologous sections must be equal to

hg. Thus, the ratio between every geometric dimension of

turbine B (model) and the homologous geometric dimen-

sion of turbine A (under study) must be equal to hg. The

parameter hg is called the geometric similarity coefficient.

Naturally, geometrical similarity requires that wind

turbines in similitude conditions have the same number of

blades. This can be obtained using the equality of rotor

solidity [see Eqs. (2), (3)].

rB ¼ rA ð2Þ
ðNbÞBCB

pRB

¼ ðNbÞACA

pRA

ð3Þ

Eq. (3) leads to Eq. (4)

ðNbÞB ¼ ðNbÞA �
cA

cB

� RB

RA

ð4Þ

Considering that the ratio between homologous geo-

metric dimensions is equal to the geometrical similarity

coefficient, then Eq. (5) is:

CA

CB

¼ RA

RB

¼ 1

hg

ð5Þ

This leads to Eq. (6):

ðNbÞB ¼ ðNbÞA ð6Þ

Therefore, the blade number of turbine ‘‘A’’ must be the

same for turbine ‘‘B’’.

Kinematic similarity

To have kinematic similarity, the velocity triangles in

homologous sections should be geometrically similar

(Fig. 2). All homologous velocities must be scaled down

with the same kinematic similarity coefficient hc [see

Eq. (7)].

hc ¼
ðV0ÞB
ðV0ÞA

ð7Þ

Equating the Reynolds Numbers [Eq. (8)]

ReB ¼ ReA ð8Þ

this leads to Eq. (9)

qBðV0ÞBcB

lB

¼ qAðV0ÞAcA

lA

ð9Þ

Using Eq. (9), the kinematic similarity coefficient can be

obtained as in Eq. (10).

ðV0ÞB
ðV0ÞA

¼ qA

qB

� �
� lB

lA

� �
� cA

cB

� �
¼ hc ð10Þ

Using the same fluid at the same temperature and

pressure, the density and dynamic viscosity ratios equal 1

[see Eq. (11)].

qA

qB

� �
¼ lB

lA

� �
¼ 1 ð11Þ

Combining Eqs. (5) and (11) leads to Eq. (12):

Fig. 2 Velocity triangles in

homologous sections (r/

R)B = (r/R)A: kinematic

similarity

Int J Energy Environ Eng (2014) 5:313–322 315

123

Arc
hive

 of
 S

ID

www.SID.ir



ðV0ÞB
ðV0ÞA

¼ cA

cB

� �
¼ 1

hg

ð12Þ

Thus, equating Eqs. (10) and (12), the link between the

kinematic and geometrical similarity coefficients (13) is

obtained:

hc ¼
1

hg

ð13Þ

By applying the kinematic similarity law and equating

the two tip speed ratio (TSR) it is possible to obtain

Eq. (14):

xBRB

ðV0ÞB
¼ xARA

ðV0ÞA
ð14Þ

Eq. (14), leads to Eq. (15):

xB ¼ xA �
RA

RB

� ðV0ÞB
ðV0ÞA

¼ xA �
1

hg

� hc ¼
xA

ðhgÞ2
ð15Þ

and consequently Eq. (16):

nB ¼
nA

ðhgÞ2
ð16Þ

In Fig. 2, a and a0 are the axial and tangential induction

factors, respectively [12]. Taking into account the defini-

tion of a and a0, Eqs. (17) and (18) are:

a ¼ DV0

V0

¼ V0 � ðV0Þeffective

V0

ð17Þ

where V0 is the undisturbed upstream wind turbine axial

velocity, and (V0)effective is the axial velocity just upstream

of the rotor.

a0 ¼ DU

U
¼ Ueffective � U

U
ð18Þ

where Ueffective is the tangential velocity relative to the

airfoil, and U is the tangential velocity of the blade.

Equation (7) is valid for each homologous velocity.

Thus, it is demonstrable that:

aA ¼ aB ð19Þ

a0A ¼ a0B ð20Þ

From Fig. 2, it is possible to notice that [see Eq. (21)]:

/ ¼ arctan
V0ð1� aÞ
xrð1þ a0Þ ð21Þ

For turbine ‘‘B’’:

/B ¼ arctan
ðV0ÞBð1� aBÞ
xBrBð1þ a0BÞ

ð22Þ

Taking into account Eqs. (1), (7), (13), (15) and (19),

(23) is:

/B ¼ arctan
1=hg

� �
ðV0ÞA 1� aAð Þ

xA

h2
g

hgrA 1þ a0A
� � ¼ /A ð23Þ

Dynamic similarity

To have dynamic similarity, the lift CL and drag CD

coefficients should be equal in homologous sections. For

the homologous sections of any specific airfoil, the drag

and lift coefficients are a function of the Reynolds number

and angle of attack (see Figs. 3, 4).

