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Abstract 
In this paper, real-coded genetic algorithm with smart mutation (RCGA-SM)is proposed to solve the 

economic dispatch (ED) problem. In the proposed method, the required controllingprocess is accomplished on 

the total amount of chromosomes and consequently there is no need to use penalty cost function for 

controlling sum of variables in solving economic dispatch problem. This method will begin to explore the 

optimal answer just within the logic and acceptable zone in addition to its capability in reducing the search 

range. In order to show the performance and the efficiency of the proposed method, the ED problem 

considering several constraints is solved in 6, 15and 40 units systems through the proposed technique. The 

proposed coding could effectively escape from infeasible solutions. Thereby search efficiency and solution 

quality are dramatically improved.The obtained results are compared with other advanced technical 

algorithms, which well depict the superiority of the RCGA-SM technique over the other compared methods. 
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1. Introduction
1
 

The ED aims to determine optimized sets of 

generators' output powers in a way that total grid 

load demand is provided with the least cost as the 

constraints' requires are well met. For simplicity, 

the cost function of each unit in ED problem is 

specified with a second order function and is 

solved through mathematical approaches [1-2]. In 

general, these mathematical approaches require 

information of cost function’s derivation to solve 

the problem. It is important to note that the input-

output features of generation plants are 

nonconvex, which is because of the existence of 

the prohibited zones, valve-point loading, etc. 

Therefore, the ED problem should be optimization 

of a nonconvex problem in the presence of 

constraints, which cannot be solved directly 

through the mathematical approaches.  

{R.1:In recent decades, advanced heuristic 

techniques such as genetic algorithm [3-4], 

evolutionary programming [5], artificial bee 

colony algorithm [6-7], harmony search algorithm 

[8-9], differential evolutionary [10-11], particle 

swarm optimization [12-16] and Biogeography-

based optimization [17-18] have been developed 

to solve nonconvex ED problem.} 

RCGA is one of the initiative algorithms 

which is proper to solve the nonconvex 

optimization problems. The search technique in 

this algorithm depends on the population and the 

group of chromosomes. Simple concept, easy 

implementation, relative ability in continuing the 

program and parameters control even under error 

occurrence, and the calculative efficiency of this 

technique are some of the major advantageous of 

RCGA [19]. In spite of these advantageous, it may 

get trapped in local optimizations due to search 

ability limits, inappropriate and illogical 

mutations, and penalty factors existence in the 

presence of problems possessing heavy 

constraints.  
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In some optimization problems the same as 

economic dispatch,it is necessary that the sum of 

the variables while 

optimizationconvergetoanexpected value. In 

solving this type of problem, a penalty factor is 

usually employed. Considering that a penalty 

factor is used to do this by increasing the cost, 

thus, some disadvantages such as the search space 

increase is unavoidable.This research proposes a 

novel coding based on RCGA in order to solve 

economic dispatch problems without using 

penalty factor.  

The classic optimization approaches consisting 

penalty function have a certain week point, which 

is the selection of suitable value of penalty factor 

and as the penalty parameters are inappropriately 

selected, the problem getsmore serious and 

finding solutions becomes difficult [20]. 

In this paper, a new RCGA-based method is 

proposed tocontroltotal chromosomes' values in 

each iteration process with no need for penalty 

factors in order to converge the total 

chromosomes' values to the expected value and 

the efficiency of the method is examined in 

solving ED problem. 

The RCGA-SM creates the initial population 

in acompletely random form considering the 

constraints associated with total chromosomes' 

value and its equation solution in a way that the 

sum of the chromosomes' values equals the 

expected value. It is managed in the next iterations 

in a way that the above constraint is not violated 

to make the algorithm find out the optimum cost 

just in alogical and acceptable zone in addition to 

the decreasesin the search range. 

One of the other disadvantages of the genetic 

algorithm method falls in mutation creation 

strategy, where inappropriate chromosomes' 

values selection can practically violate the 

constraints and trappedthe algorithm in local 

optimum points. 

In order to overcome such problemsin the 

proposed method, the values of one or more genes 

are changed in a logical and acceptable range to 

create a mutation in the offsets of each population. 
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In order to elucidate the advantages of the 

proposed method, ED problem solution through 

RCGA-SM is implemented on three systems with 

different generation units (6, 15, and 40 units) 

considering the effects of valve-point, existence of 

prohibited operational zones, ramp rate 

constraints, and the system losses. The results are 

compared with that of the new and efficient 

algorithms such as GAAPI [24], BBO [19], DE-

BB0 [32], RCGA [23], QPSO [31], ICA-PSO 

[28], ACO [25], GA-PS-SQP [33], etc, which well 

shows the superiority of the proposed technique 

over the above approaches. 

