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Abstract:  
In a real electricity market, complete information of rivals’ behavior is not available to market 

participants. Therefore, they make their bidding strategies based on the historical information of the 

market clearing price. In this paper, a new market simulator is introduced for a joint energy and spinning 

reserve market, in which market participants’ learning process is modeled using Q-learning algorithm. 

The main feature of this simulator is simulating a real market, in which market participants make 

decisions based on incomplete information of the market. Using the proposed simulator, the clearing 

price for each submarket is computed considering the participants’ behavior, under different load levels 

and/or contingency conditions. The results show that Q-learning approach can modify the agent’s strategy 

under different market situations. 
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1. INTRODUCTION
1
 

Many countries all over the world, have 

introduced competition and privatization in their 

power sectors through electricity markets. A 

deregulated electricity market is composed of 

several submarkets such as energy and reserve 

markets.  

Different approaches can be seen in the 

literature, in the field of simultaneous bidding in 

energy and reserve markets. The major 

viewpoint is utilizing different methods (e.g. 

stochastic optimization) to solve electricity 

multimarket clearing problem under different 

conditions such as uniform or pay-as-bid pricing, 

multi area networks, different submarkets and 

etc. (e.g. [1-7]). The other approach such as [8-

12] analyzed scheduling problem or bidding 

behavior of market participants under different 

market structures and different conditions. The 

last viewpoint is to analyze the interaction 

between energy and reserve market prices. [13] 

simulated a day-ahead uniform market using 

GridView market simulator and discussed the 

interaction between energy and reserve using 

energy and reserve hourly prices, up to one week 
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with and without enforcing reserve requirement. 

The stated above paper did not consider the 

bidding behavior of market participants and used 

only the historical network information. 

However, the energy and reserve prices may 

differ for similar load levels because of the 

different market conditions and strategic 

behavior of the market agents. [14-18] use 

different learning methods, such as 

reinforcement learning and genetic algorithm to 

model the strategic behavior of market 

participants considering uniform pricing 

structure.  

Q-learning (QL) is usually used in single 

environment problems. The main aim of this 

paper is to design a QL algorithm to find optimal 

strategy from the viewpoint of an agent, which 

interacts with two environments: energy and 

reserve markets under pay-as-bid pricing 

mechanism. In the proposed simulator, the 

learning process of power suppliers is modeled 

using QL. In this simulator, as a real market, 

each supplier learns how to bid in the electricity 

market while competing with the other suppliers 

to get more profit. Therefore, the market clearing 

prices and strategic behavior of market 

participants in different conditions can be 

analyzed. 

In the rest of the paper, the proposed market 

Archive of SID

www.SID.ir

http://www.sid.ir


 

 

24 An Agent-based Electricity Market Simulator 

 

 

 

 

 

simulator is described and is used to simulate the 

electricity multimarket in some different 

conditions such as different load levels and units’ 

outages conditions. 

2. PROBLEM DESCRIPTION 
The wholesale electricity markets all over the 

world are operated based on agents’ competition. 

This competition is sometimes implemented 

through auction markets. In an electricity 

auction, power producers offer their generation 

capacity and corresponding price(s). An 

independent system operator clears the auction 

based on bids and the system requirements such 

as load, reserve etc. Such a market is called 

generally, a “single sided auction market”. In this 

market, competition is established between 

power suppliers, and ISO procures energy and 

reserve on behalf of the other customers.  

There are two pricing mechanisms in 

electricity markets. In the uniform pricing, all 

suppliers receive a uniform price, and in the pay-

as-bid (PAB) pricing mechanism, each supplier 

receives his offered price. In this paper, the focus 

will be on PAB pricing.  

In several electricity markets e.g. California, 

New York and Australia electricity markets, 

ISOs clear energy and reserve simultaneously 

[19]. This structure has the advantage of 

minimum procurement or social costs, based on 

the ISO objective function.  

In this paper, a single-sided electricity market 

based on PAB pricing is simulated. The market 

agents are modeled using Q-learning method. 

