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ABSTRACT 

Omega polynomial  is defined on opposite edge strips ops in a graph G = G(V,E). The 
first and second derivatives, in X = 1, of Omega polynomial provide the Cluj-Ilmenau CI 
index. Close formulas for calculating these topological descriptors in an infinite lattice 
consisting of all R[8] faces, related to the famous Dyck graph, is given. 
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1. INTRODUCTION 

The rigorous and often aesthetically appealing architecture of crystal lattices, attracted the 
interest of scientists in a broad area, from crystallographers, to chemists and 
mathematicians [1−9]. The studies on classification have been followed by studies on the 
usefulness, in chemical reactions or in physical devices, and more recently by applied 
mathematical studies, in an effort to give new, more appropriate characterization of the 
world of crystals. Thus, recent articles in crystallography promoted the idea of topological 
description and classification of crystal structures [1−6]. They present data on real but also 
hypothetical lattices designed by computer.  

Dendrimers are hyper-branched macromolecules [10−15] with the size in the 
nanometer scale. The endgroups (i.e., the groups reaching the outer periphery) can be 
functionalized, thus modifying their physico-chemical or biological properties. Vertices in a 
dendrimer, except the external endpoints, are called branching points. A regular dendrimer 
has all the branching points of the same degree, otherwise it is irregular. A dendrimer is 
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called homogeneous if all its branches have the same length. The growth of a dendrimer 
follows a mathematical progression. 

Dendrimers have gained a wide range of applications in supra-molecular chemistry, 
particularly in host-guest reactions and self-assembly processes or as gene transfer vectors 
[16,17].  

The present work describes the design and topology (in terms of Omega 
polynomial) of two all R[8] lattices. The article is organized as follows: The second section 
presents the construction of the repeat units as well as that of a nano-dendrimer and studied 
lattices. The third section provides the definition of Omega polynomial and CI index, while 
the forth section gives the main results. Conclusions and references will close the article. 
 
2. DESIGN OF NANO-STRUCTURES 

The units in building the lattices under study in this paper are built up by using some map 
operations, namely the Quadrupling (or Chamfering) Q, Capra, Ca and Opening Op 
operations. For the smallest unit, the sequence Op2a(Q(C)) is used (Figure 1). Op2a says the 
opening is achieved by putting two points on alternating edges in the parent structure (in 
our case, the quadrupling transform of the Cube C).  

More about map operations, the reader is kindly addressed to consult the refs. 
[18−22].  

 
 

(a) 56_Op2a(Q(C)) (b) 56_Op2a(Q(C)), optimized; R[8] = 12 
 

 

    
Figure 1. R[8_2] lattice: unit (1,1,1) generation (a) and (1,1,1) optimized form (b) 

 
We name this unit R[8_2]_(1,1,1), meaning two octagons emerge from the contour 

of each open face, all-together 2×6=12 octagons, in the unit (1,1,1) cube of the lattice. The 
open faces are also R[8] and their number is 6; its genus [23] (i.e., the number of simple 
tori consisting a structure) of this unit is g = 3. 

The unit R[8_2] can be assembled in a dendrimer (Figure 2). The growth of such a 
dendrimer goes up to the first generation (with the number of vertices v= 344). At a second 
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generation, the endings of the units are no more free, they fit to each other and thus forming 
the lattice symbolized R[8_2] (see below). 

The number of units in the kth orbit (i.e., that located at distance k from the center) 
of a regular dendrimer can be expressed as a function vertex degree d 

1( 1)k
ku d d −= −         (1) 

By using the progressive degree p=d-1, relation (1) becomes 
1( 1) k

ku p p −= +        (2) 

The total number of units u(D) in dendrimer is obtained by summing the 
populations on all orbits (up to the radius/generation r) and the core 

1

1
(D) 1 ( 1)

r
k

k
u p p −

=

= + + ∑               (3)   

By developing the sum in (3) one obtains [10] 
12( 1)(D)
1

r
rpu p

p

+ −
= −

−
      (4) 

For the case in Figure 2, one obtains: p=5; r=1; u(D) = 7. 
 

v=344, top view 3D view 

  
Figure 2. A dendrimer built up from the R[8_2] unit (1,1,1); u(D) = 7 

 

The second unit was designed by the sequence Op2a(Ca(C)), as shown in Figure 3. The 
number of octagonal faces emerging from the contour of open faces in this unit is four, thus 
we named this R[8_4]_(1,1,1,) unit. The total number of octagonal faces is 24; the open faces 
are R[12] and their number is 6 while g = 3.  