 

2. Formulation of Economic Dispatch 

Problem 
2.1. Objective Function 
The ED problem aims to minimize the total cost 

function of a power system considering the 

constraints. Total cost function and the simplified 

cost function of each generation unit are as 

follows, respectively: 

1

( )
n

T i i
i

F F p


   (1) 

2( )i i i i i i iF P a b p c p    (2) 

 

Where TF  is the total generation cost, Fi  is 

the cost function of the 
thi  generator, ai , bi , ci  

are the cost coefficients of the 
thi  generator, iP  

is the output power of the 
thi  generator and n  is 

the number of generators. 

 
2.1.1. ED Problem Considering the Valve-Point 

Effects 

The generation units with multi steam valve create 

more variations in plant cost function. Since the 

existence of steam valves leads to ripple creation 

in plants' characteristics, the cost function would 

have a more nonlinear formula. Therefore, the 

cost function (2) should be replaced with the 

following cost function: 
2

,min

( )

| sin( ( )) |

i i i i i i i

i i i i

F P a b P c P

e f P P

   

  
 (3) 

 

Where ie  and if  are the factors of the 
thi  

unit, which reflect the effects of the valve-point. 

In addition, 
,miniP  is the minimum 

thi  unit 

generated power [10]. 

 

2.2. Equality and Inequality Constraints 
2.2.1 Active Powers' Balance Equation 

In order to balance the power, total units 

generated power should equal to the total required 

load and total transmission line losses. In other 

words: 

1

n

i load loss
i

P P P


   (4) 

 
where loadP is the total system load. Total 

transmission losses, lossP , is a function of unit 

output power expressed as follows using the B 

factors [2]: 

00
1 1 1

n n n

loss i ij j io i
i j i

P P B P B P B
  

     (5) 

2.2.2. Maximum and Minimum Power Limit 

The output power of each generator should fall 

between the maximum and minimum powers of 

that generator corresponding to the following 

inequality: 

,min ,maxi i iP P P   (6) 

 

where ,miniP  and ,maxiP  are respectively the 

minimum and the maximum powers of the 
thi  

unit. 

 

2.2.3. Ramp Rate Limits 

The actual operation interval of all power plants is 

restricted by their ramp rate limits. The ramp-up 

and ramp-down limits are considered as follows: 
0

i i iP P UR  and
0

i i iP P DR   (7) 

 

where
o

iP  is the previous 
thi  unit output 

power, iUR  and iDR  are the up-ramp and down-

ramp limits of the 
thi  unit, respectively. In order 

to consider the ramp rates and the units output 

power constraints simultaneously, (6) and (7) 

could be combined as the following inequality: 
0

,min

0
,max

max{ , }

min{ , }

i i i i

i i i

P P DR P

P P UR

  


 (8) 

 

2.2.4. ED Problem Considering the Prohibited 

Operating Zones 

In some cases, the entire operating range of a 

generating unit is not always available due to 

executive physical limitations. Units might have 

some prohibited operating zones because of the 

existence of some deficiencies in machineries or 

in accessories. These deficiencies would lead to 

instability in some specific output power intervals 

[6]. Therefore, some additional constraints should 

be considered as follows for operational intervals 

of units with prohibited zones: 

,min ,1

, 1 ,

, ,max

2,3, ,

1,2, ,

l
i i i

ziu l
i i k i i k

pz
u
i pzi i i

P P P
k p

P P P P
i n

P P P




 


  


 



 (9) 

 

where ,
l

i kP  and ,
u
i kP  are the lower and the 

upper bounds of the 
thi  unit prohibited zones, 

respectively and ziP  is the number of 
thi  unit 

prohibited zones and pzn  is the number of units 

fall in prohibited zone [21]. 