Therefore, to have equal drag and lift coefficients in

homologous sections, the Reynolds numbers (Eq. 8) as

well as the angles of attack must be equal.

aA ¼ aB ð24Þ

From Fig. 2, it can be deduced that:

/ ¼ aþ h ð25Þ

and taking into account Eqs. (23), (24) and (25), it is

necessary to have:

hA ¼ hB ð26Þ

In conclusion, to have two wind turbines (with the same

fluid, temperature and pressure) ‘in flow similitude’,

homologous sections must have the same airfoil and the

same twist [see Eq. (26)].

Blade element momentum theory

The numerical code developed is a 1D code for the design

of Horizontal Axis Wind Turbines. It has very fast pro-

cessing times (less than one second) and is highly accurate

in numerical simulations. This code is based on Blade

Element Momentum (BEM) Theory, and can be applied to

wind rotor design, and/or evaluating its performance. It is a

useful tool for research and industry in wind turbine design.

This numerical code can maximize wind rotor power,

control the power curve, maximize Annual Energy Pro-

duction (AEP), and help develop innovative layouts for

wind turbines [1, 25, 26].

The code has been refined in recent years by comparing

wind rotor experimental data obtained in wind tunnels [30]

or through field testing [31]. In the past, comparisons were

carried out by two different wind rotors using the same

airfoil [13].

BEM Theory-based numerical codes subdivide the wind

turbine rotor into annuli of dr thickness [12], the flow of

each sector being independent of adjacent circular sector

flows [32]. By applying the equations of momentum and

angular momentum conservation, for each infinitesimal

dr sector of the blade, axial force and torque can be defined

[Eqs. (27), (28)].
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The axial force on the blade element of width dr is:

dN ¼ q
2

V2
0 ð1� aÞ2

sin2 /
Nb CL cos /þ CD sin /ð Þc dr ð27Þ

The torque on the blade element of width dr is:

dT ¼ q
2

V0ð1� aÞ
sin /

� xrð1þ a0Þ
cos /

Nb CL sin /� CD cos /ð Þcrdr ð28Þ

Knowing the lift and drag coefficients (CL and CD) is of

crucial importance in assessing the forces and torques

according to Eqs. (27) and (28).

Obviously, the geometry of the wind rotor is the input

within the numerical code for evaluating rotor

performance.

The numerical stability of the mathematical code

depends on tangential and axial induction factors.

Equations (29), (30) and (31) report the induction factors

implemented inside the numerical code [12]:

For a \ 0.4:

a ¼ 1

4F sin2 /
cNb
2pr1

CL cos /þCD sin /ð Þ
þ 1

ð29Þ

while for a C 0.4 [33]:

a ¼ 18F � 20� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNð50� 36FÞ þ 12Fð3F � 4Þ

p
36F � 50

ð30Þ

and

a0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

k2
r

að1� aÞ
s

� 1

 !
ð31Þ

where F is the Prandtl Tip Loss Factor, as reported in

[18, 20].
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The mathematical code proposed in this work has been

validated in [13, 34] through a comparison with experi-

mental data found in scientific literature. The comparison

has been done for two different wind turbines, evidencing a

very little error between numerical data and experimental

data. The two turbines were: the NREL Phase II [32], a

wind turbine with three blades, 10.6 m rotor diameter, with

un-tapered and un-twisted blades, developing a rated power

of 19.8 kW and the NREL Phase VI turbine [31], a wind

turbine with two blades, 10.6 m diameter, with tapered and

twisted blades, developing 10 kW of rated power.

Performance characteristics

With wind turbine A (Phase VI) as the reference turbine

(characteristic curves are known experimentally [18] and

numerically [12]), varying the geometrical similarity

coefficient hg produces various characteristic curves of

the turbines running ‘in flow similitude’ condition. The

mathematical model can be verified by comparing the

non-dimensional groups for each turbine. This means that

cp - k and cq - k must be independent of the specific

geometrical similarity coefficient.

Figure 5 shows three different wind turbines ‘in simili-

tude’ with different geometrical similarity coefficients

(hg = 0.4, 1.0, and 3.0). The turbine with the geometrical

similarity coefficient of 1.0 is the above-mentioned refer-

ence turbine (Phase VI).

Increasing the geometrical similarity coefficient, the

wind turbine’s geometric dimensions increase and, at the

same time, the wind velocity at which to evaluate turbine

performance proportionally decreases.

Figure 6 shows the simulation results for hg varying

from 0.4 to 3.0.