 

3. ELECTRICITY MARKET STRUCTURE 
Fig (1) shows an overview of the considered 

joint energy and spinning reserve market. The 

market consists of two major parts: Electricity 

market and agents. The agents may include 

power producers, consumers or etc., which bid or 

offer their generation capacity or demand and 

corresponding prices in the energy and reserve 

markets. In the electricity market, ISO clears the 

joint energy and reserve market, and informs 

market clearing prices and each participant’s 

accepted bids and offers. In the following, each 

section of the simulator is described in detail.   
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Fig (1): Market overview 

 

3.1. Market Clearing Problem 
A one-hour ahead, single sided market is 

considered for simplicity. The joint market is 

composed of energy and reserve markets. The 

two markets are cleared simultaneously by the 

ISO based on PAB pricing mechanism.  

In the considered joint market, power 

producers submit their supply functions, 

composed of capacity and corresponding prices 

to the joint energy and ten-minute spinning 

reserve market for the next hour. ISO clears the 

market based to minimize procurement cost. The 

objective function is defined as (1) in which 

,e r

i iC C are bid functions of the i
th

 power producer 

and ,i ie r  are energy and reserve accepted 

megawatts of the power producer, respectively. 
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It is assumed that e

iC  is a linear function of ei 

and r

iC is a one-step bid function. In addition, n 

is the number of power producers, and Gi and 

Ri
max

 are the total available capacity and 

maximum reserve capability of the i
th

 power 

producer.  
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3.2. Agents  

Each market is composed of several types of 

participants, such as power producers, large 

consumers, brokers, etc. As stated before, in this 

paper, a single-sided market is considered in 

which the power producers participate in the 

market, only. The assumption does not affect the 

generality of the problem.  

The i
th

 power producer is assumed to have a 

quadratic cost function:  
25.0)( i

e

ii

e

iiii ebeaFCeCost   (2) 

 

All power producers submit a linear function 

for energy and a stepwise bid function for 

reserve. In this paper, the slope of the energy bid 

function is assumed to be fixed at e

ib . Therefore, 

the bid functions of the i
th

 producer will be in the 

form of: 

max

( ) 0

( ) 0

e e e

i i i i i i i

r r

i i i i i

e b e e G

r r R

 

 

   

  
 (3) 

 

for energy and reserve respectively.  

The Q-learning model of the market agents 

will be introduced later.  

 

4. THE Q- LEARNING ALGORITHM [20] 
In the QL algorithm, an agent interacts with an 

environment at discrete sequential time steps, 

0,1,2,...t  . At each time t, the agent selects an 

action 
ta A based on 

ts S (the state of the 

environment at time t), where, 

 1 2, ,..., mA a a a is the finite set of the agent’s 

admissible actions and  1 2, ,..., mS s s s is the 

finite set of the environment’s possible states. As 

a result of the action, the environment enters the 

new state st.Fig (2) shows the interaction of the 

agent with the environment [20].  

In the QL algorithm, each state-action pair 

has a value function which is defined as Q-value. 

Q-value lookup table is initialized randomly at 

the beginning of the learning process. Then the 

Q-values are updated as follows: 

  ),(]),(max[),(

),(),(),(

11

1

ttttt
a

ttt

tttttttt

asQasQrasQ

asQasQasQ














  
(4) 

 

whereγ is the discount factor and rt+1 is the 

reward of action at. Also, the agent’s learning 

rate, α, is defined in this paper as: 

),(

1
),(

tt

tt
as

as


   
(5) 

 

where ),( tt as is the number of the state-

action pair ),( tt as visited until now.  

 

 
Fig (2): The agent interaction with the environment 

[20] 

 

The QL algorithm has two stages: learning 

and converging. In the learning stage, the agents 

examine the environment most of the times. 

They test their admissible actions in accordance 

with different states of the environment. 

However, in the converging stage, the agents 

make their best decision and choose the greatest 

Q-value action in each state of the environment. 

The selection is performed in this stage based on 

the past experience.  

The QL parameters are determined for each 

stage, according to the exploration and 
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exploitation mechanisms. To trade-off between 

exploration and exploitation, the ε-greedy 

method is selected. In the ε-greedy method, the 

agent selects the action with the maximum Q-

value with the probability of (1-ε) and selects an 

arbitrary action from A with the probability of ε. 