 

3. An Overview on Real-Coded Genetic 

Algorithm 
The RCGA is inspired by the mechanism of 

genetic evolution in real life, which is composed 

of threeoperators: selection, crossover and 

mutation operators. More information on the 

performance of these operators is available in [22-

23],But in general the selection operator assures 

that the best members remain in addition to 

orientation of values. The crossover operator 

creates two new offspring through parent 

solutions based on specific rules such as 

combination under different probabilities. The 

mutation operator varies some chromosomes of 

each population in random [22]. 
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The operation of RCGA is in a way that a 

number of population members with lower fitness 

are eliminated and new offspring tabernacle in any 

iteration. The members remaining with high 

fitness function in any iteration differ in several 

problems and methods. If the number of the last 

remained population or individual in any iteration 

is keepn , the individuals remaining with high 

fitness are jC  in which each population is 

comprised of the number of chromosomes and this 

number depends on the problem dimension. 

1

1,2,3, , 1,2,3,...,

n

j ij
i

keep

C X

i n and j n





 


 (10) 

 

Individuals remaining inthe form of father 

chromosomes ( mc ) or the mother one ( fc ) in any 

iteration generate a new generation. The 

combination of parent chromosomes in each 

mating, results in two offspring. If the new 

offsprings are called
gen
mc  and 

gen
fc  the followings 

are valid: 

(1 )gen
m m fC a C a C      (11) 

(1 )gen
m ffC a C a C      (12) 

 

where ijx  is the 
thi  chromosome of 

thj  

population or individual, while f  and m  are a 

function of j . 

Parameter a  is a random number falls in [0, 

1]. 

The mutation operator randomly changes some 

chromosomes of the offspring of each population. 

In this paper, a new approach is proposed in 

which the selection and the mutation operators are 

selected inlogical intervals. 

 

4. The Proposed Method 
4.1. Controlling Each Population’s 

Chromosome Values in the First Iteration 
In solving ED problem through RCGA, the 

control process is carried out on the optimum 

response of total chromosomes through applying 

the penalty factors to tend the chromosomes' total 

values towards the expected value. This is 

accomplished in a way that the chromosomes are 

separately and randomly valued within the 

specified range and they are fined in proportion 

with the difference with the expected value at the 

end of iteration if the chromosomes' total values 

do not fall in the expected range. Here, the 

expected chromosomes' total value equals to the 

follows: 

iG     (13) 

1

( ) 1,2,3,...,
m

y y
y

f Z y m


   (14) 

 

where   is a constant value associated with 

the given data and ( )f z  is a value calculated 

applying chromosomes' values in the related 

formula in iteration and its number m  depends on 

the problem multi objective dimension, for 

example in solving ED problems m is equal to 1 

and lossP  . 

In the proposed method, it is initially assumed 

that 0  and according to the following 

relations, the first iteration’s parameters are 

valued as the controlled random values in a way 

that the chromosomes' total value equals  . 

In the following relations, the parameters are 

considered as follows: 

ijx = the value of 
thi  chromosome of the 

thj  

population 

In the RCGA-SM, the relations are solved 

through (15) and (16) respectively related to 

chromosomes' total constraints and each 

chromosome’s value and the value of each 

chromosome is valued randomly in controlled 

form to satisfy (15). The solution of the equations 

is as follows: 

1

1,2,3,...,
n

ij

i

X i n


   (15) 

,min ,maxi ij iX X X   (16) 
 

where ijx isthe value of 
thi  chromosome of 

the 
thj  population and n  is the maximum 

number of chromosome in each population. 

,min ,max ,min( )ij ij ij ij ijX X r X X     (17) 

Assuming the followings valid:  

,mintj ij ijX X X   (18) 

,max ,minsj ij ijX X X   (19) 

tj ij sjX r X 
 

(20) 
 

With combined equations (15), (17) and (18) 

the followings are obtained: 

,min

1 1

n n

tj ij

t i

X X 
 

    (21) 

,min

1 1

n n

tj ij

t i

X X
 

    (22) 

 

In order to reform (22) from equality to 

inequality form and create an interval for random 

values selection, it is necessary to subtract the 

value of a chromosome falls in its own interval 

from this value. Therefore, the following is valid: 

mjX is one of the randomly selected 

chromosomes. Therefore, According to equation 

(16), the range of this chromosome is equal: 

,min ,maxmj mj mjX X X  , now, by separating 

this chromosome, equation (18) converted from 

equality to inequality. In other words: 

 

1 1 1 1

( )
n n n n

tj mj ij sj tj
t i s t

i m s m

X X r X X
   

 

        (23) 

 

The 
ijr  value of all chromosomes can be 

randomly but in a controlled form determined 

easily applying (23) within the above range. 