The unit R[8_4] cannot be assembled in a dendrimer because: (i) it is chiral (the 
Capra Ca operation is prochiral) and (ii) already at the first generation the units for the 
lattice, named here R[8_4]. The units fit only right/left R/L to form an alternating, non-chiral, 
mezzo-net (Figure 3).  

The two lattices R[8_2] and R[8_4] coexist: any lattice has its co-lattice (a complementary 
one). In fact is only one lattice R[8_2]&R[8_4] (Figure 4) but the boundary structure is different. 
Accordingly, the topology and polynomial description of the two lattice will also differ. 
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3. OMEGA POLYNOMIAL DEFINITION 

Let G(V,E) be a connected graph, with the vertex set V(G) and edge set E(G). Two 
edges e = uv and f = xy  of G are called codistant  e co f  if they obey the following relation: 
  ( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =     (5) 

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also 
symmetric, if e co f  then f co e. In general, relation co is not transitive, an example showing 
this fact is the complete bipartite graph 2,nK . If “co” is also transitive, thus an equivalence 
relation, then G is called a co-graph and the set of edges });({:)( ecofGEfeC ∈=  is 
called an orthogonal cut oc of G , E(G) being the union of disjoint orthogonal cuts: 

1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . Klavžar [29] has shown that relation co is a 
theta Djoković-Winkler relation [30,31]. 

Let e = uv and f = xy be two edges of G which are opposite or topologically parallel 
and denote this relation by e op f. A set of opposite edges, within the same face/ring, 
eventually forming a strip of adjacent faces/rings, is called an opposite edge strip ops, 
which is a quasi-ortogonal cut qoc (i.e., the transitivity relation is not necessarily obeyed). 
Note that co relation is defined in the whole graph while op is defined only in a face/ring.  

The ops relation has the properties: (i) any two subsequent edges of such a strip are 
in op relation; (ii) any three subsequent edges belong to adjacent (edge sharing) faces/ 
rings; (iii) the inner dual of an ops is a path or a cycle, thus neither revisiting nor branching 
is allowed.  

An ops starts/ends in either one even face/ring or in two odd faces/rings; in the first 
case, the ops is a cycle while in the second one it is a path. In case of open structures, the 
open (or infinite) faces are equivalent to the odd faces. There are cases in which the two 
odd faces/rings superimpose and ops is a pseudo cycle, because the op relation in the 
first/last odd face/ring is not obeyed. 

Let m(G,s) be the number of ops strips of length s. The Omega polynomial is defined as 
[32]. 

( , ) ( , ) s
s

G X m G s xΩ = ⋅∑          (6) 

The first derivative (in x=1) equals the number of edges in the graph 

( ,1) ( , ) ( )
s

G m G s s e E G′Ω = ⋅ = =∑            (7) 
A topological index, called Cluj-Ilmenau,22 CI=CI(G), was defined on Omega polynomial 

2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω         (8) 

It is easily seen that, for a single ops, one calculates the polynomial ( , ) 1 sG X XΩ = ×  and 

the index 2 2 2( ) ( ( 1)) 0CI G s s s s s s= − + − = − = . 
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The coefficient of the term at exponent s=1 has found utility as a topological index, 
called np, the number of pentagon fusions, appearing in small fullerenes as a destabilizing 
factor. This index accounts for more than 90 % of the variance in heat of formation HF of 
fullerenes C40 and C50 [33]. 

  
4. OMEGA POLYNOMIAL IN R[8_2]& R[8_4] LATTICE  

Omega polynomial is given here in terms of the lattice dimension a = number of repeat 
units on a given direction of the 3D coordinates; the formulas are derived for a cube (a,a,a)-
lattice. The polynomial is calculated in the ring-version, on two maximal rings Rmax[8] and 
Rmax[12], according to the lattice structure.  

In case of lattice R[8_2], the polynomial, calculated at Rmax[8], consists of two terms 
(see Table 1). The first term refers to the “oblique” ops while the second one to the 
“orthogonal” ops.  

 
Table 1. Omega polynomial in R[8_2] lattice, designed by Op2a(Q(C)) operations. 

 
 Formulas; (lattice (a,a,a); Rmax[8]) 

1 1 21 2(R[8_2], ) e eX c X c XΩ = +  

2 2 3(R[8_2]) 24 32v a a= +  

3 3 2 2[8] 18 3( 1) 3 (5 1)R a a a a a= − − = + ; 2[12] 6 (2 1)R a a a= − +   

4 2 6 2 4 ( 1)(R[8_2], ) 6 3a a aX a X a X+ +Ω = ⋅ + ⋅  

5 

2 3(R[8_2],1) 24 48a a′Ω = +   

3 4 5(R[8_2],1) 144 312 48a a a′′Ω = + +  

2 3 4 5 6( ) 24 192 264 2256 2304CI G a a a a a= − − + + +  

 Examples 
6 CI:  (a=1)=4608; (a=2)=222240; (a=3)=2243808; (a=8)=678885888. 

