
107

Basic and Clinical
April 2016. Volume 7. Number 2

Abbas Pourhedayat1, Yashar Sarbaz1*

A Grey Box Neural Network Model of Basal Ganglia for 
Gait Signal of Patients with Huntington Disease 

Introduction: Huntington disease (HD) is a progressive neurodegenerative disease which affects 
movement control system of the brain. HD symptoms lead to patient’s gait change and influence 
stride time intervals. In this study, we present a grey box mathematical model to simulate HD 
disorders. This model contains main physiological findings about BG. 

Methods: We used artificial neural networks (ANN) and predetermined data to model healthy state 
behavior, and then we trained patients with HD with this model. All blocks and relations between 
them were designed based on physiological findings.

Results: According to the physiological findings, increasing or decreasing model connection 
weights are indicative of change in secretion of respective neurotransmitters. Our results show 
the simulating ability of the model in normal condition and different disease stages.

Conclusion: Fine similarity between the presented model and BG physiological structure with 
its high ability in simulating HD disorders, introduces this model as a powerful tool to analyze 
HD behavior. 
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1. Introduction

untington disease (HD) is a progressive 
neurodegenerative disease which affects 
movement control system of the brain. 
Degeneration of the Basal Ganglia (BG) 
of the brain causes movement disorders 

as it regulates movements and makes them smooth. Move-
ment symptoms significantly appear in limbs and include 
chorea, ballism, and athetosis.

Ballism refers to rapid flailing movements. Chorea in-
cludes very similar excessive, involuntary movements, 

like those of ballism, but less abrupt and wild. Athetosis is 
slow writhing movements of fingers, hands, and sometimes 
toes. HD symptoms lead to patient’s gait change and influ-
ence stride time intervals, the gait speed, and rhythmicity 
of walking (Kandel, Schwartz, & Jessell, 2000). In this re-
spect, researchers use these changes to study HD.

In 1998, Hausdorff et al. studied the gait variability and 
BG disorders. They focused on the stride times of patients 
with HD and Parkinson disease (PD). They showed that 
gait variability significantly increases in these patients and 
concluded that the variability degree correlates with disease 
severity (Hausdorff et al., 1998). They already affirmed that 
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in HD, patients’ stride time intervals are not correlated and 
stable (Hausdorff et al., 1997). For several years, no math-
ematical analysis was implemented on HD. In 2006, Aziz 
and Arif started to study gait complexity of patients with 
neurodegenerative disease. They used threshold dependent 
symbolic entropy, based on analyzing symbolic nonlinear 
time series to study this complexity. Their research showed 
a significant distance for a certain range of thresholds be-
tween control and neural disease subjects. They had also 
investigated the complexity of physiological signal and 
randomized noisy data. They found that at low threshold 
values, the physiological signal’s complexity is higher than 
random signals (Aziz & Arif, 2006). 

To study behavior of patients with HD, Sarbaz et al. in-
troduced a mathematical model of BG. They presented this 
model based on BG structure to simulate abrupt movements 
in patients with HD. In each block, they used neuron mem-
brane relations (Sarbaz, Banaei, & Gharib-Zadeh, 2007). 
One year later, Liao et al. scrutinized asymmetry of gait 
signals in patients with HD versus normal persons by multi-
resolution entropy analysis. Finally, they found that gait 
symmetry in patients with PD, HD, and Amyotrophic Lat-
eral Sclerosis (ALS) is significantly disturbed (Liao, Wang, 
& He, 2008). In the same year, Banaie et al. introduced an-
other mathematical model to study gait behavior in patients 
with HD. The presented model concluded more physiologi-
cal information in comparison with Sarbaz model (Sarbaz 
et al., 2007). 

Moreover the model simulated neurotransmitters role in 
the BG and could evaluate possible drug treatments (Ba-
naie, Sarbaz, Gharib-Zadeh, & Towhidkhah, 2008). In 2009, 
Dutta et al. managed to separate patients with neurological 
disorders like HD, PD, and ALS. They achieved 87.1% 
accuracy using by Elman’s recurrent neural network and 
extracted features from stance, swing, and double support 
intervals (Dutta, Chatterjee, & Munshi, 2009). Likewise, in 
another research, Zheng et al. used machine learning and 
statistical approaches to distinguish patients with HD, PD, 
and ALS based on gait analyses. For this purpose, they uti-
lized 3 supervised classification methods (Support Vector 
Machine, K-Star, and Random Forest) with some extracted 
features from gait cycles. The results demonstrated the fea-
sibility of applied computational classification techniques 
in characterizing these 3 diseases (Zheng, Yang, Wang, & 
McClean, 2009). In 2011, Merrikh-Bayat exerted time se-
ries analysis on some neurodegenerative disorders like HD. 
Results showed that the average dimension of patients with 
PD, HD and ALS are more unfavorable than healthy con-
trol subjects (Merrikh-Bayat, 2011). Furthermore, Banaie 
et al. proceeded to extract proper features for discriminating 
patients with HD, PD, and ALS based on their gait signals. 