For example, the following is valid in order to 

calculate the ijr  value of the 
thh  chromosome: 

( )
  

 
 

  
 
 

 
 
     
 
  
 

 
 
  
 
  
 

  

  

n n n

tj mj ij sj hj hj
t 1 i 1 s 1

i m s m
i h s h

n n n

tj ij sj
t 1 i 1 s 1

i m s m
i h s h

X X r X r X

X ( r X )

 (24) 
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Assuming the followings valid: 

1 1 1

( )
n n n

tj mj ij sj

t i s
i m s m
i h s h

hj

X X r X

A
X

  
 
 

  



  

 

(25) 

1 1 1

( )
n n n

tj ij sj
t i s

i m s m
i h s h

hj

X r X

B
X

  
 
 

 



  

 

(26) 

 

One random value within [0   1] is considered 

in order to obtain A  and B  values of not yet 

calculated 
ijr  value of the chromosomes. 

Now the following is valid: 

( )hj hjA r B r A r B A       . Parameter r  

is a random value causes random 
hjr  value 

selection within the controlled interval. 

This process continues until the hjr  values of 

all chromosomes except the 
thm  one are selected. 

Finally, the following can be applied to calculate 

mjr  of the 
th
mjx  chromosome: 

1 1

n n

tj tj mj mj
t t

t m

X X X r
 



     
(27) 

1 1 1

( )
n n n

tj ij sj mj mj
t i s

i m s m

X r X r X
  

 

       
(28) 

1 1 1

( )
n n n

tj ij sj
t i s

i m s m
mj

mj

X r X

r
X

  
 

 



  

 
(29) 

 

Finally, (17) can easily be applied to calculate 

the values of each chromosome since ijr  values 

are known. Now, the chromosome total value 

equals to  , and applying the obtained values in 

( )f z , the variable part of the problem for any 

iteration is calculated. This is a constant value, 

which can simply be added randomly to the 

chromosomes capable of facing with value 

increase to equalize the chromosomes' total values 

in the first iteration to iG  value.  

 

4.2. Controlling Each Population’s 

Chromosome Values in the Next Iteration 
In order to correct the values of each 

chromosome, the low valued chromosomes of the 

population should be eliminated and substituted 

with new generations. Since the new positions of a 

chromosome may sometimes not satisfy the 

constraints, the instruction of facing with 

constraints is executed. The instruction related to 

the constraints and range of each chromosome, is 

applied initially and the constraint associated with 

the group response is applied then in a way that 

the necessity of equalization of chromosomes' 

total value and   parameter in (15) is provided 

assuming 0  . This is accomplished in a way 

that the chromosomes' total value of each 

population stays equal to the   value as the 

values of thechromosomes randomly vary in the 

related interval. Now, the chromosomes values 

can be calculated applying the obtained 

chromosomes' values on ( )f z . Simply, this value 

is constant and can be randomly added to one or 

more chromosomes capable of facing with value 

increase. This is carried out until the 

chromosomes' total value of each population 

equals to iG  value. This random variation of one 

or more chromosome causes a kind of mutation in 

the algorithm and makes the algorithm to ride 

through the local optimum points. 

Through this technique, the chromosomes' 

total value of each population always equals with 

the desired and the problem aimed value and it 

decreases the search zone in addition to 

theoptimum cost find out in the logical and 

acceptable zone. Therefore, the programs run time 

decreases considerably. 

The flowchart of program run is well 

illustrated in Fig (1). 

 

 
Fig (1): Procedure of the RCGA-SM 

 

4.3. Creating Mutation in the proposed 

Method 
One of the major problems of genetic algorithm 

technique lies in mutation creation manner. 

Inappropriate chromosomes values selection can 

practically cause constraints violation, run time 

increase, and algorithm trapped in local optimum 

points. 

In order to overcome such problem, in the 

RCGA-SM technique, inspired by the mutation of 

heritage and according to the fact that a 

percentage of baby’s (offspring) genes are not 

exactly similar with that of the parents but close to 

their genes’ characteristics, the values of one or 

more gene vary in the logical and acceptable range 

Is there 

termination 
criteria? 

 

END 

NO 

YES 

Initialize population randomly but 

with controlled values by 

assuming that 0   

 

Compute fitness and sort 

population 

Parents choice and mating 

Mutation and apply individual 

and group constraints 

Compute   and apply on 

chromosomes 

Compute   and apply on 

chromosomes 

Apply individual and group 

constraints 

START 

Select initial values  
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considering individual and group constraints to 

create a mutation in the offspring of each 

population. 

