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Optimal design of parallel manipulators is known as a challenging problem especially for 
cable driven robots. In this paper, optimal design of cable driven redundant parallel 
manipulators (CDRPM) is studied in detail. Visual Inspection method is proposed as a 
systematic design process of the manipulator. A brief review of various design criteria shows 
that the optimal design of a CDRPM cannot be performed based on single objective. 
Therefore, a multi objective optimal design problem is formulated in this paper through an 
overall cost function. Furthermore, a proper weighting selection for the overall cost function 
is proposed, which can be viewed as a promising method to the open problem of parallel 
manipulator design. In order to verify the effectiveness of the proposed method, it is applied 
on the design of KNTU CDRPM, an eight actuated with six degrees of freedom CDRPM, 
which is under investigation for possible high speed and wide workspace applications in K. 
N. Toosi University of Technology. Finally, a combined numerical optimization algorithm is 
used to find the unique global optimum point. The result shows a significant enhancement in 
the performance characteristics of the KNTU CDRPM compared to that of the other 
CDRPMs. Since the proposed method is not restricted to any particular assumption on the 
objectives and design parameters, it can be used for optimal design of other manipulators.  
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1. Introduction 
Increasing demand for high acceleration and energy efficient 
manipulators in a wide workspace necessitates determining 
an optimal design solution in accordance with restrained 
resources. An optimal design solution is a set of design 
parameters which satisfies the objectives defined by a 
particular optimality criterion. The complexity of structure 
and multitude of parameters, constraints, and optimality 
objectives make the optimal design procedure complex for 
serial and much more extensive for Parallel Manipulators 
(PM) [1]. Various methods have been used in optimal 
design of serial and PMs. Analytical synthesis methods are 
very complex and even impossible to be performed for the 

real serial or PM designs with more than 3 degrees-of-
freedom (DOF). As an alternative, defining an optimality 
index and trying to force the design parameters to minimize 
this index is another common approach [2, 3]. Although it is 
shown in the literature that these indices work impeccably 
well for a specific structure, however, they are usually not 
applicable to a general class of robotic structures due to their 
scale dependence [4], and moreover, different optimality 
measures have been introduced and compared in the 
literature [4, 5]. In spite of the fact that these mathematical 
methods cannot provide a transparent view of dependency 
of the parameters the optimality region and its convexity, 
some graphical tools are used in order to make the 
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visualization more clear. As an example, [6], show 
dependency of optimality criterion on different poses in a 
graph by ellipsoids for serial robots and [7] illustrate that for 
cable-driven PMs. 
Although optimal design methods can be useful to improve 
efficiency and other required objectives, they cannot 
improve characteristic deficiencies caused by kinematic 
structure. For instance, a task like flight simulator which 
demands high safety, accuracy, acceleration, and stiffness 
cannot be implemented by a serial manipulator. Nowadays, 
PMs meet all of these demands [8] as well as high payload 
to moving mass ratio. On the other hand, using massive 
stroke-limited hydraulic or pneumatic actuators in a parallel 
mechanism [9] results in their limited workspace and 
existence of several singular points within the workspace 
[10]. Thus, using electrically powered cable–driven 
actuators instead of rigid linear actuators significantly 
reduces the physical limitations on workspace boundaries 
and the complexity of manufacturing. By this means, a 
Cable–Driven Redundant Parallel Manipulator  (CDRPM) 
can be designed such that whose workspace is as large as a 
football stadium [11], or to the extent of the platform of a 
large adaptive reflector with square kilometer footprint [12]. 
Furthermore, CDRPM saves heredity of PMs on 
acceleration capabilities at the cost of its control complexity. 
Besides, cables can only carry axial tension forces and they 
are unable to bear any compression or bending. Therefore, 
tension force feasible workspace is another important aspect 
of CDRPMs [13]. Conceptual designs of such manipulators 
lead to find the end–effector in a workspace surrounded by 
the cables. Thus, design procedure of CDRPMs not only 
necessitates satisfying dexterity measures, but also requires 
force feasible and collision free workspace. On the other 
hand, redundancy is necessary to have force feasible 
workspace which increases the number of design parameters 
and complexity of optimal design procedures. Therefore, a 
multi objective design method must be proposed to fulfill all 
of the objectives in an optimal design. 
Although many researches are conducted on optimal design 
of manipulators, there are few comprehensive studies in the 
field of CDRPMs [7, 14, 15]; even those are solely focused 
on the tension force feasible workspace. In this paper by 
using a special structure of KNTU CDRPM, geometrical 
workspace of CDRPMs is studied in detail by focusing the 
optimal design procedures. In the most of the reported 
research results only force feasibility in the workspace is 
analyzed, and through this analysis the boundaries of the 
cable driven robot workspace is determined [16]. In those 
cases the analysis of self collisions is ignored, since such 

possibility is diminished by the robot design structure. 
Nevertheless, this is accomplished by enforcing stringent 
boundaries into the force feasible workspace. However, in 
this paper a totally different approach is proposed to design 
the KNTU CDRPM based on collision avoidance scheme, 
force feasibility, and dexterity, simultaneously. Weighting 
of cost functions are known as the main problem in multi 
objective optimal design of PM as described in [1]. This 
problem is solved by the proposed weighting functions for 
each cost according to the illustrated graphs by means of 
formulating qualitative design objectives. As a result, a 
significant change in the structure of the KNTU CDRPM is 
obtained compared to that of the other reported designs. 
Accordingly, a method is needed to determine parameters 
role and their dependency, verify convexity of the optimal 
region, and finally solve the multi objective design problem. 
To consider all these issues simultaneously and being able to 
reach to a solution, a visual inspection method is proposed 
which is suitable for optimal design of complex 
manipulators such as a CDRPM. In this method dependency 
of the parameters and the convexity of objective functions 
are easily illustrated. Additionally, analysis of the given 
graphs facilitates to select effective design parameters, 
propose appropriate weights and costs for objectives, verify 
optimal region, and encapsulate some physical objectives 
into the design procedure. By this means, a numerical 
optimization tool becomes capable of converging to a 
unique optimum design point without being stuck in an 
unwanted local minimum. 
In this paper, Visual Inspection (VI) method is elaborated in 
detail which includes steps to show potential dependency of 
parameters and definition of a boundary containing the 
optimal point. Then, a method is recommended to extract 
cost functions of different objectives from the graphs. To 
implement the method, the KNTU CDRPM is introduced. 
The KNTU CDRPM is designed based on a structure with 
eight actuators and six degrees of freedom. This manipulator 
is under investigation for possible high speed and wide 
workspace applications such as tool manipulation in K. N. 
Toosi University of Technology. Next, the VI method is 
implemented on the optimal design of KNTU CDRPM. 
Finally, different numerical optimization algorithms are 
used to find the unique global optimum point. The result 
shows a significant enhancement in the performance 
characteristics of the KNTU CDRPM compared to that of 
the other CDRPMs [9].  
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2. Visual Inspection Method 
2-1. Graph Generation 
In an optimal design procedure a primary conceptual design 
is selected with some simplified design parameters which 
are optimized with respect to some objective functions. This 
simplification reduces the optimization complexity, and 
computation cost and increases the chance to achieve an 
optimal solution. Noticing the fact that some of the 
parameters are independent from the objective function, 
these parameters can be excluded by the proposed VI 
method. 
Assume that ai, i=1,…,p are primary conceptual design 