The outcome showed that quadratic, bayes classifier had 
better result in classifying patients (Banaie, Pooyan, & Mi-
kaeili, 2011) and in another study, Sarbaz et al. proposed 
a new model for healthy and patients with PD; They also 
introduced a new index for PD severity (Sarbaz, Gharib-Za-
deh, Towhidkhah, Banaie, & Jafari, 2011). They presented 
a model for basal ganglia structure to generate stride time 
interval signal in model output for healthy and PD states; 
Their model had high ability in simulating normal and pa-
tient cases (Sarbaz, Towhidkhah, Banaei, Pooyan, & Ghar-
ib-Zadeh, 2011). Next year, Daliri showed that features de-
rived from double support intervals are common effective 
features for the diagnosis of neurodegenerative diseases us-
ing the gait dynamics (Daliri, 2012). Finally in 2013, Sarbaz 
and Pourhedayat separated patients with HD from normal 
persons using Artificial Neural Network (ANN) classifier 
using extracted features from power spectra density. Their 
best separation accuracy was 96.6% (Sarbaz & Pourheday-
at, 2013); Several studies like this had already published 
about PD separation (Sarbaz, Towhidkhah, Gharib-Zadeh, 
& Jafari, 2012; Sarbaz, Towhidkhah, Mosavari, Janani, & 
Soltan-Zadeh, 2013). 

Various studies tried to quantify HD movement disorders. 
Meanwhile some others presented mathematical mod-
els of HD behavior. In this study, we present a grey box 
mathematical model to simulate HD disorders. This model 
contains main physiological findings about BG. Presenting 
such a model could help us to understand the brain perfor-
mance, HD behavior, and the reason of movement disorders 
in patients with HD.

2. Materials & Methods

2.1. Physiological background

The basal ganglia plays a major role in movement control 
(Galvan & Smith, 2010) and receives input from cortex and 
sends output via thalamus to supplementary motor areas 
(Kliem & Wichmann, 2009). BG includes 5 neural blocks. 
Internal parts are putamen and caudate nucleus (named 
striatum) and other parts are known as globus pallidus (GP) 
and substantia nigra (SN). GP is divided into internal (GPi) 
and external (GPe) segments. Similarly, SN contains com-
pacta (SNc) and reticulate (SNr) parts. GPi and SNr blocks 
terminate the movement control segment. The BG included 
two main pathways between blocks which starts from stria-
tum and leads to the BG output block. Primary information 
processing is done in direct pathway. Indirect pathway con-
nects input and output of the BG via GPe and subthalamic 
nucleus (STN). This path possesses more important role in 
movement control because it processes more information 
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compare to the direct one (Fenneya, Jogb, & Duval, 2008). 
BG parts and their connections are shown in figure 1.

The balance of two pathways is tuned by SNc modula-
tory effects. On the other hand, dopamine and internal parts 
of striatum control the BG behavior. Some cholinergic and 
GABA-ergic neurons of striatum are destroyed in HD. This 
damage causes overactivation in the direct pathway and un-
deractivation in the other one. The neurons death in stria-
tum decreases GPe and SNr inhibition. This in turn results 
in higher GPe activation which inhibits STN much more 
than a lesion and has a similar effect on silencing STN. Fi-
nally, these damages lead to decrease in the output of BG to 
thalamus so as the BG tuning role on movements, decreases 
and HD disorders appear in patients (Vonsattel, Keller, & 
Amaya, 2008). Changes in connection weights are shown 
in Figure 2. BG disorders deteriorate with HD progress and 
affect patient’s gait and movement. 

2.2. Clinical data

In this study, we used predetermined data taken from 
http://www.physionet.org. The dataset contains gait signal 
of 20 patients with HD and 16 healthy persons. Each sam-
ple has 5 minutes recorded signal of stride, swing, and stand 
times for each leg and double support signal for both legs. 
An expert physician labelled patients’ states from 0 to 13 (0 
equal to the most severe state and 13 for a healthy one). To 
measure time intervals, force sensors had been embedded in 
participant’s shoes which recorded 300 samples per second. 
First 20 seconds of records were deleted to reduce initial 
oversight (Hausdorff et al., 1998).