The creation of mutation in offspring, in the 

proposed technique falls in the fact that eventually 

the chromosomes' total values equal to  obtained 

by (13). At the first stage, it is carried out 

changing (13) as follows: 

i qG M     (30) 

,max

1

( ( ) )
n

q ij

i

M x r u


     (31) 

 

Where u  falls in [0.3 , 0.7] value of which 

equals to 0.7 at the first iteration and decreases as 

the iterations number increases. Parameter r  is a 

random value falls in [0 , 1] applying of which in 

(31) results in varied mutation amount in each 

population. 

Now, the values of one or more chromosomes 

require to totally exceeding to qM  in their own 

constraint interval to validate (30). It is important 

to note that the share of each chromosome in 

providing qM  value is randomly an increasable 

value of it within the related constraints interval. 

At the second stage, (13) should equal to iG  

value as previous: 
1

( )
m

i y y
y

G f Z


   . 

Therefore, it is necessary to decrease the 

values of one or more chromosomes randomly 

down to qM  in related constraint interval to 

satisfy (13). This random increase in the values of 

one or more chromosomes up to qM , and the 

same randomly value decrease in chromosomes of 

a population causes a kind of mutation and 

variation of some chromosomes’ values. Through 

this technique, the algorithm would not trap in 

local optimum points and it would continuously 

accomplish the searching process until the last 

program iteration. 

 

5. ED Problem Solution through the 

RCGA-SM 
In order to apply the proposed method on the ED 

problem, the 4.1 and 4.2 parts’ relations vary as 

follows: 

According to the fact that the load amount is 

constant (   in (13)), at the first stage considering 

no losses in (13), ( ( )) 0f z  , the primary 

population is selected in controlled random 

intervals in a way that the chromosomes' total 

values equal to load amount. In order to achieve 

this, (13), (14), (15), and (16) vary as follows: 

iG     (33) 

1

( )

n

load i

i

P P


   (34) 

lossP   (35) 

,min ,maxij ij ijP P P   (36) 

,min ,max ,min( )ij ij ij ij ijP P r P P   
 

(37) 

 

var1,2,3,..., iablei n and 1,2,3,..., populationj n  

Since the selection interval of random 

chromosomes values in this technique is 

controllable, the effects of the ramp rate 

constraints can easily be applied when they are 

under consideration. Through this, the 

chromosomes' total random values are fully 

controllable. 

The problem solution process through the 

RCGA-SM matching the flowchart of Fig.1 is as 

the following steps: 

Step 1: primary validating and population 

forming, considering the load amount and 

individual and group constraints.  

Step 2: if there are losses, apply the 

chromosomes values of each population in the 

losses equation (5), calculate the losses value, and 

distribute the losses in some chromosomes 

randomly until the chromosomes' total values 

equals to the generators’ provided power amount. 

Step 3: calculate the costs and sort the 

population on the costs base. 

Step 4: the act of mating and producing new 

offspring (crossover). 

Step 5: applying the mutation and correcting 

the new offspring’ chromosomes to meet the 

constraints related to each chromosome and total 

chromosomes. 

Step 6: apply the chromosomes values of each 

population on (8), calculate the losses amount, and 

randomly distribute the losses amount in some 

chromosomes in a way that (13) is not violated. 

Step 7: go to Step 3 if the program’s finishing 

criterion is not satisfied 
 

6. Numerical Experiments 
This section presents the results of simulations 

carried out on three different test cases in order to 

evaluate the robustness and performance of the 

proposed GA-based coding. In addition, 

thecomparison of these results with other relevant 

and valid methods reported in the literature will be 

given. To verify the feasibility and effectiveness 

of the proposed approach, 50 independent trails 

were performed and the quality of solving the 

problem and convergence characteristics were 

evaluated. {R.5:The proposed algorithm is 

implemented using the MATLAB 7.0 software 

and run on a PC with Intel(R) Core(TM) i3-

2330M CPU 2.20 GHz2 GB RAM.To implement 

proposed algorithm, some RCGA parameters 

should be predefined. In the proposed RCGA-SM 

for all test cases, the initial population size is set 

to100, the optimal value of Nkeep is set to 30 

percent of initial population and the probability of 

mutation is set to 0.03.} 

The proposed method is implemented on three 

different power systems. 

a) A system with 6 power units containing 

prohibitedoperating zones, ramp rates constraints, 

and network losses. 

b) A system with 15 units containing 

prohibited operatingzones, ramp rates constraints, 

and network losses. 

c) A system with 40 power plants with valve-

point effects. 