In the learning stage, because of high probability 

of selecting wrong actions, the γ value is low to 

discount the future reward. However, it has high 

value in the converging stage to exploit the 

information strictly. Therefore, the ε and γ have 

small values in the learning stage, and have zero 

and high values in the converging stage, 

respectively.      

The proposed market simulator is a multi-

agent problem. In this type of problems, learning 

stage is used as an initializing phase. 

Consequently, simulation phase will be the 

convergence stage.  

 

5. AGENTS’ MODEL 
The main part of this simulator is the learning 

process of power market participants. In this 

process, each agent is modeled using the Q-

learning algorithm. QL is usually applied to 

single environment problems. However, in this 

simulator, an agent interacts with two 

environments: energy and spinning reserve 

markets.  

The participants’ experience is simulated 

using an iterative process of bidding and market 

clearing. Energy and reserve market clearing 

prices are selected as “states” in the QL market 

simulator. Each agent can bid in both the energy 

and reserve markets. Thus, the proposed 

simulator needs two actions: energy bid intercept 

and reserve bidding price. Fig (3) shows the 

definition of states of the market and agent’s 

actions.  

The process of learning and finding the 

optimal bid components for each hour can be 

defined as follows from the viewpoint of each 

market agent: 

(1) State identification: The states of 

environment for the current step are obtained by 

solving the market objective function. As stated 

before, the states are MCPs. It is assumed that 

the information of market MCPs from the 

previous steps is publicly available.   

(2) Action selection: After obtaining the 

current state, the agent uses its Q-value lookup 

table which saves the Q-values for each state-

action pair. The action selection through the QL 

algorithm is done by choosing the action with 

maximum Q-value in the current state. To 

tradeoff between exploitation and exploration, 

the agent utilizes the ε-greedy strategy, as 

explained before. 

(3) Q-value update: At the end of each step 

and after being notified of the new MCPs and 

dispatched amounts of energy and reserve, the 

agent calculates its reward and then updates its 

Q-value according to Eqs. (4). 

 

 
Fig (3): Market states and agents’ actions 

 

6. CASE STUDY 
The authors, in [21] present a classic bidding 

problem to find a closed form for the optimal 

bidding parameters. In [22] similar to [20], we 

show that the QL can find the optimal values of 

bidding parameters in a self-play simultaneous 

bidding problem. Consequently, the QL is used 

in this paper in a multi-agent problem. The 

following simulation results seem to be rational 

in comparison with real competitive markets. 

In this section, simulation results for a single-

node 4-unit power system are presented. The 

system information is given in Table (1). The 

minimum power generation and the fixed cost of 

the units are assumed zero. The market clearing 

problem (1) is solved using Matlab quadratic 

programming tool.   
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Table (1): The sample power system information 

b 

($/MWh) 

a 

($/MWh) 

Res 

Capability 
Pmax(MW) 

Unit 

No. 

0.000960 16 100 1000 1 

0.000400 18 150 1500 2 

0.000422 19 80 800 3 

0.000826 23 120 1200 4 
 

In order to control the market price in high 

load levels and also in the outage conditions, an 

external supplier with high capacity is assumed 

to be available. The bidding prices of the 

supplier are fixed at 30 ($/MW) and 10 ($/MW) 

for energy and reserve, respectively.  

The number of states/actions selected for 

market simulation is as Table (2).  

The Q-learning parameters are fixed during 

the simulation phase: α= γ =0.1, ε=0.05. 
 

Table (2): Number of States/Actions of Market 

Agents 

State/action Number of state/action 

action 1 (Energy Bid Intercept) 15 

action 2 (Reserve Bid Price) 20 

State 1 (Energy MCP)* 15 

State 2 (Reserve MCP)* 10 
*Energy and reserve ceiling prices are set to 30 and 10 in this 

case, respectively. 

The energy and reserve MCPs are shown in 

Fig (4) for 3000MW load level. Reserve 

requirement is assumed %10 of demand. The 

mean values of energy and reserve market prices 

in this load level are 24.7 and 7.31, respectively. 

The bidding parameters of market agents are 

shown in Fig.(5) for energy and reserve markets, 

respectively.  

In addition, accepted capacities in energy and 

reserve markets are shown in Fig (6).  

