
 

 

 

Available online at www.ijo.ir 

Iranian Journal of Optimization 1(2009)  291-301 

 

Iranian Journal 
of 

 Optimization 

 
 

Chebyshev Acceleration Technique for Solving 
Fuzzy Linear System 

 
S.H. Nasseria*1, H. Attari b 

 
a,b Department of Mathematics, University of Mazandaran, Babolsar, Iran. 

 
Abstract 

In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system 
(FLS). This method is discussed in details and followed by summary of some other 
acceleration techniques. Moreover, we show that in some situations that the methods such as 
Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is 
applicable and the acquired results are illustrated by some numerical examples. 
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1. Introduction 
Equations involving fuzzy numbers are the most important ingredients in many fields 
such as mathematics, physics, statistics, etc. Since in many applications at least some of 
the system's parameters and concepts are represented by fuzzy numbers, it is important to 
develop mathematical models and numerical procedures that would appropriately treat 
general fuzzy linear systems and solve them. The concept of fuzzy numbers and 
arithmetic operation with these numbers were first introduced and investigated by Zadeh 
[16], and in [6]. A general model for solving an FLS which coefficient matrix is 
crisp and the right-hand side is arbitrary fuzzy number vector was first proposed by 
Friedman et al. [9]. Afterwards, in the literature on fuzzy linear system of equations 
various methods were proposed to solve such systems, see [1-4, 8, 12-15]. In this paper 
we propose a new method based on Chebyshev acceleration technique to deal with FLS 
problems. 
    This paper is organized in 6 sections. In Section 2 we introduce fuzzy linear systems. In 
Sections 3, 4, we respectively give the Chebyshev acceleration (CA) technique and some 
convenient iterative methods. In Section 5, we examine the advantage of the CA 
technique for solving fuzzy linear systems. Finally, we conclude in Section 6 based on the 
obtained results from numerical examination as given in Section 5. 

 
 

2. Fuzzy linear system 
Following [9] we represent an arbitrary fuzzy number by an ordered pair of functions 

,  which satisfy the following requirements: 

1.  is a bounded left continuous nondecreasing function over . 

2.  is a bounded left continuous nonincreasing function over . 

3. , . 

A crisp number  is simply represented by . By 

appropriate definitions, the fuzzy number space  becomes a convex cone 

 which is then embedded into a Banach space. 

Definition 2.1 For two arbitrary fuzzy numbers ,  

and a real number , equality, summation and scalar multiplication on fuzzy numbers are 

defined as 
 

1.  if and only if  and  

2. . 

3.  

Definition 2.2: The  linear system  

, 
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,                                                    (1) 

 
, 

where the coefficient matrix  is a crisp  matrix and 

 is a called fuzzy linear system (FLS). 

Definition 2.3 A fuzzy number vector given by 

, 

is called a solution of the fuzzy system if 
 

                                                                    (2) 

 
In general, however, an arbitrary equation for either  or  may include a linear 

combination of ’s and ’s. Consequently, in order to solve the system given by Eq. (1) 

one must solve a crisp linear system where the right-hand side column is the 

function vector . 

    Let us now rearrange the linear system of Eq. (2) so that the unknowns are 

, ,  and the right-hand side column is  

. 

 We get the  matrix , where  are determined as 

follows: 

          
,

, ,

if 0 then 

if 0 then 

ij ij i n j n ij

ij i n j i j n ij

a s s a

a s s a

+ +

+ +

≥ = =

< = = −
                                           (3) 

and any  which is not determined by Eq. (3) is zero. Using matrix notation we get 

,                                                                                                   (4) 

where  

(2) 

 

(1) 
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         . 

The structure of  implies that  and that  where  

contains the positive entries of ,  contains the absolute values of negative entries of  

and . 

Theorem 2.4 The matrix  is nonsingular if and only if the matrices  and 

 are both nonsingular.  

Theorem 2.5 If  exists it must have the same structure as. 

Theorem 2.6 The unique solution , that is  is a fuzzy vector for arbitrary  if 

and only if  is nonnegative, i.e. 

               . 

Theorem 2.7 The inverse of a nonnegative matrix  is nonnegative if and only if  is a 

generalized permutation matrix. 
We now restrict the discussion to triangular fuzzy numbers, i.e.  and 

consequently  are all linear functions of. Having calculatedX which 

solves Eq. (4) we now define the ‘fuzzy solution’ to the original system given by Eq. (1). 

Definition 2.8: Let  denote the unique solution of Eq. 

(4). The fuzzy number vector   defined by 

              , 

               

Is called the fuzzy solution of SX=Y. 
The use of  in Eq. (5) is meant to eliminate the possibility of fuzzy numbers whose 

associated triangle possess an angle greater than. If , are 

all fuzzy numbers then  and U is called a 

strong fuzzy solution. Otherwise, U is a weak fuzzy solution. 
3. Chebyshev acceleration technique: 
    In the SOR method [7], a parameter  is adjusted to make spectral radius of the 

iteration matrix  as small as possible. We now consider acceleration 

technique where the iteration matrix is fixed but the structure of the iteration is altered to 
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increase the convergence speed. An iterative method to solve SX=Y where S is 
extended matrix corresponding to original matrix A, has the following form: 
 

                
 

where is a splitting for the extended coefficient matrix S. Following [10], we 

wish to determine coefficients such that  

               
represents an improvement over . If , then it is reasonable to 

insist that . Hence, we require  

                 
subject to this constraint, we consider how to choose the  so that the error in  is 

minimized. 

    We know that  where , we see that 

                 
    Working in the 2-norm we therefore obtain 

                 , 

Where such that  . 

    At this point we assume that M is symmetric with eigenvalues  that satisfy 

                 . 

It follows that  

                
Thus, to make the norm of  small, we need a polynomial  that is small on 

 subject to the constraint that . 

    Consider the Chebyshev polynomials  generated by the recursion 

                  
where  and . These polynomials satisfy  on  but 

grow rapidly off this interval. As a consequence, the polynomial 

(6) 
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where 

                  
Satisfies  and tends to be small on . From the definition of , then 

we see 

                
Thus, the larger  is, the greater the acceleration of convergence. It is possible to derive a 

three-term recurrence among the  by exploiting the three-term recurrence among the 

Chebyshev polynomials.  
In particular, it can be shown that the three-term acceleration scheme based on iteration 
(6) has the following form: 
 
                ,          

 

where  and  are parameters that characterize the acceleration scheme, , and 

 is the starting guess. 

    From Section 2, we have that the extended matrix S has the following form: 

             where . 

Thus, we assume the following splitting form of S for using the above scheme. 
 

       . 

Thus, we have the following equations as an iterative method: 

         , 

         . 

 
Finally, in matrix form, we have: 
 
            .          

 

supposing that  exists. 

    For Chebyshev acceleration, the parameters  and  are  

Archive of SID

www.SID.ir

www.SID.ir


S.H. Nasseri, H. Attari/ Iranian Journal of optimization 1(2009) 291-301 297

                  

                  
 

as mentioned above,l denotes the most positive eigenvalue of ands denotes the most 

negative eigenvalue of M. 
4. A survey of some other acceleration techniques 
4.1. Jacobi’s iteration method 

If we split  to  where  is a diagonal matrix that includes the diagonal 

entries of  and  is remained entries of ,and  we obtain Jacobi’s 

iteration method [7, 10]. 
 
4.2. Gauss-Sidel’s iteration method 
    By choosing  and  where  is lower triangular sub matrix of  and  is strictly 

upper triangular submatrix of  that  when  the Eq. (8) reduces 

to Gauss-Sidel’s iteration method [7, 10]. 
 
4.3. SOR iterative method 
To acquire successive over relaxation (SOR) iterative equation, we should select 

 and , where  and  are strictly lower triangular 

submatrix, diagonally submatrix and upper triangular submatrix of , respectively, where 

 and .  is parameter of SOR method [7, 10]. 

 
4.4. Conjugate gradient method 
    Although, the theoretical basis for the conjugate gradient method is quite different from 
the theoretical basis for Chebyshev acceleration, and actually has its roots in optimization 

theory and it is guaranteed to converge only when  is symmetric and positive definite 

[11], but it can be considered as Chebyshev acceleration. The conjugate gradient method 

corresponds to taking  and making the following choices for acceleration 

parameters:  

 

                

                
Where  is the residual at step k and  denotes the Euclidean norm. 
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5. Numerical Example 
In this section, we give some numerical examples to demonstrate the method. 

Example 5.1 Consider the following  fuzzy system 

               , 

               , 

              . 

the extended matrix S is  
 

                . 

 
We define  

                 
and 

                  
where . 

    The exact solution is 

 
The exact and approximated solutions are plotted and compared in Figure 1. 
Note that we computed the approximated solution by Chebyshev acceleration technique 

With  for . 

Example 5.2 Let us treat the following fuzzy linear system 
                    , 

                    , 

                    . 
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Figure 1: Comparison of the exact and approximate solution. 

In accord with previous sections, we obtain that the extended matrix  has the following 

form 

                  
Clearly, all of the Jacobi, Gauss-Sidel and SOR methods are divergent because of 

singularity of the corresponding obtained matrix  by splitting . Unfortunately,  is not 

symmetric and positive definite, therefore the conjugate gradient method is also 
divergent. 

By definition of  and as 

 
where , the acquired results by utilizing Chebyshev's method are illustrated 

in Figure 2, with the same precision as previous example for . 
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Figure 2: Comparison of the exact and approximate solution. 

 
6. Conclusion 
In this paper, we used Chebyshev acceleration technique for solving an FLS in extended 
form [9], and compared it by some other famous iterative techniques. As seen in Example 
5.2, utilizing of such methods as Jacobi, Gauss-Sidel and SOR because of their specific 
splitting of the coefficients matrix and also the conjugate gradient method that is 
convergent only for symmetric and positive definite matrices is unsuccessful. Therefore, 
using appropriate numerical methods such as our proposed method is a suitable approach 
to associate with FLS problems. 
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