6.1. system with 6-unit 
The experimentations are carried out on a system 

with six power units considering 

prohibitedoperating zones, ramp rate constraints 

and network losses. The system provides total 

1263 MW load amount. The input data and B  

factors of network losses exist in [15]. The 

number of primary population and the program 

iteration are 100. The algorithm’s convergence 

scheme is illustrated in Fig (2). As it is obvious, in 

RCGA-SM, the search zone is limited due to 

elimination of penalty cost function and effective 
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control on the chromosomes' total values. Here, 

the algorithm just tries to find out the optimum 

cost in a logical and acceptable zone and 

consequently, it converges to the optimum 

responses in the primary algorithm iterations. As 

it is shown, the algorithm reaches to 15443 $/h 

just in the first eight iteration. The RCGA and the 

PSO start points with penalty factors in Fig (2) 

well show the negative effects of the penalty 

factor application and cause increases the search 

region size.  

As it is shown in Fig (2), the RCGA-SM 

reaches to its minimum value in the initial 

iterations due to the search within the logical 

zone. 

 
Table (1): Best power output for 6 generator system 

Unit 

(MW) 
GA [23] 

PSO 

[15] 
BBO [19] RCGA-SM 

P1 474.81 447.50 447.3997 446.8308 

P2 178.64 173.32 173.2392 173.2352 

P3 262.21 263.47 263.3163 263.8920 

P4 134.28 139.06 138.0006 139.1612 

P5 151.90 165.48 165.4104 165.4544 

P6 74.18 87.13 87.07979 86.8378 

TP 1276.03 1276.01 1275.446 1275.41 

Ploss 13.02 12.958 12.446 12.4121 

TC 15459.00 15450 15443.09 15442.6551 

T/I --- 0.06 0.0325 0.007888 

*TP: total power [MW], TC: total cost [$/h], 

T/I: cpu time/iteration [sec.] 

 
Table (2): Comparing among different methods 

after 50 trials (6 generator system) 

Methods 
Maximum 

cost ($/h) 

Minimum 

cost ($/h) 

Average 

cost ($/h) 

RCGA 15524 15459 15469.00 

GAAPI 15449.85 15449.78 15449.81 

PSO 15492 15450 15454 

BBO 15443.096 15443.096 15443.0964 

RCGA-SM 15442.659 15442.655 15442.657 

 

 
Fig (2): Convergence characteristic of 6-unit system 

 

In Table (1), the results obtained using the 

proposed method are compared with advanced 

and efficient methods. 

The results of Table (1), shows the superiority 

of the RCGA-SM over the other new and efficient 

algorithms from cost and losses amount 

viewpoint. In the proposed method, the program 

run time is significantly decreased in comparison 

with the other algorithms because the find out 

process is just accomplished in logical zone and 

consequently considerable decrease in calculation 

burden occurs and the program calculation 

decreases in fitness section. The run time with 100 

iterations equals to 0.7888 sec, where the run time 

of a single iteration is 0.007888 sec, which is 7 

times less than that of PSO algorithm and 4 times 

less than BBO. 

Table (2) well shows that the proposed 

technique is robust in comparison with the other 

algorithms and converges to the optimum 

responses in each program execution. 

 

6.2. system with 15-unit 
The experimentations are carried out on a system 

with fifteen power plants considering prohibited 

operatingzones, ramp rate constraints and network 

losses. The system provides total 2630 MW load 

amount. The input data and B  factors of network 

losses exist in [15]. 

The number of iteration and the initial 

population are 300 and 100 respectively. The 

convergence pattern of the proposed algorithm on 

a 15-generator system is shown in Fig (3). As it is 

obvious, in RCGA-SM, the search range 

decreases by effective controlling on the 

chromosomes' total values and it starts to find out 

the optimum points just within the logical and 

acceptable range. 

 

 
Fig (3) : Convergence characteristics of 15-unit 

system 

 

The GA and PSO algorithms’ start points with 

penalty factors shown in Fig (3) well show the 

negative effects of applying penalty factors and 

increase the search region. It is obvious from the 

convergence pattern of the genetic algorithm that 

the applied mutations are not appropriate and 

cause the algorithm trapped in local optimum 

points and increases the required iteration 

numbers.  