2.3 Mathematical model structure

Neurons death in some BG parts causes abnormal changes 
in the amount of neurotransmitters between connections. 
Physiological studies suggest that these abnormal changes 
are the main cause of HD. Our mathematical model is de-
signed based on BG structure and its principle effect on HD. 
All of input and output connections among BG parts are 
modeled similar to its structure (Figure 3). Each BG block 
contains numerous parallel neurons and we tried to pres-
ent a matched mathematical relation for each one of them. 
ANN is known as a proper mathematical tool in modeling 
neuron and central nervous system’s behavior (Mandic & 
Chambers, 2001) and can properly simulate brain neural 
blocks. Each block shows a part of BG with the same name. 

Similar to BG structure, we have two paths in the model; 
Direct pathway which connects striatum to GPi/SNr and in-
direct pathway that starts from striatum, crosses GPe and 
subthalamic nucleus, and finishes in GPi/SNr. So we have 

two feedbacks in the model; one in subthalamic nucleus to 
GPe input and the other in SNc to striatum. All blocks have 
10 neurons except output; This number is set after examina-
tions to achieve acceptable accuracy with fewer computa-
tions.

From physiological perspective, we know that cortex 
input for gait is without any pattern and duration so these 
factors influence on person’s gait via BG. To simulate this 
process in the model and to be ensured that BG makes pat-
tern, random signal is used in input block.

For each BG block, we used the single layer feed-forward 
neural network that models various parallel neurons in the 
block (Too, 1999). Model structure of each block is exhib-
ited in Figure 4 and its relations are as follows:

Exposed model was trained for healthy state to find proper 
weights using back-propagation method. The found weights 
simulated neurotransmitters in BG connections. Moreover, 
a neurologist should definitely determine the inhibitory or 
excitatory behavior of a connection. We considered these 

types in our model to reach a realistic one. Therefore, 
weights were assumed positive in excitatory connections 
and negative in inhibitory ones. From physiological view-
point, the presented model can simulate the real BG behav-
ior in HD disorders. Therefore, to find connection weights 
in disease states, normal weights were adapted similar to 
changes which are caused in HD state (Figure 2).

3. Results

Figure 5 shows a real signal and the model response in 
healthy state. In the database, a parameter shows the sever-
ity of disease. Severity parameter decreases when disease 
progress intensifies brain destruction. Thus, we adapted 
model weights in different disease states. Our selected se-
verities to show disease progress were 11, 8, 5, and 2 where-
as reported severities in the database ranged from 13 to 0. 
Model responses in 4 disease states with clinical recorded 
signals are shown in Figure 6.

According to the physiological findings, increasing or de-
creasing model connection weights are indicative of change 
in secretion of respective neurotransmitters. In each layer, 
we have some neurons that their output connection weights 
behave similar to the output of neurotransmitter amount. 
To evaluate the amount of neurotransmitter in the output 
of each block, we need to define a proper matrix norm. 
Although in linear algebra several different norms are pre-
sented, we found the Euclidean norm better than others in 

output=f{(∑wi*Ii)+b}          
i

f(x)=
ex-e-x

ex+e-x
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 Figure 2. Connection weights changes of the BG in HD stages.

Figure 1. BG parts and connections among its blocks.

Sarbaz, Y., et al. (2016). A grey box neural network model of basal ganglia for gait signal of patients with huntington disease. Basic and Clinical Neuroscience, 7(2), 107-114.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


111

Basic and Clinical
April 2016. Volume 7. Number 2

Figure 4. The structure of each block in our model.

Figure 3. The structure of the presented model.

Figure 5. A real signal and the model response in healthy state.
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matching with the physiological behavior. This norm is de-
fined as:

Where aij refers to the connection weight from ith to jth neu-
rons. It is obvious that the summation of connection weights 
in each layer indicates the amount of neurotransmitter in re-
lated one. Table 1 shows neurotransmitters changes in BG 
parts in 4 disease states.

4. Discussion

HD is a progressive neurodegenerative disease with dis-
abling conditions in final stages. Understanding the exact 

brain performance is impossible due to its complex struc-
ture which this complexity increases in disease state caused 
by brain destruction. Therefore, it is not clear why destruc-
tion of some specific BG neurons causes vast movement 
disorders in HD. In this regard, presenting mathematical 
models of brain’s physiological performance plays a major 
role in increasing medical knowledge and shedding light on 
the performance of brain parts. Scrutiny mathematical mod-
els can be helpful in studying HD and expand our knowl-
edge about HD states.

Although, neurological diseases like HD have been inves-
tigated by some researchers in various studies, few math-
ematical models have been presented for HD. In this study, 
we tried to present a complete mathematical model based 

Figure 6. Model responses in 4 stages of disease with clinical recorded signals.