parameters in which p is the number of design parameters. 
These design parameters have to be optimized with respect 
to the following objective functions: Ci, i=1,…,q. First, the 

graph of an objective function, like Ci, for different values 

of ai, aj is plotted in a way that the color of each point 

represents the value of the objective function as shown in 
figure 1. According to the graph, if there is not an obvious 
change in color of the graph, the objective function is 
independent of the chosen parameters. In this case, other 
objectives must be tested; if an objective is independent of 
all parameters, the objective is not useful or the parameters 
are not sufficient. In other words, gradient of the color 
scheme is sensible to the role of the design parameters in 
each objective function. The graph of an objective function 
can be categorized into similar graph patterns shown in 
figures 1, 2, 3, and 4. In figure 1 the objective function 
converges to an optimum solution considering two 
parameters. This result is convex which is desirable to find 
an optimal solution.  

In figure 2 two possible incidents can be predicted; the 
range of aj parameter is chosen inappropriately. Otherwise 

the optimum result is achieved when the parameter 
converges to infinity. In other words, the objective function 
is scale dependent, and therefore, this parameter is limited to 
some practical constraints. If this condition applies to both 
of the parameters, the result is similar to figure 3. If the 
graph pattern is similar to figure 4, the objective function is 
independent of the parameter represented by ai. If the graph 

pattern is similar to figure 4, it is recommended to use the 
ratio of these design parameters in the optimization, since 
their role in the objective function is strongly related to each 
other. Finally, if the above conditions do not apply and the 
graph does not have any regular shaped pattern, the graph 

must be restructured to find a regular pattern. For example, 
the ratio of parameters can be studied, or the grid resolution 
can be increased in the numerical search algorithms.  

  
Figure 1: A convex graph for a pair of parameters 

 

 
Figure 2:  The optimum region touches one boundary of the graph 

  

 
Figure 3:  The optimum region touches two boundaries of the graph 

 
Figure 4:  Changes in one of the objectives is not sensible. 

2-2. Cost Function Definition 
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After the first round of iteration in the optimal design 
procedure, and finding the suitable design parameters, the 
next step is to determine the costs and their weights for each 
objective function which should be integrated to generate an 
overall optimization index. The main concern in the multi-
objective optimization of parallel manipulators is definition 
from the cost functions and their weight in the optimization 
index [1]. VI method assists the designer to define the costs 
by the generated color spectrum graph as shown in figure 1. 
The color map of objective function Ci is divided into five 

regions; best (bi1), good (bi2), median (bi3), bad (bi4), and 

worst (bi5). Desirable specifications can define each region 

boundaries. The recommended values assigned to the best 
and worst boundaries are possible minimum and maximum 
values of the objective function, respectively. The good and 
bad regions are minimal and maximal data found in the 
graphs representing the same objective function, and the 
median is calculated by the statistical median [17] of the 
graphs sorted data. It is recommended to use median instead 
of the average of the data, in case where very high or low 
data exist in the analyzed data, such as the rate of singular 
values of a robot Jacobian. In the case of using a gradient–
based optimization method, polynomial curve can fit the 
desired quintuplet points. Therefore, such a cost function not 
only normalizes the output value but also determines 
desirable conditions for the optimization tool. The key point 
in this definition can be explained by the following rates of 
changes during the regions:  
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            (2) 

Such a rate order guides the solution towards feasible area 
while avoids forcing the other cost functions into infeasible 
regions. Additional to the equations 1,2, of the following 
two rate limitations is proposed to avoid forcing other cost 
functions into infeasible regions.  

1 2

i i

c c
a a

∂ ∂
<

∂ ∂
 (3) 
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This idea may be implemented by fuzzy membership 
functions [18] or other tools, as well. Nevertheless, the 
simplest method is to use linear interpolation between 
boundary points or the equivalent polynomials as addressed 
in equation 26. Proposed grades and colors are assigned for 

each region bound as shown in table 1. Colors are used to 
visually inspect the graph patterns. 
 

 Table 1: Boundary values for weighting costs of objective function 

 
 

 
Figure 5: Optimum condition is not changed during small changes in 

the weights 
 

In the worst case, assume that there exist opposite pair of 
objectives, as shown in figure 6 the condition 1 of the design 
parameters result in optimum point of cost function C'1 

while the condition becomes the worst point in cost function 
C'2. Therefore, total cost function, T'1, becomes flat. On the 

other hand, if the weighted summation of cost functions, 
such as T'2 and T'3 is used, the optimum point significantly 

changes during the weight tuning of the cost functions. we 
propose using a nonlinear cost function which can preserve 
the convexity of the problem rather than any linear weight. 
In the worst condition, the convexity of total cost function is 
more robust to opposite objectives C1 and C2. As shown in 

figure 5, even if weight of a cost function is changed, the 
optimum result in T1, T2, or T3 doesn’t meet the boundary 

constraints to achieve a balance in conditions. Note that, 
weighted summation is not used in this method and any 
weights in this example are used to examine the proposed 
cost functions robustness to nonlinearity of the objectives. 
The mentioned cost functions are robust to at most two 
conflicts in the objectives. Therefore, the other challenging 
problem is to find behavior of objective functions in the 
search boundaries. The VI method has a significant role in 
the determination of objectives and related cost functions 
and their conflicts. It warns the designer that objectives are 
not comparable to each other, or which design parameter is 
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more important for what cost function. In a practical design, 
usually the total cost function of the optimal design problem 
should become convex, since it will not be useful to have an 
optimum design with very large values of design 
parameters. Therefore, the existence of only one diverged 
objective function represents the ignorance of another 
objective or design parameter.  