7 v(G):  (a=1)=56; (a=2)=352; (a=3)=1080; (a=8)=17920. 

8 R[8]:  (a=1)=18; (a=2)=132; (a=3)=432; (a=8)=7872. 

9 R[12]: (a=1)=12; (a=2)=84; (a=3)=288; (a=8)=5808. 
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Table 2. Omega polynomial in R[8_2] lattice; Rmax[12]. 
 Formulas; (lattice (a,a,a); 2a ≥ ; Rmax[12]) 

1 (R[8_2], ) eX XΩ =  

2 224 (2 1)(R[8_2], ) a aX X +Ω =  

3 

2 2 3(R[8_2],1) 24 (2 1) 24 48a a a a′Ω = + = +   
2 3 2(R[8_2],1) 24 (2 1)(48 24 1)a a a a′′Ω = + + −  

2 2 2 2 3 2( ) [(24 (2 1)] [24 (2 1) 24 (2 1)(48 24 1)] 0CI G a a a a a a a a= + − + + + + − =  
 

Observe in formulas for the number of vertices (Table 1, entry 2) and edges ( ′Ω , Table 
1, entry 5), the maximal terms remind of the parameters of Duck graph. At Rmax[12], the 
polynomial has only one term (Table 2), and because there is only one ops, CI=0 (see text). 

In case of lattice R[8_4], the polynomial, calculated at Rmax[8], shows five terms (Table 
3). The maximal term in calculating CI, in both lattices is the same: 2304a6, also supporting 
the fact of a single lattice with two different boundaries. At Rmax[12], the polynomial has 
only two terms (Table 4). Observe ′Ω has the same form as in case of Rmax[8], its meaning 
being the number of edges in the graph. 
 

Table 3. Omega polynomial in R[8_4] lattice, designed by Op2a(Ca(C)) operations. 
 

 Formulas; (lattice (a,a,a); Rmax[8]) 

1 
5

1
(R[8_4], ) ie

i
i

X c X
=

Ω =∑  

2 2(G) 8 (13 4( 1))v a a= + −  
3 3 2[8](G) 24 3 ( (3 2) 1) 3 (5 2 1)R a a a a a a a= − − − = + +  

4 2

3 2 4 2 6

2 6 4 4

(R[8_4], ) 36 6(3 2 4) 12( 1)

6( 1) 3( 1)a a

X a X a a X a X

a X a X+

Ω = ⋅ + + − ⋅ + − ⋅

+ − ⋅ + − ⋅
 

5 

2 3(R[8_4],1) 84 48a a′Ω = +  
2 3 4 5(R[8_4],1) 144 252 372 192 168 48a a a a a′′Ω = − + − + +  

2 3 4 5 6( ) 144 252 456 144 6888 8016 2304CI G a a a a a a= − + − + + + +  
 Examples 
6 CI:  (a=1)=17004; (a=2)=513864; (a=3)=4185828; (a=8)=894907728. 
7 v(G): (a=1)=104; (a=2)=544; (a=3)=1512; (a=8)=20992. 
8 R[8]:  (a=1)=24; (a=2)=150; (a=3)=468; (a=8)=8088. 
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Table 4. Omega polynomial in R[8_4] lattice; Rmax[12]. 
 

 Formulas; (lattice (a,a,a); 2a ≥ ; Rmax[12])  

1 24
1(R[8_4], ) eX c X XΩ = +  

4 22 4 12 [4( 2) 13](R[8_4], ) 6 a aX a X X − +Ω = +  

5 

2 3(R[8_4],1) 84 48a a′Ω = +  
2 2 3 4(R[8_4],1) 12 (1 4 300 480 192 )a a a a a′′Ω = − + + +  

2 2 3( ) 96 (36 24 1)CI G a a a= + −  
 Examples 
6 CI:   (a=2)=128640; (a=3)=838944; (a=8)=89647104. 

 
Formulas for CI, number of atoms v, and rings R are also given in Table. Numerical 
evaluation of Omega polynomial was made by our software program Nano Studio [34]. 

 

5. CONCLUSIONS 

Complex lattices can be designed by using sequences of map operations. Omega 
polynomial ( , )G xΩ  provided a good characterization of the lattice topology along with 
other lattice characteristics. Formulas for calculating ( , )G xΩ  in R[8_2] and R[8_4] lattices, 
at two maximal ring values (8 and 12, respectively) according to their topology, were 
derived. Counting formulas for the number of atoms, and rings were also given. 
 
Acknowledgements: The article is supported by the Romanian Grant ID_506/2009. 
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