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Abstract

In this paper, Chebyshev acceleration techniquesed to solve the fuzzy linear system
(FLS). This method is discussed in details andofedd by summary of some other
acceleration techniques. Moreover, we show thabme situations that the methods such as
Jacobi, Gauss-Sidel, SOR and conjugate gradiewdlivisrgent, our proposed method is
applicable and the acquired results are illustratedome numerical examples.
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1. Introduction

Equations involving fuzzy numbers are the most irtgod ingredients in many fields
such as mathematics, physics, statistics, etceSmenany applications at least some of
the system's parameters and concepts are reprédgnfezzy numbers, it is important to
develop mathematical models and numerical procedtivat would appropriately treat
general fuzzy linear systems and solve them. Theceyat of fuzzy numbers and
arithmetic operation with these numbers were fitsbduced and investigated by Zadeh
[16], and in [6]. A general model for solving @ % 11 FLS which coefficient matrix is

crisp and the right-hand side is arbitrary fuzzymber vector was first proposed by
Friedman et al. [9]. Afterwards, in the literatune fuzzy linear system of equations
various methods were proposed to solve such syswaes[1-4, 8, 12-15]. In this paper
we propose a new method based on Chebyshev adimietechnique to deal with FLS
problems.

This paper is organized in 6 sections. In $eck we introduce fuzzy linear systems. In
Sections 3, 4, we respectively give the Chebysloeelaration (CA) technique and some
convenient iterative methods. In Section 5, we dranthe advantage of the CA
technique for solving fuzzy linear systems. Finallie conclude in Section 6 based on the
obtained results from numerical examination asmineSection 5.

2. Fuzzy linear system
Following [9] we represent an arbitrary fuzzy numlby an ordered pair of functions

(ulr), w(r)), 0 =r = 1 which satisfy the following requirements:

1.1(r) is a bounded left continuous nondecreasing funaticei[ 0,1].

2.1(r) is a bounded left continuous nonincreasing fumctivei[0,1].

3aulr)= ulr)0=r=1
A crisp numbera is simply represented by (r) =u(r) =a,0 <=r =< 1. By
appropriate definitions, the fuzzy number sp4u(7],1(r]} becomes a convex cone
E* which is then embedded into a Banach space.

Definition 2.1 For two arbitrary fuzzy numbeis = (x{r), x{7}), v = (v{r), vir))

and a real numbek, equality, summation and scalar multiplicationferzy numbers are

defined as
1.x = yifand only ifx() = v(+) andx{r) = ¥(r).
2.x +y=(x(r) +y(r),x(r) + ¥
(IS
Lk, kx), ko=,

Definition 2.2: Then * 1 linear system

f11%1 T QX2+t Qe Xy = 1,
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Q1% + QopXp + =t Qg Xy = Va, (1)

(1)
QpiXy + QpaXg ot QppXp =

where the coefficient matrixd = Iiu:::;-J.-J,l =i, j=mnis a crispn =1 matrix and

v. € E1,1 =i = nis a called fuzzy linear system (FLS).

Definition 2.3 A fuzzy number vectdixy, X1, .., ¥4 J°given by

x; = (55 (r),x; ::*r}:'I, l=i=n, 0=r=1,
is called a solution of the fuzzy system if

E a 5% = E a: X = V.
LU i .

= 7 (2)
— . (2)

Z Q;'__.'x:.' = Z ﬂ;'__.'x:.' = F .

=1 i=1
In general, however, an arbitrary equation for egitlr. or i». may include a linear

combination ofx /'s andx;’s. Consequently, in order to solve the systemmjivg Eq. (1)

one must solve@n) x (2n) crisp linear system where the right-hand side calisrthe

function vector{ vy, va, ..., 1., ¥y TV e, TV

Let us now rearrange the linear system of E%). o that the unknowns are
x;,(—x;),1 =i = nand the right-hand side column is

- — — L

E AN . . : = t
¥ ={rnyYa Y=V Ve ¥V, )5

We get the(2n) x (2n) matrixS = (s;;),1 =1,j = 2n, wheres;; are determined as
follows:

if aij 20 thenqj = §+n,j+n = aij

if & <0 thens1+n,j =§ jen = 7§
and anys; ; which is not determined by Eq. (3) is zero. Usimgtrix notation we get

SX =7, ) (4

®)

where
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X= _?.: V= __T;
\ __xn-"l \ —T“ |
N ; e g
The structure ofS implies thats;; = 0,1 =¢,j =n and thats = (C EJII where B

contains the positive entries Af £ contains the absolute values of negative entiie$ o
andd =5 - C.
Theorem 2.4The matrix5 is nonsingular if and only if the matrices=EF — £ and
8 + C are both nonsingular.
Theorem 2.5If 51 exists it must have the same structuré.as
Theorem 2.6The unique solutiot¥, that is¥ = 51V is a fuzzy vector for arbitrary if
and only ifS ~1is nonnegative, i.e.