 

 
Figure 6: Optimum condition is significantly changed during small 

changes in the weights 

Table 2 shows a typical state of relation between six cost 
functions and seven design parameters. In this 
representation c indicates that by minimizing the 
corresponding cost function an optimum value is reached for 
the related design parameter. Moreover, ±d denote reaching 
to a lower or upper limit of a parameter through minimizing 
the corresponding cost function. For the case shown in table 
2, since no optimal solution is found for parameter a5 for all 

the objectives, the constraint limit reached in optimization of 
cost function C4 will be regarded as the only optimum point 

for this parameter. Now if the constraint is based on some 
physical hard limitations, it is better to set the value of this 
design parameter manually, and no optimization is needed to 
be run for this parameter. However, in many cases, the 
designer limits the range of the design parameters by some 
intuitive constraints to avoid huge or miniature dimensions 
in the design. In such cases, we propose replacing this 
limitation with a continuous cost function which describes 
manufacturing costs. Furthermore, as it is seen for the cost 
function C5, a specific optimum is reached for the only 

parameter a4. This means that this cost function is sensitive 

to only this parameter, and therefore, a4 should be fixed at 

the optimum value for the multi objective optimization. As 
another typical case, the row related to parameter a7 in this 

table shows that the lower limit of this parameter is reached 
by optimizing cost function C1, while its upper limit is 

reached by optimizing cost C6.In such case, the optimum 

value of this parameter can be reached by running a multi–
objective cost function. This would be the case for 
parameter a6, in which the number of upper limits, and 

lower limits reached in the results of different individual 
cost function optimizations are the same. Finally, optimum 
value for a1 should be higher than its optimal value obtained 

in the optimization C1, since one upper limit is obtained for 

cost function C4, and the optimum value for a3 would be a 

tradeoff between two separate optimal values obtained for 
cost functions C1 and C2. 

 
Table 2: Dependency of the objectives on the design parameters 

extracted from the graphs 

 
 
The proposed VI method consists of plotting individual 

graphs and inducing the summarized table from these 
graphs. By this means boundaries of optimization search 
area can be effectively reduced to a concise feasible region, 
resulting in significant reduction of computation cost. This 
region can be chosen as wide as the median about the 
optimal values of the remaining parameters, due to the rate 
limitations enforced in equations 1 to 4. To examine the 
details of VI method, a real case study will be performed in 
next sections. Since the analyses of graphs with more than 
two dimensions are complicated, for brevity the graphs are 
always illustrated for a pair of design parameters, while the 
other parameters are fixed. The rate constraints on the cost 
functions, avoids forcing an objective function into 
infeasible region by another objective function, and 
therefore, the optimum point will remain at least in an area 
encapsulated by medians.  

3. Optimal Design Problem for CDRPMs 
3-1. General Structure Description  
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The general architecture of a 6 DOF, cable driven fully 
parallel manipulator subject to our optimal design is shown 
in figure 7. In this manipulator, the moving platform is 
supported by m limbs of identical kinematic structure. Each 
limb connects the fixed base to the manipulator moving 
platform by a spherical joint (S) followed by a cable 
represented kinematically by a prismatic joint (P) and 
another spherical joint (S) on the other attachment point. 
The kinematics structure of a prismatic joint can be used to 
model piston–cylinder actuator at each limb, or a more 
desirable cable–driven one, as in our case. As it is shown in 
figure 7, Ai denote the fixed attachment points of the limbs, 

i=1,2,…,m, Bi denote point of connection of the limbs on 

the moving platform, and Li denote the limb lengths. The 

position and the orientation of the centroid of the moving 
platform G, is denoted by:  

, , , , ,
T

x y zx y z θ θ θ =  x  (5) 

 

 
Figure 7: A general kinematic structure of CDRPMs 

 
where, the orientation of the manipulator moving platform is 
denoted with respect to the moving coordinate frame. Since, 
the manipulator is driven by cables; at least one degree of 
redundancy is required to keep all the cables in tension [14]. 
Furthermore, in order to provide dexterous workspace for 
the end-effector motion, it is proposed to use at least two 
degrees of redundancy [19]. However, other properties such 
as catenary droop [20], flexibility [21], and vibration [22] of 
the cables are neglected at this stage of the optimal design. 
Light weight and over–constrained designs of CDRPMs 
avoid sagging effects using pretension in cables by means of 
an appropriate redundancy resolution technique [23]. 
However, these effects are not negligible but controllable 

[24], in large–scale under–constrained CDRPMs driven by 
heavy cables such as shown in FAST robot [20]. 

According to the required specifications, design 
parameters of an over–constrained CDRPM consist of 
finding the attachment positions in a three dimensional 
space or 3×2×m parameters. Assigning a set of parameter, 
and trying to tune them is neither feasible nor desirable, 
since:  

• The number of design parameters is huge, resulting 
into very extensive computation cost that cannot be 
solved by the state–of–art optimization techniques.  

• Manufacturing of an irregular shaped design is not 
desirable, since it would be complicated and 
expensive.  

• Irregular shape of the attachment points locations 
affect the robot workspace. Therefore, the robot 
workspace becomes too complex and not 
representable to the end–user.  

In order to reduce the complexity of the optimal design to an 
affordable and desirable one, the optimal design problem is 
simplified into a formulated structure which is obtained 
from the conceptual design. Additionally, in the VI method, 
the design parameters and their simplification are studied in 
detail. For the purpose of kinematics, the attachment 
positions are considered to be arbitrary chosen while they 
should be find during the design process.  