Table 1. Neurotransmitter changes of BG parts in four disease stages versus normal state.

Weight changes SNc to 
striatum

Striatum to 
GPi/SNr

Striatum to 
GPe GPe to STN STN to GPe STN to GPi/

SNr
GPi/SNr to 
thalamus

Disease stage 1 (severity: 11) 0.160 -0.077 -4.618 7.262 -3.441 -0.640 -2.566

Disease stage 2 (severity: 08) 0.173 -0.555 -6.699 8.081 -3.441 -4.219 -2.803

Disease stage 3 (severity: 05) 0.173 -0.903 -9.175 13.351 -3.441 -5.586 -3.351

Disease stage 4 (severity: 02) 0.352 -1.072 -9.919 17.831 -3.441 -7.121 -4.035

i j
||M||E=[∑ ∑ aij

2]1/2

Sarbaz, Y., et al. (2016). A grey box neural network model of basal ganglia for gait signal of patients with huntington disease. Basic and Clinical Neuroscience, 7(2), 107-114.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


113

Basic and Clinical
April 2016. Volume 7. Number 2

on the main physiological findings which can simulate pa-
tient’s gait (stride time intervals) with high accuracy. The 
model is designed based on the BG physiological structure. 
All BG parts and their input and output signals were ar-
ranged like biological neural blocks. Model blocks have 
excitatory or inhibitory connections according to real BG 
connections. To make internal blocks, a structure was en-
visaged with numerous parallel neurons like biological 
ones which could implement by ANN. Back-propagation 
method was applied to find proper weights for healthy state. 
Obtained weights were adapted with disease states to in-
troduce a model of BG while the disease progresses. Our 
results show the simulating ability of the model in normal 
condition and different disease stages (Figures 5 and 6). 

Based on physiological background, direct and indirect 
pathways are changed in HD states. This change increases 
in pathways as disease progresses due to destruction of BG. 
Related connection weights decrease against destruction 
accretion. In disease state due to striatum demolition, STN 
enhances output whereas GPe input from indirect pathway 
and GPi-SNr input from direct pathway diminishes. These 
changes and other variations which are caused by BG de-
struction are assimilated very well by the model. 

Table 1 shows connection weights; each number shows 
Euclidean norm of relative connection weights. Positive 
numbers show increasing and negative ones decreasing 
trend in the amount of neurotransmitters. Higher values 
demonstrate more neurotransmitters change in connection 
weights. Vast neuron destruction in indirect pathway makes 
related values bigger and causes enormous difference be-
tween them that clearly represented in striatum to GPe and 
GPe to STN connections (Table 1). These changes are in 
accordance with the changes in HD states (Figure 2) and 
progress with HD severity. We can conclude that altera-
tions caused in the proposed model like neural destruction 
and neurotransmitters changes in HD state are completely 
matched with physiological findings.

Fine similarity between the presented model and BG 
physiological structure with its high ability in simulating 
HD disorders, introduces this model as a powerful tool to 
analyze HD behavior. This great ability in simulating could 
be used to evaluate effects of various drugs on neurotrans-
mitter changes and propose some new medications. Also it 
could use to evaluate other nonpharmaceutical treatments of 
HD like deep brain stimulation. This model can rapidly and 
cheaply assess different hypothesis; so it could be use on 
clinical research to find novel treatment methods. Moreover 
by little change in connection weights, the model generates 
numerous HD behaviors that could be used in quantifying 
studies, anticipating the BG destruction process, predicting 

psychiatric symptoms, and finally prescribing the suitable 
dosage of drugs.

Reference

Aziz, W., & Arif, M. (2006). Complexity analysis of stride interval 
time series by threshold dependent symbolic entropy. European 
Journal of Applied Physiology, 98(1), 30-40.

Banaie, M., Pooyan, M., & Mikaeili, M. (2011). Introduction and 
application of an automatic gait recognition method to diagnose 
movement disorders that arose of similar causes. Expert Systems 
with Applications, 38(6), 7359-7363.

Banaie, M., Sarbaz, Y., Gharib-Zadeh, Sh., & Towhidkhah, F. (2008). 
Huntington’s disease: Modeling the gait disorder and proposing 
novel treatments. Journal of Theoretical Biology, 254(2), 361-367.

Daliri, M. R. (2012). Automatic diagnosis of neuro-degenerative dis-
eases using gait dynamics. Measurement, 45(7), 1729-1734.

Dutta, S., Chatterjee, A., & Munshi, S. (2009). An automated hierar-
chical gait pattern identification tool employing cross-correlation-
based feature extraction and recurrent neural network based clas-
sification. Expert Systems, 26(2), 202-217.