It can be seen in figures 5 and 6 that low cost 

GenCos have more chance to sell their 

production capacity to the energy market. In 

3000 MW load level, the first, second and third 

GenCos supply the demand and set the energy 

market price competing each other. Furthermore, 

the first and second GenCos try to sell their 

reserve capacity in the reserve market because in 

this load level, their profit in the reserve market 

is more than energy market. In these conditions, 

the forth GenCo that has the least chance to win 

in the energy market, submits the lowest price in 

the reserve market.  

 

 

 
Fig (4). Market clearing prices ($) at 3000MW load 
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Fig (5): GenCos’ bidding parameters ($/MWh) 

 

 

 
Fig (6): Accepted capacities in energy and reserve market 
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Fig (7): Market clearing prices ($) at 3500MW load 

 

 

The market prices for 3500MW load are 

shown in Fig (7). The MCPs’ mean values are 

$28.5 and $8.95, respectively. It is clear that an 

increase in load level can increase the energy and 

reserve prices. It can be observed comparing 

figures 4 and 7. 

Market clearing prices and GenCos’ bidding 

parameters in 1500 MW load level are shown in 

Figures 8 and 9.  

 

 
Fig (8): Market clearing prices ($) at 1500MW load 
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Fig (9):GenCos’ bidding parameters in 1500MW load 

 
As seen, the profit of the third GenCo from 

the energy market is zero and bids the lowest 

price in the reserve market. The other GenCos 

compete in the energy market and the lowest-

cost GenCo, bids the lowest price in order to sell 

all of its capacity to the energy market.  

The market simulator results in different load 

levels are summarized in the following tables. 
 

Table (3): mean values of energy MCP and Gencos’ energy bid intercepts 

Load 

(MW) 
Energy MCP ($) 1e ($) 

2e ($) 
3e ($) 

4e ($) 

1500 20.5766 19.1995 21.0552 21.5461 26.3437 

2000 21.7852 20.4333 21.6152 22.0287 26.0567 

2500 23.9973 22.1087 23.6368 23.0201 25.7841 

3000 24.7027 23.6907 24.0696 24.2287 25.6936 

3500 28.4860 25.6945 26.1664 26.0576 28.1385 

 

Table (4): Mean Values of Reserve MCP and Gencos’ Reserve Bidding Prices 

Load(MW) Reserve MCP ($) 1r ($) 2r  ($) 3r  ($) 4r  ($) 

1500 2.7696 5.2560 4.2425 4.1685 2.9895 

2000 4.3776 6.8090 5.2390 4.8790 4.2650 

2500 6.8191 5.9145 6.5800 6.3975 6.2005 

3000 7.3141 5.5270 7.1500 7.3810 5.9700 

3500 8.9501 7.6555 7.8375 7.0030 8.2435 

 
The market clearing prices and bidding 

parameters of GenCos are shown in figures 10 

and 11 following an outage in the 2
nd

 generating 

unit for 3000MW load.  

It is clear that following the outage in the 

2
nd

GenCo, market power occurs for the other 

GenCos and they can increase their bidding 

prices toward the energy and reserve ceiling 

prices.  

The results show that Q-learning algorithm 

can simulate the electricity multimarket and 

market participants’ behaviour. Therefore, the 

method can be used to analyse the electricity 

markets in different fields such as prices 
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behaviour, energy and reserve markets 

interaction, market agents’ behaviour in normal 

or contingency conditions at different load 

levels, and etc. Also, demand-side bidding can 

be considered. 

 

 
Fig (10): Market clearing prices ($) at 3000MW load, following an outage in 2nd GenCo 

 

 
Fig (11):GenCos’ bidding parameters at 3000MW load following an outage in 2nd GenCo 
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In this paper, a new electricity market simulator 

is proposed in which market participant learning 
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QL algorithm is applied to a two- environment 
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strategies in a joint energy and spinning reserve 
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learn the appropriate behavior and they can 

adjust their bidding strategies in different market 

conditions. Also they can recognize the 

opportunity to experience market power. 

The proposed simulation method can be used 

to analyze the market from some different points 

of view such as market rule, market participants’ 

behavior, market power opportunities and etc.  
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