 
Table (3): Best power output for 15-generator 

system 

Unit  

(MW) 

GAAPI  

[24] 

SOH_PSO 

[27] 

PSO  

[15] 

RCGA 

-SM 

P1 454.70 455.00 439.11 455.0000 

P2 380.00 380.00 407.97 380.0000 

P3 130.00 130.00 119.63 130.0000 

P4 129.53 130.00 129.99 130.0000 

P5 170.00 170.00 151.06 170.0000 

P6 460.00 459.96 459.99 460.0000 

P7 429.71 430.00 425.56 430.0000 

P8 75.35 117.53 98.56 76.3573 

P9 34.96 77.90 113.49 53.9575 

P10 160.00 119.54 101.11 160.0000 

P11 79.75 54.50 33.91 80.0000 

P12 80.00 80.00 79.95 80.0000 

P13 34.21 25.00 25.00 25.00000 

P14 21.14 17.86 41.41 15.0000 

P15 21.02 15.00 35.61 15.0000 

TP 2660.36 2662.29 2662.4 2660.3149 

Ploss 30.36 32.28 32.43 30.3100 

TC 32732.95 32751.39 32858 32700.3490 

T/I NA 0.0936 NA 0.009988 
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The results shown in Table (3) depict the 

priority of the proposed method over the other 

techniques. The obtained cost amount through the 

proposed method equals to 32700 $/h. The line 

losses in this method equal to 30.31 MW, which is 

the least among the others. The run time with 300 

iterations is 2.9964 sec. time to iteration of 

proposed method is 0.009988 sec. 
 

Table (4): Comparing of different methods after 50 

trials (15-generator system) 

Methods 
Maximum 

cost ($/h) 

Minimum 

cost ($/h) 

Average 

cost ($/h) 

GA [15] 33337.00 33113.00 33228.00 

GAAPI 

[24] 
32756.01 32732.95 32735.06 

PSO [15] 33331 32858 33039 

SOH_PS

O [27] 
32945 32751 32878 

PSO-SIF 

[1] 
32709.92 32706.8800 32707.7900 

Ɵ-PSO 

[34] 

32,744.030

6 

32,706.685

6 

32,711.495

5 

RTO [35] 32715.18 32701.81 32704.53 

RCGA-

SM 
32700.4603 32700.3490 32700.3909 

 

The minimum and the mean obtained 

resultsthrough different approaches after 50 

iterations are shown in Table 4. The search within 

the logical range and proper mutations increases 

the robustness of proposed method. Therefore, the 

algorithm obtains responses in each 

implementation. As it is obvious, the genetic 

algorithm in each implementation results in 

differently, which show the inappropriate 

mutations of this algorithm. 

 

 

 

6.3. system with 40-unit 
The experimented system contains 40 power 

plants and the input dada are given in [10]. Total 

demanded load is 10500 MW. The program 

iteration number and the initial population are 

2000 and 100, respectively. 

 

 
Fig (4): Convergence characteristics of 40-generator 

system 

 

Fig (4): shows the convergence pattern of the 

RCGA-SM for a 40-generator system considering 

the valve-point effects. The convergence of the 

function in the initial iterations and facing with no 

trap in local optimum points and finding out 

optimum points in the 1550
th

 iteration shows the 

logical mutations in the algorithm convergence 

pattern and the efficiency of the proposed 

mutation. 

 
Table (5): Best power output for 40-generator system 

Unit (MW) RCGA-SM DE-BBO [32] BBO [19] ICA-PSO [28] QPSO [31] 