  

 
Figure 8: ith Attachment point on the moving platform and related 

vectors 
3-2. Inverse Kinematics 
Similar to other parallel manipulator, CDRPM has a 
complicated forward kinematic solution. However, the 
inverse kinematic analysis is sufficient for dynamic 
modeling. As illustrated in figure 12, the Bi points lie at the 

vertexes of the cube. For inverse kinematic analysis of the 
cable driven parallel manipulator, it is assumed that the 
position and orientation of the moving platform 

Archive of SID

www.SID.ir

www.SID.ir


International Journal of Robotics, Vol. 1, No. 1 (2009) /M.M.Aref, H.D.Taghirad,S.Barissi 
 

35 
 

[ ], , , T A
G G G Bx x y z R=  are given and the problem is to 

find the joint variable of the 

CDRPM, [ ]1 2, , , T
mL L L= …L . From the geometry of the 

manipulator as illustrated in figure 8 the following vector 
loops can be derived:  

 A A A
i i i iAB + = +a g E

uuuur
                            (6) 

in which, the vectors , ig E , and ia  are illustrated in figure 

8. The length of the i’th limb is obtained through taking the 

dot product of the vector i iAB
uuuur

 with itself. Therefore, for 

i=1, 2,…, m:  

{ }
1
2[ ] [ ] .T

i i i i iL = + − + −g E a g E a  (7) 

3-3- Jacobian 
Jacobian analysis plays a vital role in the study of robotic 
manipulators. Let the actuated joint variable be denoted by a 

vector L&  and the location of the moving platform be 
described by a vector x& . Then the kinematic constrains 
imposed by the limbs can be written in the general form f(x, 
L)=0 by differentiating with respect to time, we obtain a 
relationship between the input joint rates and the end-
effector output velocity as follows:  

x LJ J=x L&&                                     (8) 

where ,J J∂ ∂
= = −

∂ ∂x L
f f
x L

. The derivation above leads to two 

separate Jacobian matrices Hence the overall Jacobian 
matrix J can be written as:  

J=L x& &                                        (9) 
where 1 .LJ J J−= x

 Jacobian matrix not only reveals the 

relation between the joint velocities L&  and the moving 
platform velocities x& , but also constructs the transformation 
needed to find the actuator forces τ  from the forces acting 
on the moving platform F . When JL is singular and the null 

space of JL is not empty, there exist some nonzero 

L& vectors that result zero x&  vectors which called serial 
type singularity and when Jx becomes singular, there will be 

a non-zero twist rate x&  for which the active joint velocities 
are zero. This singularity is called parallel type singularity 
[1]. In this section we investigate the Jacobian of the 
CDRPM platform shown in figure 12. For this manipulator, 

the input vector is given by [ ]1 2, , , T
mL L L= …L , and the 

output vector can be described by the velocity of the 

centroid G and the angular velocity of the moving platform 
as follows:  

G

G

x
 

=  
 

V
ω

&                                     (10) 

Jacobian matrix of a parallel manipulator is defined as the 
transformation matrix that converts the moving platform 
velocities to the joint variable velocities, as given in 
equation 9. Therefore, the CDRPM Jacobian matrix J  is a 
non-square m×n matrix. The Jacobian matrix can be derived 
by formulating a velocity loop-closure equation for each 
limb. Referring to figure 8, a loop-closure equation for the 
ith limb is written in equation 6. In order to obtain the 
Jacobian matrix, let us differentiate the vector loop equation 

6 with respect to time, considering the vector definitions  iS  

and iE illustrated in figure 8. Hence, for i=1,2,L,m:  

( )ˆ ˆ
G i i ii iS SL L+ × = + ×G iV ω E ω&  (11) 

Furthermore iω  denotes the angular velocity of i’th limb 

with respect to the fixed frame A. To eliminate iω , dot-

multiply both sides of equation 11 by $ iS .  

(ˆ ˆ )i ii G i GL S S= + ×V E ω&  (12) 

Rewriting equation 12, in a matrix form:  

ˆ ˆ · G
i

G
i iiS SL

  = ×     

V
E

ω
&  (13) 

Using equation 13 for i=1,2,…,m, the CDRPM Jacobian 
matrix J is derived as following.  

1 1 1

2 2 2

ˆ ˆˆ( )
ˆ ˆˆ( ) ·

ˆ ˆˆ( )

T T

T T
G

G

T T
m m m

S E S

S E SJ

S E S

 ×
 

 × =   
  

 × 

V
x

ω
&

M M

 (14) 

Note that the CDRPM Jacobian matrix J  is a non-square 
m×n matrix, since the manipulator is a redundant 
manipulator. If the manipulator has no redundancy in 
actuation, the Jacobian matrix, J  was squared and the 

actuator forces can be uniquely determined by TJτ −= F , 
provided that J  is nonsingular. For redundant 
manipulators, however, there are infinity many solutions for 
τ to be projected into F . The simplest solution would be a 
minimum norm solution, which is found from the pseudo–

inverse of TJ , by 
†

0
TJτ = F . This solution is 

implemented in the simulation studies reported in this paper. 
Other optimization techniques can be used to find the 
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actuator forces projected from F  which can minimize a 
user defined cost function [25] by applying a set of actuator 
forces with zero resultant torque:  

( )†

0 . T T
m mI J Jτ τ ×= + − γ  (15) 

In conclusion, the affecting forces of the end–effector have 
two sources, the Jacobian matrix projection and null space 
of the Jacobian. Therefore, in the design process of a 
CDRPM, both sources should be analyzed. In the third 
section, dexterity measures are introduced as indices for the 
analysis of the first term, while tension force feasibility 
focuses on the analysis of the second term of equation 15.  
 

4. Optimal Design Objectives 
4-1. Dexterity 
In the robotic community literature many dexterity measures 
have been introduced to assist the design of serial and 
parallel robots and to correlate different behaviors. Some 
problems exist to define a global dexterity measure for a 
manipulator. If the dexterity measure is changed by pure 
scaling of the robot dimensions, final result of an optimal 
design leads to a miniature– or huge–scale manipulator and 
even dimension may affect the optimal condition. Therefore, 
a scale independent measure is needed which is studied in 
various comprehensive researches. Some well–defined 
dexterity measures have been introduced for serial and 
parallel manipulators [26]. Moreover, Merlet reviewed most 
of the manipulability and dexterity measures for parallel 
manipulators in [27]. His latest comprehensive review leads 
to focus on dexterity indices as an open problem. 
Additionally, in his opinion, the most appropriate global 
accuracy indices are the determination of the maximal 
positioning errors, their average values, and their variance. 