(S~1,=01=ij=2n
Theorem 2.7The inverse of a nonnegative mat#ixis nonnegative if and only i is a
generalized permutation matrix.
We now restrict the discussion to triangular fuzzymbers, i.e.v;{r),v.(r) and
consequentlyx; :::1"},?:- (r) are all linear functions c¢f. Having calculateX which
solves Eq. (4) we now define the ‘fuzzy solutiomthe original system given by Eq. (1).

Definition 2.8: Let ¥ = ‘E({: (r),x; i}r}le 1=i= }denote the unique solution of Eq.

(4). The fuzzy number vectar = f u; (), T, M)1=i= n| defined by
L= J J

Jr) = min{ 1) %), x; ::l}],

| =
PR

_ . o (5)
U () = max{x, (), % (1), (1)},

Is called the fuzzy solution @&X=Y.
The use ofx{1) in Eq. (5) is meant to eliminate the possibilifyfazzy numbers whose
associated triangle possess an angle greateB@ifarf (x;(r),x;(r)),1 =i = n, are
all fuzzy numbers then:;(r) = x,(r), T, {(r) =%.(r), 1 =i =n and U is called a
strong fuzzy solution. OtherwisH, is a weak fuzzy solution.
3. Chebyshev acceleration technique:

In the SOR method [7], a parameturis adjusted to make spectral radius of the

iteration matrix M = R~1T as small as possible. We now consider acceleration
technique where the iteration matrix is fixed the structure of the iteration is altered to
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increase the convergence speed. An iterative methodolve SX=Y where S is
extended matrix corresponding to original ma&jas the following form:

Rxl'{_-_l:?_xk"‘}’_. (6)

whereS = R — Tis a splitting for the extended coefficient mat8xFollowing [10], we
wish to determine coefficienis; (k),i =10, ..k suchthat

k
Y an 00T
Wrsr _Z I_J.,_.h_)x Sk
J=0
represents an improvement ovef. Ifx'® = ... = x'¥) = x, then it is reasonable to

insist thatw'*’ = x. Hence, we require

k

j=0

bl

subject to this constraint, we consider how to cleciier’; (k) so that the error i s

minimized.
We know thair“® — x = (R=1T)*e % wheree'™ = x'® — % we see that
*
whi —x = ) v (R)(RTIT) el
=0

Working in the 2-norm we therefore obtain
[l = x|, < Izl

Wherep, (z) = T, v;(k)z/ such thafp, (1) = 1 .
At this point we assume thisltis symmetric with eigenvalue’ that satisfy
—1l=s=i, == =11
It follows that
lp (M) = ;jéﬂﬁ'jﬁ;.'?“"k (A= ﬂffs‘ilm ()
Thus, to make the norm ¢, (M) small, we need a polynomigh, (=) that is small on
[s, ] subject to the constraint thg, (1) = 1.

Consider the Chebyshev ponnomidSJlijfz} generated by the recursion

]

C; (z)=": zCq (z)— Ci—2(z)

whereCy{z) = 1 andCy(z) = z. These polynomials satis|{;(z)| = 1 on[—1,1] but

grow rapidly off this interval. As a consequende polynomial


www.SID.ir

296 SH. Nasseri, H. Attari/ Iranian Journal of optimization 1(2009) 291-301

] C:c(—l""j‘.z_gj
z) = —
P lz) Cold)
where
1-5 1-1
p=—l+20——=1+2-
_ -5 -5 _
Satisfiesp, (1) = 1 and tends to be small ¢, []. From the definition ofz;. (z), then
we see
[ - e = =1l
wht — x|, 2 ———————
- |"{:.'{ :_nu)|

Thus, the larget! is, the greater the acceleration of convergeride.gossible to derive a

three-term recurrence among el by exploiting the three-term recurrence among the

Chebyshev polynomials.
In particular, it can be shown that the three-tamoeleration scheme based on iteration
(6) has the following form:

wherecr;. and 5, are parameters that characterize the accelerstieemex _; = 0, and
X pis the starting guess.
From Section 2, we have that the extended r&tnas the following form:

_{B O o
5—( ijheren—B C.

Thus, we assume the following splitting formSfor using the above scheme.

gh

0 ' -
)andT= [ ),n-‘heref:?:Ri—T}_.

R - 7
Thus, we have the following equations as an itegatiethod:
Rixf™ = a [Be(Tak = C3F + 30 ) + (1= BORE]+ (1 - c)RsxE T,

.-'R

S=R—T, where R = [ 01‘

Ri% = B (BR — Cx¥+75,)+ (L - BRTE |+ (1 — ap)RT,
Finally, in matrix form, we have:

Xippeq = Gy [.IG.'{ ::R_.iTx;c + R_i_'!::' + :Il _ ﬁ;cjlx;c] + :Il — :'xl-{_-l. :IS:l

supposing thaR ~* exists.

For Chebyshev acceleration, the parametgrand 5, are
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3] — O
4L 5oLl ,
Opeq = 2 = -, fork =10,
[ -5 Crsalp)
2
G = - yfork =0,

as mentioned abovegdenotes the most positive eigenvalud{ofinds denotes the most

negative eigenvalue &f.
4. A survey of some other acceleration techniques
4.1.Jacobi’s iteration method

If we split S to S =R —T whereR is a diagonal matrix that includes the diagonal
entries of 5 and - T is remained entries of,and &t = i, = 1, we obtain Jacobi's
iteration method [7, 10].

4.2. Gauss-Sidel's iteration method

By choosingR andT whereR is lower triangular sub matrix & and —T is strictly
upper triangular submatrix &fthats = B — T, whenet, = [, = 1, the Eq. (8) reduces
to Gauss-Sidel’s iteration method [7, 10].

4.3.SOR iterative method
To acquire successive over relaxation (SOR) itegatequation, we should select

R=L+1D andT = =p-— I7, where L, D and U are strictly lower triangular

o o

submatrix, diagonally submatrix and upper triangslagomatrix of5, respectively, where
S=L+ D+ Uanda, = f5; = 1. wis parameter of SOR method [7, 10].

4.4.Conjugate gradient method

Although, the theoretical basis for the confeggradient method is quite different from
the theoretical basis for Chebyshev acceleratind,atually has its roots in optimization
theory and it is guaranteed to converge only wfiéa symmetric and positive definite
[11], but it can be considered as Chebyshev aat@er The conjugate gradient method
corresponds to taking! =1 —5 and making the following choices for acceleration

parametersa, = 1,

lImII?
By =—-—fork =0,
T'.'( 5'."':'{
- -1
' B lmll® 1
o =|1—— - fork =1,
Bre=q Ime=q 17 =1

Wherery = v — Sxy is the residual at stdpand||. || denotes the Euclidean norm.
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5. Numerical Example
In this section, we give some numerical exampledetmonstrate the method.

Example 51 Consider the followings = 3 fuzzy system
dxy 4+ x;+ 15x;= {54 + 35,119 — 30r),
X+ 4.+ 2.5x;= (116 + 437,191 — 32r),
1.5x; + 2.5x- 4+ 4x; = (123 4 37r, 203 — 43r).

the extended matri®is

1 15 0 a 0
1 4 25 0 Q 0
§ = 15 25 4 0 Q 0
| a 0 4 1 15
0 0 o 1 4 2.5
0 Q 0 15 25 4~/
We define

‘4 0 0 ‘0 -1 -15
R1=[¢] 4 ﬂ),ﬂ=[—l 0 —2.5);

g 0 4 “1.5 —-25 0
and
(R4 G) (N D)
R=(¢ g )7={s 1)
whereS = F —T.

The__exact solution is ) )
¥y =12 4+6r12—4r),x,=(16+8r 26 —2r), x5 = (20 + 27, 30 — &r),

The exact and approximated solutions are plotteidcampared in Figure 1.
Note that we computed the approximated solutio€bgbyshev acceleration technique
With ||x — xp,||; =2 10715 for & = 47.
Example 5.2Let us treat the following fuzzy linear system
2%y + 5x; + 20x; = (15 + 51,25 — 5r),
30x; — Ty, + dxy =120+ 57,35 — 107),
Sxy+ 20x; — xy3= {40 + 10r,60 — 10r).
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— Exact Solution
= Approximate Solution

L

0 5 10 15 A 25 30
Figure 1: Comparison of the exact and approximaligtisn.
In accord with previous sections, we obtain thatéktended matrifi has the following

form
;2 5 20 0 0 0
30 0 4 a 7 0
§= 5 20 0 a0 01
0 0 0 2 5 20
a 7 0 30 0 4
0 0 1 o 20 Q¢

Clearly, all of the Jacobi, Gauss-Sidel and SORhouig are divergent because of
singularity of the corresponding obtained mafiby splittingS. Unfortunately,5 is not
symmetric and positive definite, therefore the ogaje gradient method is also
divergent.

By definition of # andT as

/2 5 20 0 0 0 F 0 0 0 o 0 0
3o 0 4 0 0 0 a 0 0 o -7 0
B = 5 20 0 0 00 T = 0 00 o 0 -1
a 0 0 2 5 20| a 0 a a o o0 7
a 0 0 30 0 4 a =7 0 a 0 0
0 00 5 20 0 Wm0 -1 a 00

whereS = R — T, the acquired results by utilizing Chebyshev'shodtare illustrated
in Figure 2, with the same precision as previoummple foriz = 14,
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Figure 2: Comparison of the exact and approximaligtisn.

6. Conclusion

In this paper, we used Chebyshev acceleration tgeérfor solving an FLS in extended

form [9], and compared it by some other famoustiee techniques. As seen in Example
5.2, utilizing of such methods as Jacobi, GauseiSidd SOR because of their specific
splitting of the coefficients matrix and also thenjugate gradient method that is

convergent only for symmetric and positive definitatrices is unsuccessful. Therefore,
using appropriate numerical methods such as oyrgsed method is a suitable approach
to associate with FLS problems.
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