P1 110.8016 110.7998 110.0465 110.80 111.20 

P2 110.8008 110.7998 111.5915 110.80 111.7 

P3 97.4000 97.3999 97.6007 97.41 97.40 

P4  179.7336 179.7331 179.7095 179.74 179.73 

P5  87.8004 87.9576 88.3060 88.52 90.14 

P6  139.9999 140.0000 139.9992 140.00 140.00 

P7  259.5996 259.5972 259.6313 259.60 259.60 

P8  284.5999 284.5997 284.7366 284.60 284.80 

P9  284.6000 284.5997 284.7801 284.60 284.84 

P10  130.0006 130.0000 130.2484 130.00 130.00 

P11  94.0003 168.7998 168.8461 168.80 168.80 

P12  94.0008 94.0000 168.8461 94.00 168.80 

P13  214.7593 214.7598 214.7038 214.76 214.76 

P14  394.2792 394.2794 304.5894 394.28 304.53 

P15  394.2791 394.2794 394.2761 394.28 394.28 

P16  394.2790 304.5196 394.2409 304.52 394.28 

P17  489.2791 489.2794 489.2919 498.28 489.28 

P18  489.2796 489.2794 489.4188 489.28 489.28 

P19  511.2794 511.2794 511.2997 511.28 511.28 

P20  511.2789 511.2794 511.3073 511.28 511.28 

P21 523.2795 523.2794 523.4170 523.28 523.28 

P22  523.2794 523.2794 523.2795 523.28 523.28 

P23  523.2794 523.2794 523.3793 523.28 523.29 

P24  523.2792 523.2794 523.3225 523.28 523.28 

P25  523.2794 523.2794 523.3661 523.28 523.29 

P26  523.2794 523.2794 523.4362 523.28 523.28 

P27  10.0005 10.0000 10.0531 10.00 10.01 

P28  10.0007 10.0000 10.0113 10.00 10.01 

P29 10.0000 10.0000 10.0030 10.00 10.00 

P30 87.8021 97.0000 88.4775 96.39 88.47 
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P31 190.0000 190.0000 189.9983 190.00 190.00 

P32 189.9997 190.0000 189.9881 190.00 190.00 

P33  190.000 190.0000 189.9663 190.00 190.00 

P34  164.7998 164.7998 164.8054 164.82 164.91 

P35  199.8783 200.0000 165.1267 200.00 165.36 

P36  194.5131 200.0000 165.7695 200.00 167.19 

P37  109.9989 110.0000 109.9059 110.00 110.00 

P38  109.9997 110.0000 109.9971 110.00 107.01 

P39  109.9988 110.0000 109.9695 110.00 110.00 

P40  511.2796 511.2794 511.2794 511.28 511.36 

TC 121412.8705 121420.89 121426.953 121413.2022 121448.21 

 

As seen from Table (6), the proposed method 

is robust compared with other techniques and 

reaches the approximately similar responses in 

each implementation. In Tables (5 and 7), the 

results obtained from the proposed method are 

compared with that of the advanced GA and PSO 

algorithms and the algorithms using the penalty 

factor. 

 
Table (6): Comparing of different methods after 50 

trials (40-generator system) 

Methods 
Maximum 

cost ($/h) 

Minimum 

cost ($/h) 

Average 

cost ($/h) 

RCGA-

SM 
121435.4698 121412.8705 121415.1364 

PSO 122607.91 121751.33 122020.75 

DE-BBO 121420.8968 121420.8948 121420.8952 

BBO 121688.6634 121426.953 121508.0325 

QPSO NA 121448.21 121508.0325 

ICA-PSO 121453.56 121413.20 121428.14 

 
Table (7): Minimum generation cost obtained by 

different methods on 40-generating unit system 

Method Minimum cost ($/h) 

RCGA-SM 121412.8705 

PSO [28] 121751.339 

GA-PS-SQP[33] 121458.14 

MPSO [28] 122252.26 

S PSO [19] 122049.66 

BF-NM [30] 121423.63 

UHGA [28] 121424.48 

CBPSO-RVM[26] 121555.32 

ACO[25] 121532.41 

IGAMU [28] 121819.25 

DEC-SQP [28] 121741.97 

ESO [29] 121630.96 

RCGA[23] 121418.5425 

FAPSO-NM [36] 121418.3000 

FA [2] 121415.0500 

MDE [37] 121414.7900 

FPA [36] 121414.6185 

 

The results well show the priority of the 

RCGA-SM. The obtained cost equals to 121412 

$/h, which finds out better results compared with 

GAAPI [24], BBO [19], DE-BB0 [32], RCGA 

[23], QPSO [31], ICA-PSO [28], ACO [25], GA-

PS-SQP [33] techniques. 

 

7. Conclusions 
This paper proposes a new technique to solve the 

optimization problemsin which the required 

control is applied on the total problem variables 

and the penalty cost is not applied. The RCGA-

SM is successfully implemented on three 

nonconvex economic dispatch problems 

considering several constraints. In this method, 

the required control is applied on the 

chromosomes’ total values, which decreases the 

search region within a logical and acceptable 

zone.Some of the advantages of proposed RCGA-

SMare fast convergence towards the optimum 

responses in the initial iterations, short program 

run-time, no trap in local optimum points because 

ofthe logical mutations, algorithm’s robustness, 

and its convergence towards the similar responses 

in each program implementation. 
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