On the other hand, dependence of the moving platform 
angular velocity Gω  coefficient, on the dimensions of the 

arm vectors, iE s as depicted in equation 14, leads to scale 

dependency of the parallel manipulator Jacobian matrix. 
This scale dependency significantly affects all the 
conventional dexterity indices. Thus, some of optimal 
design researches eliminate scale dependency of the 
Jacobian matrix, before implementing any analysis on the 
dexterity measure. For serial spatial manipulators, Gosselin 
[26] proposes to assume three virtual points as vertices of a 
triangle on the end-effector and to build a Jacobian matrix 
for their translational velocities. Furthermore, the method is 
extended for a conventional parallel mechanism like 
Stewart-Gough platform by Kim and Ryu [28]. Although the 

method is useful for the Stewart-Gough platform, it is not 
generally applicable in cases where the attachment points 
are located spatially in space, In other words, for a 
manipulator with spatial shaped end-effector, at least four 
virtual points are required to modify the Gosselin’s method 
and determine effects of attachment point replacement, 
while it is almost impossible to avoid rank deficiency during 
the mapping. Therefore, before starting the dexterity 
measure analysis, in this section a normalized Jacobian is 
defined, which is generated by substitution of all iE s with 

their normalized form ˆ
iE s. This change immediately results 

into a scale independent Jacobian matrix for a fully parallel 
spatial manipulator like the KNTU CDRPM:  

1 1 1

2 2 2

ˆ ˆˆ( )
ˆ ˆˆ( )

ˆ ˆˆ( )

T T

T T

T T
m m m

S E S

S E SJ

S E S

 ×
 

× =  
 
 × 

M M

 (16) 

in which,  
1Ê E
E

=
r

r
                                      (17) 

However, this is conditionally applicable, and only if the 
manipulator uses a fixed size of iE vectors, the normalized 

Jacobian is useful for optimization. Hence, the occupied 
volume of the end–effector should be either considered 
fixed or used as an individual cost function. By this means, 
any dexterity index can be used as an appropriate cost 
function, in which a variety of dexterity indices are 
proposed in the literature. In this paper we have used the 
condition number [5] as one of the proposed dexterity 
measures in our design. This choice is desirable, since it is 
scale independent. Moreover, the range of condition number 
from [1…∞] is mapped into [0…∞] by the following 
transformation:  

max

min

1CN σ
σ

= −                                   (18) 

in which, σmax is the largest and σmin is the smallest 

singular value of the appropriate Jacobian matrix. Therefore, 
in an optimal design it is suitable to have Cn=0, which 
describes an isotropic design in a given position. Moreover, 
a large value for the condition number indicates being close 
to singular configuration. By calculation of this index at 
each grid point of the workspace, the dexterity condition of 
all configurations of the workspace can be determined. 
Furthermore, in the optimal design processes it is necessary 
to analyze dexterity condition of the manipulator throughout 
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the entire workspace. Therefore, a global condition index is 
required to examine both the dexterity and the homogeneity 
of all points of the workspace simultaneously. There are two 
global indices introduced for manipulator dexterity.  

w

w

CNdW
GCI

dW
=

∫

∫

 (19) 

GCI is the integral based global condition index where CN 
is the condition number and W is the workspace [29]. The 
GCI validity is questionable when the workspace contains 
singular points. This drawback is solved by Monte Carlo 
integration [30]. However, this index is not able to provide 
any lower or upper bounds on the dexterity in the 
workspace. For this means another definition for global 
condition number is introduced as following:9  

max

min

max( )
min( )

i

i

GC
σ

σ
=                              (20) 

In which, maxmax( )
i

σ and minmin( )
i

σ  are the global 

maximum and minimum singular values of the Jacobian 
matrix through the entire workspace, respectively. If the 
Global Condition Number (GC) approaches to 1, the 
workspace is more dexterous and homogeneous, and for 
large values for GC, the manipulator is less dexterous. Note 
that both GC and GCI indices are tractable in a singular free 
workspace. In general they cannot show the extent of the 
singular configurations within manipulator workspace. 
Therefore, another cost function is needed to be defined to 
quantify the extent of the singular points. In the CDRPMs, 
such a cost function can be combined with the evaluation of 
force feasible workspace, which is defined in next 

subsections.   

4-2. Collision Free Workspace 
Enlargement of the dexterous workspace results into an over 
constrained design of CDRPMs [19]. Thus, the cables are 
distributed throughout the entire manipulator workspace, 
and it may cause various collisions. On the other hand, the 
cables locations vary according to the end-effector position. 
Therefore, collision detection of the CDRPM is not similar 
to that of serial manipulators. Collision detection and 
obstacle avoidance techniques are addressed in several 
researches on serial manipulators and mobile robots. 
However, few studies had been done on the CDRPM 
structures [31]. Moreover, CDRPMs have large orientation 
workspace compared to that of the conventional parallel 
manipulators, and therefore, collision detection is more 
important in the process of determining the workspace of 

CDRPM [32]. The cables may collide with each other, or 
with the end-effector body. Therefore, two collision 
detection algorithms are used which are fully described in 
[32, 33] to determine accessibility of a point inside the basic 
workspace in a collision free status. After running these 
algorithms for a grid point of manipulator workspace, the 
accessible percentage of the workspace as proposed by [30] 
can be calculated by the following equation:  

AccessiblePoints
Bounding Box Volume

VP =  (21) 

  

 
Figure 9: There exist some inaccessible points near the workspace 

center 

The next issue in the analysis is to examine total orientation 
workspace (TOW) [34]for a six DOF manipulator. If a six 
DOF grid is used to obtain the TOW, the number of the grid 
points becomes of sixth order of the resolution, and 
therefore, enormous for any numerical process. 
Accordingly, it is necessary to use a set of constant 
orientation workspace (COW) analysis. The constant 
orientation workspace (COW) is defined as the three 
dimensional region that can be attained by the moving 
platform’s centroid when it is kept at a constant orientation 
[35]. Due to process costs, the TOW examination should be 
replaced with a set of fixed orientations which are extracted 
from required boundaries for orientation. 
Furthermore, the locations of inaccessible poses can affect 
the performance of the manipulator. Although in an 
appropriate collision free workspace, few collisions may 
occur, collection of inaccessible points at the middle of the 
task space is more annoying for a variety of tasks as shown 
in figure 9. By intuitive comparison of two figures 9 and 10, 
the latter shows a better situation, while proposed indices 
introduced in [32] or [31] gives a better condition for figure 
9. This is solely due to the fact that the number of the 
inaccessible points is considered in them and not the 
location of them.  
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Figure 10: All of the inaccessible points are located near boundaries  

Thus, it is better to define a cost function to incorporate both 
the number and the location of the inaccessible points. By 
examination of various distance costs, the proposed 
objective function is proposed using rms:  

2

1

1rms( )
n

i i
i

x x
g =

= ∑                            (22) 

in which, g is the number of inaccessible grid points, and xi 

is the distance to the central configuration. For each axis of 
the workspace, normalized RMS of the inaccessible points 
should be by the so called distance cost (DC) as following:  

max max maxDC
x y z

x y z
rms rms rms

= + +                       (23) 

where, xmax, ymax,zmax, are dimensions of the smallest 

workspace bounding box in each coordinate axis. Moreover, 
another analysis on the Jacobian matrix is necessary for the 
CDRPMs.  
 

4-3. Force Feasible Dexterous Workspace 
In the subsection Error! Reference source not found. 
dexterity measures are discussed, which are usually the only 
main index for usual conventional manipulators. Note that, 
dexterity is "the ability to arbitrarily change the end-effector 
position and orientation, or apply forces and torques in any 
arbitrary directions in the workspace" [36]. However, in the 
cable driven manipulators dexterity measures should include 
an inequality constraint on the cable forces to guarantee 
tension forces in the cables while maneuvering. This 
analysis is called force feasibility analysis, in which we try 
to detect whether dexterity is available using tension forces 
or not. Moreover, the volume of the tension force feasible 
dexterous workspace, which we call it FFDW becomes an 
objective for the optimization problem. Hence, a method is 
required to judge about force feasibility and then about its 
volume and location within the workspace. Various 
comprehensive methods were proposed to calculate tension 

force feasibility for a spatial CDRPM. [37, 38, 39] introduce 
analytical, geometrical, and numerical solutions in order to 
determine reachable force feasible workspace from the 
Jacobian matrix. Nevertheless, in these researches only one 
degree of redundancy (DOR) is used while in a seven 
actuated CDRPM, or six actuated in addition to a passive 
force [12], dexterous workspace cannot be analyzed, and 
just reachable workspace [40] could be analyzed. On the 
other hand, few studies are developed to include more than 
one degree of redundancy (DOR). A method was proposed 
by Williams and Gallina [41] for at most two DOR in 
CDRPM structure. Moreover, FFDW of CDRPMs was 
extracted by a method proposed by Gosselin et.al [16]. 
However, both recent researches were suggested only for 
planar CDRPMs and analysis of the FFDW for spatial 
CDRPMs is still an open problem [16]. Therefore, a FFDW 
determination method is necessary to propose for over–
constrained spatial CDRPMs. To examine force feasibility 
of the robot, projection feasibility by the Jacobian matrix, J 
against an external force vector acting on the moving 
platform wrench, W , on the cable’s tension force 
directions, F ,  should be studied. Note that:  

TJ− =F W                                     (24) 
The result of the analysis strongly depends on the n–
dimensional force and torque vector which will be projected 
by the Jacobian which is neglected in the most of researches 
like [42]. In some researches, wrench of gravity effects is 
used [43] which verifies whether the robot can rest at a pose 
or not. The problem is highlighted in a method proposed by 
Barrette and Gosselin [44] that advises to include dynamical 
properties of the CDRPM instead of gravity. Nevertheless, 
while these methods use a constant vector in the Cartesian 
space, they cannot fulfill requirements of dexterity 
verification. Hence, they are only useful to discover 
statically reachable force feasible workspace or feasibility of 
motion along a fixed direction. In other words, there is a 
great deal of variation among the role of each cable in 
motion along the same axis depending on the end–effector 
position. Thus, a fixed vector in the Cartesian space cannot 
be an appropriate wrench for examination of force 
feasibility. The favorable analysis is to warranty making any 
arbitrary resultant wrench by the cables tension forces 
within the determined dexterous workspace.  
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Figure 11: The KNTU CDRPM, a top view 

Notice that the elements of the Jacobian matrix in 14 
enlighten an important insight about the projection of forces 
on the moving platform. The i’th row of the Jacobian matrix 
corresponds to a wrench exerted on the center of mass and 

along the direction of the i’th cable, ˆ
iS  whose resulting 

torque that can be determined by ˆ
ii S×E . Therefore, the 

worst condition for the force feasible workspace of a 
CDRPM is when such wrench is exerted on the end-effector, 
i.e. exactly in the direction of one of the cables at the center 
of mass. Such extreme wrenches can be easily calculated by 
the i’th row of the Jacobian matrix:  

ˆ

ˆi

i

i

i

S

S

 
=  

×  
W

E
                                    (25) 

Repeating projection of iW  for each cable direction by the 

redundancy resolution methods [45] or any method for 
feasibility of the projection [19, 38], i=1,2,…,m determines 
whether a full-ranked Jacobian in a pose is force feasible or 
not. Feasibility of exerting a force or torque by serial or 
rigid-linked parallel manipulators is studied in dexterity 
analysis. According to the definition, traditional dexterity 
measures are not sufficient for CDRPMs. Therefore, force 
projection feasibility of the proposed wrench, W  should be 
the most important factor in the dexterity analysis of the 
CDRPMs instead of the typical dexterity measures. If 
exerting a force in the direction of vs becomes impossible, 
there exists at least one inaccessible direction of motion. 
Such condition contradicts the dexterity of the robot, 
although the contemporary measures of dexterity or 
manipulability show a good condition for the Jacobian 
matrix. Therefore, having a good condition number alone is 
not sufficient to ensure the dexterity of a CDRPM. We 
propose to define dexterous workspace for a redundant 
cable-driven manipulator as the FFDW when the worst case 
wrench is exerted on the manipulator. If such wrench is 

applied to the robot in the direction of a cable, that cable is 
not capable to produce any positive reaction to the end-
effector. Therefore, one degrees of redundancy of the robot 
is simply annihilated, and in order to achieve dexterous 
workspace, at least two degrees of redundancy is required. 
Thus, the main application of this objective is where the 
robot has more than one DOR. 
Next, the worst case wrench projection feasibility should be 
analyzed over the entire workspace to determine 
inaccessible points by special projection methods. This 
examination can be done together with collision free 
workspace procedure. Therefore, 21 is revised such that the 
accessible points are out of tension force infeasible points. 
However, the quantized condition of robot changed into a 
Boolean logic condition. Thus, analysis of traditional 
condition number cannot be ignored. Otherwise, amounts of 
the cables tension forces should be studied. Furthermore, 
this function may increase effect of the condition number 
especially when some singular points exist within the 
workspace.  

 
Figure 12: The KNTU CDRPM, a perspective view 

 

5. Case Study: KNTU CDRPM 
Design of the KNTU CDRPM is a multi objective optimal 
design problem such as other CDRPMs which has two 
DOR. This six DOF manipulator is under investigation for 
possible high speed and large dexterous workspace 
applications such as laser welding. Its design is suitable for 
long–time high acceleration motions. In this section, 
application of the VI method and the cost functions is 
studied in detail. Firstly, a formulated design problem is 
defined. Then, the VI method is applied to achieve objective 
functions and design parameters. The resultant graphs are 
analyzed to determine suitable parameters. Finally, a 
numerical optimization method is used to find the optimum 
parameters for the given cost functions.  
 