From Fig. 6, the power and torque coefficient trends

overlap as the geometrical similarity coefficient varies. In

particular, the power coefficient reaches its maximum

value (cp = 0.37) at k = 6.3, while the torque coefficient

reaches its maximum value (cq = 0.0655) at k = 4.8. In

this work, the hypothesis of uncompressible fluids is made

(Ma number is less than 0.3 in all sections). In a wind

turbine, the maximum velocity occurs at the blade tip. As

geometrical similarity coefficients (VB = VA/hg) decrease,

velocities increase. Thus, in an ‘in similitude’ study, the

minimum possible value of geometrical similarity coeffi-

cient is hg = 0.4 and, consequently the Ma at the blade tip

is 0.28.

Fig. 5 Three wind turbines in

fluid dynamic similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

cp
 -c

q

λ

cp (hg=0.4)

cp (hg=0.6)

cp (hg=0.8)

cp (hg=1)

cp (hg=1.5)

cp (hg=2)

cp (hg=3)

cq (hg=0.4)

cq (hg=0.6)

cq (hg=0.8)

cq (hg=1)

cq (hg=1.5)

cq (hg=2)

cq (hg=3)

Fig. 6 Similitude condition

running characteristic wind

turbine curves varying the

geometrical similarity

coefficient

318 Int J Energy Environ Eng (2014) 5:313–322

123

Arc
hive

 of
 S

ID

www.SID.ir



Using a mathematical model based on BEM Theory,

torque and power curves can be evaluated as functions of

geometrical similarity coefficients.

Figure 7 shows the power curves for three different

geometrical similarity coefficients as functions of wind

speeds. Notice in Fig. 7, that the three turbines have dif-

ferent cut-in velocities, as well as different design powers.

These parameters are very important in choosing the wind

turbine for a specific installation site. Figure 8 shows tor-

que curves as functions of wind speeds. Notice in Fig. 8,

Fig. 7 Power curves as a

function of wind speed for three

different geometrical similarity

coefficients

Fig. 8 Torque curves as

functions of wind speed for

seven different geometrical

similarity coefficients

Fig. 9 Power–rotational speed

curve (hg = 0.4)

Int J Energy Environ Eng (2014) 5:313–322 319

123

Arc
hive

 of
 S

ID

www.SID.ir



that each turbine has different design torques (for different

wind speeds) varying according to geometrical similarity

coefficients.

Figures 9, 10, 11, 12, 13, 14 show the specific turbine

characteristic curves (power vs n and torque vs n) for three

geometrical similarity coefficients (0.4, 1.0 and 3.0).

The mathematical model is able to calculate power and

torque curves as functions of turbine rotational speeds

varying with geometrical similarity coefficient. These

characteristic curves are very useful for matching the

electric generator.

Figures 10, 12 and 14 show torque vs rotational speed

curves as functions of both wind speed and geometrical

similarity coefficient. The ‘‘MAX cp’’ curve is also repor-

ted which is the set of maximum power coefficient values

in the torque–rotational speed graph. For each graph, a

value was obtained for when the power coefficient reaches

its maximum value (cp = 0.37) at a tip speed ratio of 6.3
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(see Fig. 6). Then, all these maximum values were plotted

to create the MAX cp curve.

These graphs can be used to match a suitable electric

generator to each specific wind turbine, as well as in

designing the relative turbine control systems.

Conclusions

Using fluid dynamic similitude studies, the authors have

developed and implemented a mathematical model for

horizontal axis wind turbine design and performance

evaluation. The model is based on the Momentum Con-

servation Law of rotor blade elements (BEM Theory). The

first version of the mono-dimensional model, implemented

and tested by the same authors over several years, can run a

huge number of simulations in a very short time.

In this work, the code was modified to take into account

fluid dynamic similitude in wind turbine design and per-

formance evaluation. This code is a powerful tool for

evaluating the characteristic curves of a many wind

turbines that are geometrically different, but in flow

similitude conditions.

This is a novel approach of fluid dynamic similitude in

wind turbine studies. It can evaluate the performance of a

whole set of wind turbines very fast and identify the most

suitable wind turbine for the site specifications.

The code can identify wind turbines with different cut-in

velocities, torques and powers, as well as different

mechanical characteristic curves. Fluid dynamic charac-

teristic curves (torque and power as functions of wind

speeds) are used to calculate annual energy production in

specific sites, while mechanical characteristic curves are

used to match the wind turbine with the optimal electric

generator. Moreover, the reference wind turbine can be

optimized to have a maximum power coefficient value and,

taking into account similitude laws, can identify all the

wind turbines with different geometrical dimensions, cut-in

velocities, torques and powers, but with the same high

value of the reference wind turbine’s power coefficient.
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