Fenneya, A., Jogb, M. S., & Duval, C. (2008). Bradykinesia is not a 
“systematic” feature of adult-onset Huntington’s disease; impli-
cations for basal ganglia pathophysiology. Brain Research, 1193, 
67-75.

Galvan, A., & Smith, Y. (2010). Basal Ganglia. In K. Kompoliti & L. 
Verhagen (Eds.), Encyclopedia of Movement Disorders (vol. 1, pp. 
113-118). San Diego, CA: Academic Press.

Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Gold-
berger, A. L. (1998). Gait variability and basal ganglia disorders: 
Stride-to-stride variations of gait cycle timing in Parkinson’s dis-
ease and Huntington’s disease. Movement Disorders, 13(3), 428-
437.

Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, 
M. E., Wei, J. Y., et al. (1997). Altered fractal dynamics of gait: Re-
duced stride-interval correlations with aging and Huntington’s 
disease. Journal of Applied Physiology, 82(1), 262-269.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of 
Neural Science (4th ed.). New York: McGraw-Hill.

Kliem, M. A., & Wichmann, T. (2009). Basal Ganglia: Functional 
Models of Normal and Disease States. In P. R Hof & C. V Mobbs 
(Eds.), Encyclopedia of Neuroscience (pp. 229-233). Amsterdam, 
Springer: Academic Press.

Liao, F., Wang, J., & He, P. (2008). Multi-resolution entropy analy-
sis of gait symmetry in neurological degenerative diseases and 
amyotrophic lateral sclerosis. Medical Engineering & Physics, 30(3), 
299-310.

Mandic, D., & Chambers, J. (2001). Recurrent Neural Networks for Pre-
diction: Learning Algorithms, Architectures and Stability. New York: 
John Wiley & Sons, Inc.

Sarbaz, Y., et al. (2016). A grey box neural network model of basal ganglia for gait signal of patients with huntington disease. Basic and Clinical Neuroscience, 7(2), 107-114.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


114

Merrikh-Bayat, F. (2011). Time series analysis of Parkinson’s dis-
ease, Huntington’s disease and amyotrophic lateral sclerosis. Pro-
cedia Computer Science, 3, 210-215.

Sarbaz, Y., Banaei, M., & Gharib-Zadeh, S. (2007). A computational 
model for the Huntington disease. Medical Hypotheses, 68, 1154-
1158.

Sarbaz, Y., Gharib-Zadeh, S., Towhidkhah, F., Banaie, M., & Jafari, 
A. (2011). A gray-box neural network model of Parkinson's dis-
ease using gait signal. Basic and Clinical Neurosciences, 2(3), 33-42.

Sarbaz, Y., & Pourhedayat, A. (2013). Spectral analysis of gait disor-
ders in Huntington’s disease: A new horizon to early diagnosis. 
Journal of Mechanics in Medicine and Biology, 14(1), 1450001.

Sarbaz, Y., Towhidkhah, F., Banaei, M., Pooyan, M., & Gharib-Za-
deh, Sh. (2011). Modelling the gait of normal and Parkinsonian 
persons for improving the diagnosis. Neuroscience Letters, 509(2), 
72-75.

Sarbaz, Y., Towhidkhah, F., Gharib-Zadeh, S., & Jafari, A. (2012). 
Gait spectral analysis: An easy fast quantitative method for diag-
nosing Parkinson’s disease. Journal of Mechanics in Medicine and 
Biology, 12(3), 1250041.

Sarbaz, Y., Towhidkhah, F., Mosavari, V., Janani, A., & Soltan-
Zadeh, A. (2013). Separating Parkinsonian patients from normal 
persons using handwriting features. Journal of Mechanics in Medi-
cine and Biology, 13(3), 1350030.

Too, H. K. (1999). Statistical design of experiments using multilayer per-
ceptron neural networks. San Diego: University of California.

Vonsattel, J. G., Keller, C., & Amaya, M. P. (2008). Neuropathology 
of Huntington’s disease. Handbook of Clinical Neurology, 89, 599-
618.

Zheng, H., Yang, M., Wang, H., & McClean, S. (2009). Machine 
learning and statistical approaches to support the discrimination 
of neuro-degenerative diseases based on gait analysis. In Intel-
ligent Patient Management (pp. 57-70). Berlin, Springer: Heidel-
berg.

Sarbaz, Y., et al. (2016). A grey box neural network model of basal ganglia for gait signal of patients with huntington disease. Basic and Clinical Neuroscience, 7(2), 107-114.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir

