Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

MODJTABA GHORBANI

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran

(*Received January 10, 2010*)

ABSTRACT

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as $PI_v(G) = \sum_{e=uv} n_u(e) + n_v(e)$. Then Omega polynomial $\Omega(G,x)$ for counting qoc strips in G is defined as $\Omega(G,x) = \sum_{c} m(G,c)x^{c}$ with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. The vertex PI, omega and Sadhana polynomials of this class of fullerenes are computed for the first time.

Keywords: Fullerene, vertex PI polynomial, Omega polynomial, Sadhana polynomial.

1. INTRODUCTION

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. Fullerenes F_n can be drawn for $n = 20$ and for all even $n \ge 24$. They have *n* carbon atoms, 3n/2 bonds, 12 pentagonal and n/2-10 hexagonal faces. The most important member of the family of fullerenes is C_{60} [1,2].

Let Σ be the class of finite graphs. A topological index is a function Top from Σ into real numbers with this property that $Top(G) = Top(H)$, if G and H are isomorphic.

Let $G = (V, E)$ be a connected bipartite graph with the vertex set $V = V(G)$ and the edge set $E = E(G)$, without loops and multiple edges. The number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $n_u(e)$. Analogously, $n_v(e)$ is the number of vertices of G whose distance to the vertex v is smaller than u. The vertex PI index is a topological index which is introduced in [3]. It is defined as the sum of $[n_u(e) + n_v(e)]$, over all edges of a graph G. Let G be an arbitrary graph. Two edges $e = uv$ and $f = xy$ of G are called codistant (briefly: e co f) if they obey the topologically parallel edges relation. For some edges of a connected graph G there are the following relations satisfied [4,5]:

$$
e \, co \, e
$$

$$
e \, co \, f \Leftrightarrow f \, co \, e
$$

$$
e \, co \, f \, , f \, co \, h \Rightarrow e \, co \, h
$$

though the last relation is not always valid.

Set $C(e) = \{f \in E(G) \mid f \text{ co } e\}$. If the relation "co" is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut "oc" of the graph G. The graph G is called co-graph if and only if the edge set $E(G)$ is the union of disjoint orthogonal cuts.

Let $m(G,c)$ be the number of goc strips of length c (i.e., the number of cut-off edges) in the graph G, for the sake of simplicity, $m(G,c)$ will hereafter be written as m. Three counting polynomials have been defined [6-8] on the ground of qoc strips:

 $\Omega(G, x) = \sum_{c} m \cdot x^{c}$, $\Theta(G, x) = \sum_{c} m \cdot c \cdot x^{c}$ and $\Pi(G, x) = \sum_{c} m \cdot c \cdot x^{e-c}$. $\Omega(G, x)$ and $\Theta(G, x)$ polynomials count equidistant edges in G while $\Pi(G, x)$, non-equidistant edges. In a counting polynomial, the first derivative (in $x=1$) defines the type of property which is counted; for the three polynomials they are:

$$
\Omega'(G,1) = \sum_{c} m.c = |E(G)|
$$
, $\Theta'(G,1) = \sum_{c} m.c^2$ and $\Pi'(G,1) = \sum_{c} m.c.(e-c)$.

If G is bipartite, then a qoc starts and ends out of G and so $\Omega(G, 1) = r/2$, in which r is the number of edges in out of G.

The Sadhana index Sd(G) for counting qoc strips in G was defined by Khadikar et. al. [9,10] as $Sd(G) = \sum_{c} m(G,c)(|E(G)|-c)$, where $m(G,c)$ is the number of strips of length c. We now define the Sadhana polynomial of a graph G as $Sd(G, x) = \sum_{c} m(G, c) \cdot x^{|E| - c}$. By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing x^c with $x^{|E|-c}$ in omega polynomial. Then the Sadhana index will be the first derivative of Sd(G, x) evaluated at $x = 1$. Herein, our notation is standard and taken from the standard book of graph theory [11-17].

Example 1. Let C_n denotes the cycle of length *n*.

$$
\Omega(C_n, x) = \begin{cases} \frac{n}{2} x^2 & 2 \mid n \\ nx & 2 \nmid n \end{cases} \text{ and } Sd(C_n, x) = \begin{cases} \frac{n}{2} x^{n-2} & 2 \mid n \\ nx^{n-1} & 2 \nmid n \end{cases}.
$$

Example 2. Suppose K_n denotes the complete graph on n vertices. Then we have:

$$
\Omega(K_n, x) = \begin{cases} \frac{n}{2} (x^{\frac{n}{2}} + x^{\frac{n}{2}-1}) & 2 \mid n \\ nx^{\frac{n-1}{2}} & 2 \nmid n \end{cases} \text{ and } Sd(K_n, x) = \begin{cases} \frac{n}{2} (x^{\frac{n}{2}(n-2)} + x^{\frac{n^2}{2} - n+1}) & 2 \mid n \\ nx^{(n-1)(n-2)/2} & 2 \nmid n \end{cases}.
$$

Example 3. Let T_n be a tree on n vertices. We know that $|E(T_n)| = n - 1$. So,

$$
\Omega(T_n, x) = \Theta(T_n, x) = (n - 1)x, \ Sd(T_n, x) = \Pi(T_n, x) = (n - 1)x^{n-2}.
$$

2. MAIN RESULTS AND DISCUSSION

The aim of this section is to compute the counting polynomials of equidistant (Omega, Sadhana and Theta polynomials) of an infinite family $F_{12(2n+1)}$ of fullerenes with $12(2n+1)$ carbon atoms and 36n+18 bonds (the graph $F_{12(2n+1)}$, Figure 1 is n = 4).

Theorem 4. The omega polynomial of fullerene graph $F_{12(2n+1)}$ for $n \ge 2$ is as follows:

$$
\Omega(F_{12(2n+1)}, x) = 12x^3 + 12x^{2n-2} + 6x^{n-1} + 3x^{2n+4}.
$$

Proof. By figure 1, there are four distinct cases of qoc strips. We denote the corresponding edges by f_1 , f_2 , f_3 and f_4 . By the table 1 proof is completed.

Table 1. The Number of Equidistant Edges**.**

Corollary 5. The Sadhana polynomial of fullerene graph $F_{12(2n+1)}$ is as follows: $Sd(F_{12(2n+1)}, x) = 12x^{36n+15} + 12x^{34n+20} + 6x^{35n+19} + 3x^{34n+14}.$

Now, we are ready to compute the vertex PI polynomial of fullerene graph $F_{12(2n+1)}$. It is well-known fact that an acyclic graph T does not have cycles and so $n_u(e|G) + n_v(e|G)$ $= |V(T)|$. Thus $PI_v(T) = |V(T)|$. E(T). Since a fullerene graph F has 12 pentagonal faces, $PI_v(F)$ < $|V(F)|$. $|E(F)|$. Let G be a connected graph. The PI_v polynomials of G are defined as $PI_v(G; x) = \sum_{e=uv \in E(G)} x^{n_u(e|G)+n_v(e|G)}$. Obviously $PI_v'(G, 1) = PI_v(G)$ and $PI_v(G, 1) = PI_v(G)$ |E(G)|. Define $N(e) = |V|$ – $(n_u(e) + n_v(e))$. Then $PI_v(G)$ = $\sum_{e=uv}$ [| V | -N(e)] = | V || E | - $\sum_{e=uv}$ N(e) and we have:

$$
PI_{v}(G, x) = \sum_{e=uv \in E(G)} x^{n_{u}(e) + n_{v}(e)} = \sum_{e=uv \in E(G)} x^{|V(G)| - N(e)} = x^{|V(G)|} \sum_{e=uv \in E(G)} x^{-N(e)}.
$$

Figure1.The graph of fullerene $F_{12(2n+1)}$ for $n = 4$.

Example 6. Suppose F_{30} denotes the fullerene graph on 30 vertices, see Figure 2. Then $\text{PI}_v(F_{30}, x) = 10x^{20} + 10x^{22} + 20x^{26} + 5x^{30}$ and so $\text{PI}_v(F_{30}) = 1090$.

Figure 2. The Fullerene Graph F_{30.}

<www.SID.ir>

Theorem 7. The vertex PI polynomial of fullerene graph $F_{12(2n+1)}$ for $n \ge 2$ is as follows: $^{24n-64}$ 12 $^{24n-44}$ 12 $^{24n-12}$ $^{6(n-2)x}$ $^{24n-4}$ $^{24n-2}$ $^{24n-2}$ 24x $\text{PI}_{\text{v}}(F_{12(2n+1)},x) = 24x^{24n-64} + 12x^{24n-44} + 12x^{24n-12} + 6(n-3)x^{24n-4} + 24x^{24n-2} + 24x^{24n-1}$ $+ 24x^{24n+6} + 24x^{24n+8} + 24x^{24n+10} + 6(5n-22)x^{24n+12}.$

Proof. From Figures 3, one can see that there are ten types of edges of fullerene graph $F_{12(2n+1)}$. We denote the corresponding edges by e_1, e_2, \ldots, e_{10} . By table 2 the proof is completed.

Edge	Number of vertex which are codistance from two ends of edges	Num
e ₁		$6(5n-22)$
e ₂	2	12
e ₃	4	12
e ₄	6	24
e ₅	12	24
e ₆	14	24
e_7	16	$6(n-3)$
e_8	24	12
e ₉	56	12
e_{10}	76	24

Table 2. Computing N(e) for Different Edges.

Figure 3. Types of Edges of Fullerene Graph F_{12(2n+1)}.

REFERENCES

[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R.E. Smalley *Nature,* **318**, 162, 1985.

[2] H. W. Kroto, J. E. Fichier and D. E Cox, The Fulerene, Pergamon Press, New York, 1993.

[3] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, *Disc. Appl. Math.*, 2007, doi: 10.1016/j.dam.2007.08.041.

[4] B. E. Sagan, Y.-N. Yeh and P. Zhang, *Int. J. Quantum Chem*., **60**, 959, 1996.

[5] P. E. John, A. E. Vizitiu, S. Cigher, and M. V. Diudea, MATCH Commun. Math. Comput. Chem., **57**, 479, 2007.

[6] M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu and P. E. John, *Croat. Chem. Acta*, **79**, 445, 2006.

[7] A. E. Vizitiu, S. Cigher, M. V. Diudea and M. S. Florescu, *MATCH Commun. Math. Comput. Chem.*, **57**, 457, 2007.

[8] M.V. Diudea, *Fullerenes, Nanotubes, and Carbon Nanostructures*, **10**, 273, 2002.

[9] P. V. Khadikar, S. Joshi, A. V. Bajaj and D. Mandloi, *Bioorg. Med .Chem. Lett.*, **14**, 1187, 2004.

[10] P. V. Khadikar, V. K. Agrawal and S. Karmarkar, *Bioorg. Med. Chem.*, **10**, 3499, 2002.

[11] N. Trinajstic, Chemical Graph Theory, CRC Press, *Boca Raton, FL*, 1992.

[12] A. R. Ashrafi, M. Ghorbani and M. Jalali, *Indian J. Chem*., **47**, 535, 2008.

[13] A. R. Ashrafi and M. Ghorbani, *MATCH Commun. Math. Comput. Chem.*, **60**(2), 359, 2008.

[14] M. Ghorbani and A. R. Ashrafi, *J. Comput. Theor. Nanosci.***, 3**, 803, 2006.

[15] A. R. Ashrafi, M. Ghorbani and M. Jalali, *Digest Journal of Nanomaterials and Biostructures*, **3**(4), 245, 2008.

[16] A. R. Ashrafi, M. Jalali, M. Ghorbani, *MATCH Commun. Math.Comput. Chem*., **60**(3), 905, 2008.

[17] M. Ghorbani and M. Jalali, *MATCH Commun. Math.Comput. Chem*., **62**(3), 353, 2009.