5-1. Problem Statement 
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In the optimal design process of the KNTU CDRPM, two 
main subjects should be studied in detail: objective criteria 
and design parameters. In other words, designer answers 
these questions: Which properties are needed for the task of 
the manipulator?  Which parameters can be changed inside 
their interval to achieve such properties?  There are various 
types of optimality measures for CDRPMs as mentioned 
above. All of the measures described in the third section are 
used during the VI process of the KNTU CDRPM. 
However, percentage of the accessible workspace in a 
regular-shaped, condition number, and its occupied volume 
have more significant impression in the choosing design 
parameters as shown by VI graphs. Therefore, the process of 
numerical optimization involves these three objectives. For 
Both of the dexterity and workspace measures exploration 
of a six dimensional grid is required. Numerical search of 
this grid is computationally expensive especially for the 
calculation of collision free and tension force feasible 
workspace. On the other hand, as shown in [32], accessible 

workspace with 30ο rotation of the end–effector is located 
inside the accessible workspace while the end–effector has 

15ο rotation around the same axis. Therefore, variety of 
rotations assumed for the extraction of the COWs and their 
intersection subspace. Roll, pitch, and yaw angles are 
changed for each translational space grid as: (0,0,0), 
(30,0,0), (30,30,0), (−30,30,0), (0,30,0), (0,0,10), (0,0,−10). 

This test is repeated for all of the grid points with 7cm 
resolution.  

 
Figure 13: Variation of the GCI versus a pair of design parameters: 

hot color map 

  

 
Figure 14: Variation of the GCI versus a pair of design parameters: 

rearranged hot color map 

The optimal design problem of the KNTU CDRPM is 
reduced to search for dimensions of two rectangular 
parallelepiped frames. The fixed attachment points, Ai, are 

located on the vertexes of the fixed frame while the moving 
attachment points are placed positioned right at the vertexes 
of the moving frame as shown in figure 12 as well as Bi 

points on the moving rectangular parallelepiped frame. This 
reduction is necessary to reach the benefits mentioned in 
subsection Error! Reference source not found.. Therefore, 
six design parameters are defined as below:  

1. fa: half of length of the fixed frame or dimension of 
the box along x axis with respect to the fixed 
coordinate.  

2. fb: half of width of the fixed frame or dimension of 
the box along y axis with respect to the fixed 
coordinate.  

3. fh: half of the height the fixed frame or dimension of 
the box along z axis with respect to the fixed 
coordinate.  

4. a: half of length of the moving frame or dimension 
of the box along x axis with respect to the moving 
coordinate.  

5. b: half of width of the moving frame or dimension of 
the box along y axis with respect to the moving 
coordinate.  

6. h: half of the height the moving frame or dimension 
of the box along z axis with respect to the moving 
coordinate  

According to figure 11, position of the attachment points are 
symmetric along x and y at top view of the manipulator in 
the conceptual design. Therefore, parameters ratio, fa/fb and 
a/b is used during the optimization. This simplification not 
only reduces design parameters and complexity of 
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optimization, but also decreases the effects of the not 
normalized iE  vectors in the rotation side of the Jacobian, 

equation 14. To set specific amounts for each parameter, 
volume of the end–effector is set to a constant value ( 8

100
h ) 

as well as the fixed attachments’ frame volume (8×2×fh).  
 

5-2. Visual Inspection Graphs and Costs 
According to the mentioned design parameters and 
objectives, a VI graph is illustrated as shown in figure 13 
using a normally distributed hot color map. Note that, each 
point of the graph is the result of an exploration of entire 
workspace of the manipulator. Next, the color map is 
modified as addressed in table 1 to illustrate the graph as 
shown in figure 14. 

This modification lead to show the good region more 
clearly while color gradient in the bad and the median 
regions are decreased. In this step, validation of optimum 
region, dependency, and convexity of the functions are 
checked by an visually inspection by designer. For instance, 
change of the GCI versus dimensions of the fixed frame 
along x and y axes, fa and fb, can be shown in figure 15 
while 1a

b
= . 

  

 
Figure 15: Variation of the GCI versus fa and fb:hot color map 

This figure clearly shows an ill condition in which fa is 
equal to fb. Further studies show that this problem becomes 
serious especially when a.fa=b.fb. To clarify this problem, 
let’s view the result of scanning on the x=0 plate in figure 
16.  

  

 
Figure 16: Condition number on x=0 plane 

  

 
Figure 17: Changed design parameters 

  

 
Figure 18: The condition number values on the x=0 after the change in 

design parameters 
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Figure 19: Dependency of global condition number on the design 

parameters 

As can be seen, singularity exists within the workspace of 
the robot. Analysis of the Jacobian condition in the singular 
positions shows that a major problem exists in the Neuron 
design of the KNTU CDRPM; rotation about z axis of the 
end-effectors which strongly depends on the translation 
along z axis especially in the central locations of the 
workspace. In other words, linear independency of 4th and 
6th columns of the Jacobian fails in the z=0 plane and the 
Jacobian rank deficiency disturbs motion control of the 
robot at this position. Therefore, rearrangement of the 
attachment points is necessary to decouple the role of the 
cables in translations and rotations of the end-effector. Since 
the shape of the end-effector is suitable to avoid cable to 
body collision [32], arrangement of the fixed attachment 
points should be studied. 

To achieve a better condition number on the z=0 plane, 
we had to disturb symmetric arrangement of the fixed 
attachment points, Ais. This change is applied to the width 

to length ratio of the fixed frame and rotation of the top and 
bottom plates about z axis as shown in figure 17. By this 
means the symmetricity and role dependence of the cables 
can be remedied by changing fa,fb,θ. Effects of changing 
these parameters on the GCI are illustrated in VI graph 19. 
Analysis of the results shows that:  

• Increment of θ has significant role in the singularity 
avoidance within the workspace.  

• Equal fa and fb values, and near zero values of θ lead 
to singularity of the manipulator.  

• There exists a region in the results where the 
manipulator workspace is singular free.  

  

 
Figure 20: Dependency of collision free workspace on the design 

parameters  

However, the values of design parameters θ, fa and fb 

cannot set to the ideal values because another limitation may 
significantly decrease the workspace of the robot. Cable to 
cable and cable to end-effector collisions can bound the end-
effector motion. Extracting another VI graph 20 shows that 
the best global condition number region located in the worst 
collision free workspace and vice versa. Therefore, this 
phenomenon denotes that θ should be added to the design 
parameters. 

