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ABSTRACT 

In this paper, at first we introduce a new index with the name Co-PI index and obtain some 
properties related this new index. Then we compute this new index for TUC4C8(R) nanotubes. 
 
Keywords: Vertex-PI index, Co-PI index, 

4 8 ( )TUC C R Nanotube. 

 

1 INTRODUCTION 

Let G  be a simple molecular graph without directed and multiple edges and without loops. 
The graph G  consists of the set of vertices )(GV  and the set of edges )(GE . In molecular 
graph, each vertex represented an atom of the molecule and bonds between atoms are 
represented by edges between corresponding vertices. 

Khadikar and Co-authors [1-4] defined a new topological index and named it 
Padmakar-Ivan index. They abbreviated this new topological index as PI .  
The distance between to vertices )(, GVyx ∈  is equal to the number of edges on shortest 
path between them and it is shown with ),( yxd . The vertex version of PI  index was also 
defined in [5], as follow:  
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where { }),(),()()( vxduxdGVxCune <∈==  and { }),(),()()( uxdvxdGVxDvne <∈== , and we 

can restate it as follows: 
( )∑ −=

∈ )(
)()()(

GEe
v enGVGPI . 

where )(en  the number of edges which have equal distance from u  and v . 
Iranmanesh et. al. introduced the new index similar to the vertex version of PI index 

recently [6]. This index is the vertex version of Co-PI index which is 
.)()()(

)(
∑ −=−

∈ GEe
eev vnunGPICo  

In this paper, we compute the new index, vertex version of Co-PI index, for 
TUC4C8(R) nanotubes.  
 
2  DISCUSSION AND RESULT 
 
In this section, we compute the first vertex version of co-PI index for carbon nanotube 
TUC4C8(R). Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical 
nanostructure. The vertex-PI index of TUC4C8(R) nanotube has been computed in [7]. Also, 
in [8-16], some topological indices of TUC4C8(R) are computed. For computing this index, 
the quantities of ( )en u  and ( )en v  have been computed for this nanotube in [7] that we 
recall them as follows. 

According to Figure 1, k  is the number of rows of rhombus and p  is the number of 
rhombus in a row (that p indicates the number of columns of rhombus in Figure 2). 
Therefore, we indicate the rhombus which located in i–th row and j–th column with ijS . 

Also, we have pkGV 4)( = . 
 

 
 

Figure 1. Two dimensional lattice of )(84 RCTUC nanotube, .8,4 == pk  
 

At first, we define the symmetry line which exists in every nanotube [8]. We can 
show all vertices in a row on a circle, let e be an arbitrary edge on this row. This edge is 
connecting two points on the circle. Consider a line perpendicular at the mid point to this 
edge passed a vertex or an edge, say ,a  in the opposite side of the circle. A line trough the 
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point a  and parallel to height of nanotube is called a symmetry line of the nanotube. For 
example in Figure 2, we show that the symmetry line for ]2,4[75CHAC  nanotube: 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 2. Symmetry Line of ]2,4[75CHAC  
 
Lemma 2.1- If e is a horizontal edge of G , then ( ) ( ) 0e en u n v− = . 
Proof. Due to the Figure 1, the desire result can be concluded.                                            
 
Lemma 2.2- If e  is a vertical edge ofG , then, 

 
4 ( 2 ) ,

2( ) ( )
4 (2 ) ,

2

e e

kp k m m
n u n v

kp m k m

 − ≤− = 
 − >


. 

Proof. Due to the Figure 1, the desire result can be concluded.                                            
 
Lemma 2.3- If e  is an oblique edge ofG , then, 
1. If p  is even then 

2

2

4( 2 ) 2 , 1,
2 2

4( ) 2 2 2 , 1,
2 2( ) ( )

4( ) 2 2 6 , 1,
2 2

4 ( 2 ) 4 6 , 1,
2 2

e e

p pk m m k m

p ppk pm m p p m k m
n u n v

p pk pm m p p m k m

p pp k m p m k m

 − + ≤ + − ≤

 − − + + + ≤ + − >

− = 
 − − + + − > + − ≤


 − + − > + − >


. 

1. If p  is odd then 
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2

2

4( 2 ) 3 , 1,
2 2

4( ) 2 2 3 ( ) , 1,
2 2 2

( ) ( )
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2 2 2

4 ( 2 ) 4 5 ( ) (
2 2

e e
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   − + ≤ + − ≤      

     − − + + + − − − ≤ + − >          
− =

     − − + + − − − − > + − ≤          

 − + − − − − − −  
1) , 1,

2 2
p pm k m











      − > + − >           

 

 
 
Proof. Let e = uv be an oblique edge of G. According to the symmetry line of edge e, we 
can identify the region which contains the vertices closer to u and another region which 
contains the vertices closer to v. The vertices which are on symmetry line are not in regions. 
If p is an odd number, there are some vertices which are on the symmetry line. By 
considering Figure 1 and counting the vertices of regions, the result can be proved.                             

     
 
Theorem 2-3. The vertex version of co-PI index for molecular graph G of 4 8 ( )TUC C R  
nanotube is:    
1. If p  is even, then we have : 

2 2 2

3 4 3 2 2 2 2 2

3 4 3 2 2 2 2

2 8 8 ,
2
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2
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v
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2. If p  is odd, then we have: 
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Proof.  Let G be  the molecular graph of  4 8 ( )TUC C R  nanotube. By using the Lemmas (2-1, 
2-2 and 2-3) and the fact that there are p horizontal edge, p vertical edge and 4p oblique 
edge in each row of rhombus, we can get the desire results.                             
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