Furthermore, this opposite condition for each value of 
the design parameters emphasizes the mentioned weighting 
problem for multi objective optimal design problem. 
Therefore, weighting function is utilized as noted in 
subsection Error! Reference source not found. using the 
values given in table 3. A linear interpolation between 
boundaries is used as a simplest way to implement the rules 
described in equations 1 and 2:  
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−

 (26) 

in which x is input value for cost function, y is the calculated 
cost. Moreover, , , , gb mwx x x x ,and xB denote input values 

for the variables in worst, bad, medium, good, and best 
conditions for each objective function given in the table 3. 

, , , gb mwy y y y ,and yB are the proposed costs from the first 

column of table 3 which stands for costs of worst, bad, 
medium, good, and best conditions, respectively. 
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Table 3: Boundary values for weighting costs of objective functions  

in figures 21, 22, 23,and 24 

 
 

After this calculation, the resultant graph for the figure 
13 will be the graph illustrated in figure 25. On the other 
hand, as can been seen in figure 19 dexterity criteria forces 
the optimum point to reach dimension constraints for θ 
corresponding to the pattern explained in figure 3. In order 
to prevent such undesirable situation, occupied volume cost 
is used:  

 Volume ·max sin , sin ·max cos , cos( ) ( )fh fa fb fa fbθ θ θ θ=

 (27) 

 Consequently, weighted cost functions are shown in 
figures 21, 22, and 23 and the total cost function calculated 
by their total average, can be seen in figure 24. Analysis of 
these graphs clarifies the benefits of using the proposed 
weighting functions:  

• Diverged graph of the GCI is fixed by another 
desirable objective function, occupied volume, to prevent 
touching dimension constraints which results a huge or tiny 
manipulator.  

• Undesirable singular condition of the robot for a set 
of design parameters, /a b  and /fa fb is found and 
analyzed. It is solved by addition another design parameter, 
θ.  

• Total cost function is not diverged even if two 
diverged cost functions, such as GCI and Volume, exist in 
the optimal design criteria. convex  

• Weighted cost function not only guides the 
optimization result in a desirable manner but also gives 
insight into dependency of objectives on the parameters in a 
VI graph.  

• Total cost function introduces a trade–off between 
objectives.  

As an example for the last item, ( / , ) (2,36 )fa fb θ °= is 
the minimum point of GCI cost in figure 
21, ( / , ) (2,15 )fa fb θ °= is that of VP in figure 22, and 

(1.2,0 )° is the minimum of the graph in figure 23. However, 
the optimum point showed in total cost function, figure 24, 
is not the same point as previous graphs and it is located in 

(2.2,21 )°  this set of design parameters are not the best of 
each graph. However, it has acceptable values in all of them 
as a result of the proposed weighting functions. 
Furthermore, summarizing the information of the graphs in 
table 4 shows effects of the objective functions and design 
parameters on each other. This table can be analyzed with 
the description of table 2. As it can be seen, all of the design 
parameters have at least one converged region and they fit in 
the subsection Error! Reference source not found. rules 
except h. Therefore, volume of the end–effector is fixed to 
prevent divergence of this parameter.  

  

 
Figure 21: Weighted cost for the global condition index versus a pair of 

design parameters. 

 

 
Figure 22: Weighted cost for the accessible workspace wideness versus 

a pair of design parameters. 
5-3. Optimization 
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Finally, after verification of design parameters and criteria, 
an optimization method is required to find optimum values 
for the overall cost function. Because the multi objective 
problem is condensed into a single objective optimality 
problem, various optimization methods are able to find the 
desired parameters. The most idealistic methods are 
analytical methods. Since latest determination methods for 
feasible workspace are semi-analytical [38] and they are 
numerical for collision free workspace [32], for a CDRPM it 
is not possible to solve this problem analytically. Moreover, 
for this case study, gradient–based methods are not suitable, 
mainly because the search space is quantized by grids and 
fitness function is not well behaved. Therefore, grid–based 
and intelligent search methods are suitable for this problem 
such as Genetic Algorithm (GA) or Pattern Search (PS) 
methods or their combination [46, 47]. 

Practically, because of the existence of local minima, 
GA method is more suitable to solve this problem. However, 
its random behavior results into different answers during 
various executions for the same fitness function. This 
problem can be fixed by running a PS algorithm started 
from the GA solution. This process results to a unique 
answer for the design problem. This procedure is applied for 
our problem in hand, and the final design parameters are 

obtained as 1.6, 2.2, 0.85 , 0.17fa a fh m h m
fb b

= = = = , and θ=18ο 

which has ±3% tolerance. Furthermore, the result of this 
examination shows that the manipulator workspace is about 
68% without rotation of the end-effector and 55% when the 

end-effector rotates 20ο about its x or y axis. This 
workspace is singular free and much larger compared to that 
of a similar eight actuator CDRPM [9].  

 
 Table 4: Dependency of the objectives on the design 

parameters for KNTU CDRPM 

 
 

 
Figure 23: Weighted cost for the occupied volume versus a pair of 

design parameters. 

  

 
Figure 24: Weighted total cost versus a pair of design parameters. 

  

 
Figure 25: Weighted cost for the global condition index versus the 

frames dimensions ratios. 
6. Conclusions 
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In this paper, optimal design of cable driven redundant 
parallel manipulators (CDRPMs) is studied in detail. This 
problem is formulated as a multi objective optimization for a 
set of design parameters and criteria. For this purpose, a 
brief review of various design criteria for CDRPM is 
discussed. Visual Inspection method is proposed which 
includes steps to illustrate potential dependency of 
parameters and provides insights into the optimal design 
process. Then, an approach for weighting of cost functions 
is proposed which is the most important step in the optimal 
design. 

To illustrate utilization of these methods and to 
extensively discuss on the objectives, the KNTU CDRPM, 
an 8 actuated 6 DOF CDRPM, is considered as the case 
study of design. It is shown that weighting functions are able 
to provide a trade–off between various design criteria and 
give a total cost function for optimization. Finally, a 
combined numerical optimization algorithm is used to find 
the unique global optimum point. The result shows a 
significant enhancement in the performance characteristics 
of the KNTU CDRPM compared to that of the other 
CDRPMs. Since the proposed method is not restricted to 
any particular assumption on the objectives and design 
parameters, it can be used for optimal design of other 
manipulators.  
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