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ABSTRACT 

The Wiener index is a graph invariant that has found extensive application in chemistry. In 
addition to that a generating function, which was called the Wiener polynomial, who’s 
derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in 
[The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959−969] attained 
what graph operations do to the Wiener polynomial. By considering all the results that Sagan 
et al. admitted for Wiener polynomial on graph operations for each two connected and 
nontrivial graphs, in this article we focus on deriving Wiener polynomial of graph operations, 
Join, Cartesian product, Composition, Disjunction and Symmetric difference on n graphs and 
Wiener indices of them. 
 
Keywords: Topological dimensionality, Sierpinski fractals, asymptotic Wiener index. 

 

1 INTRODUCTION 

Let G be a connected graph with vertex and edge set, V(G) and E(G), respectively. The 
distance between the vertices u and v of G is denoted by d(u,v) and defined as the number 
of edges in a minimal path connecting the vertices u and v. The Wiener index of G is 
defined as the summation of all distances over all unordered pairs {u,v}of vertices of G.  

The Wiener index W is the first topological index to be used in chemistry [15]. 
Usage of topological indices in chemistry began in 1947, when chemist Harold Wiener 
used the Wiener index to determine the paraffin boiling point [3]. For more information or 
results on the Wiener index, its polynomial version, the chemical meaning and its history, 
we encourage the interested readers to consult the special issues of MATCH 
Communication in Mathematics and in Computer Chemistry [3], Discrete Applied 
Mathematics [4] and survey article [2]. For the polynomial aspect of the Wiener and other 
topological indices, we refer to [1,6−14]. Our notation is standard and taken mainly from 
the book of Imrich and Klavzar [5]. 
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2 DEFINITIONS 

In this section the concepts used throughout the paper are presented. The Wiener 

polynomial of G is defined as ∑= ⊆ )(},{
),();( GVvu

vudqqGW , where q is a parameter. It is 

easy to see that the derivative of W(G;q)  is a q-analog of )(GW . 

The join 1 2G G+  of graphs 1 1 1G (V ,E )=  and 2 2 2G (V ,E )=  is the graph with 

vertex set ( )1 2 1 2V G G V V+ = U and edge set { }212121 ,:)( VvVuuvEEGGE ∈∈∪∪=+ . 

For the other operations; Cartesian product, composition, disjunction and symmetric 
difference the vertex set is 21 VV × . The Cartesian product 1 2G G×  has edge set 

)}()(:),)(,{( 11222221112121 =∈=∈ vuandEvuorvuandEvuvvuu , the composition 

21 GG o  has the edge set )})(:),)(,{( 112221112121 =∈( ∈ vuandEvuorEvuvvuu , the edge 
set of disjunction 1 2G G∨  is })():),)(,{( bothorEvuorEvuvvuu 2221112121 ∈∈(  and the 

edge set for the symmetric difference 21 GG ⊕  is 
}:),)(,{( bothnotbutEvuorEvuvvuu   ∈∈ 2221112121 , see [5] for details. The ordered 

Wiener polynomial of G is denoted by ∑ ⊆
=

)(),(
),();(

GVvu
vudqqGW , where the sum is over 

all ordered pairs ( )vu,  of vertices, including those vertices that vu = . Thus  
 

)();(2);( GVqGWqGW +=                                             (1) 
 

Throughout this paper, we only consider connected graphs and let for graphs iG , 1 

≤ i ≤ n, ii nGV =)(  and ii kGE =)( . It will be convenient to have a variable for the non-

edges in iG , so let i
ii

i k
2

1nn
k -

-
=

)(
. Also ii

A 1,
∈φ

=∏ where iA  is a set.  

3 MAIN RESULTS 

In this section the Hosoya polynomials of some graph operations are computed.  
 

Lemma 1.  
1) If G1 and G2 be connected graphs then G1+G2 is connected. 
2) The join is associative. 
3) 1 2 1 2 1 2E(G G ) k k n n+ = + +  

4) Let 1 2 mG ,G ,...,G be a graphs then  

( ) ∑ ∑ ∑+=+++
= = =

m

1i

m

2i

1i

1j
jiim21 nnkGGGE ... . 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Some New Results On the Hosoya Polynomial of Graph Operations                                   39 

 

Proof. The proof is straightforward and so omitted.                                                          � 
 

Theorem 1. Let 1 2 mG ,G ,...,G  be connected graphs. Then we have 
 

( )( ) 2
m

1i
i

1i
1j ji

m
2i

m
1i im21 qkqnnkqGGGW ∑+∑∑+∑=+++

=
===);...(  

Proof. Since distance for every distinct pair of vertices in G1+G2 is 1 or 2 by Lemma 1 the 
proof is clear.                                                                                                                          � 
 

In the following lemma, some well-known properties of Cartesian product are 
introduced.

 

Lemma 2. Suppose G1 and G2 are graphs with |V(G1)| = n1, |V(G2)| = n2, |E(G1)| = k1 and 
|E(G2)| = k2. Then the following are holds: 

1) 1 2G G× is connected graphs if and only if G1 and G2 are connected. 
2) The Cartesian product is associative and commutative. 
3) 1 2 1 2 2 1E(G G ) k n k n× = + , 

4) Suppose 1G  and 2G  are connected and nontrivial (not equal to 1K  ).Then 

( ) ( ) ( )qGWqGWqGGW ;.;; 2121 =×                                                    (2) 
 

Proof. The proof for parts 1 and 3 are trivial and for parts 2 and 4 see [7] and [1], 
respectively.                                                                                                                            � 
 

Theorem 2. Let mGGG ,...,, 21  be connected graphs then we have 
 

[ ] 







−+=××× ∏ ∏

= =

m

i

m

i
iiim nnqGWqGGGW

1 1
21 );(2

2
1);...(  

Proof. By using Lemma 2 part 4 and utilize relation (1) we have; 
 

  

( ( ) )
[ ] 








−+=

×××−×××=×××

∏ ∏
= =

m

i

m

i
iii

mmm

nnqGW

GGGVqGGGWqGGGW

1 1

212121

);(2
2
1

2...);...();...(

                  
� 

Lemma 3. Let G1 and G2 be connected graphs then we have: 
1) ( ) 12

2
2121 nknkGGE +=o  

2) ( ) ( ) ( )qGWnqkqknqGGW ;; 1
2
2

2
22121 ++=o       
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Proof. The proof of part 1 is clear. To prove part 2, we apply Lemma 2 of [10]. We have: 

( ) ( )( )











∉=
∈=

==

≠

=

)E( &                     2
)E( &                      1

&                      0

         ),(

,,,

22211

22211

2211

1121

2121

1

21

Gvuvu
Gvuvu

vuvu

vuuud

vvuud

G

GG o                                            � 

Theorem 3. Let mGGG ,...,, 21 be connected graphs then we have 

        

( ) ( )

( ) 3.

;);...(

1

2

2
11

2

2
1

1

1
2

22
1

1
21

≥











+
















+









++








=

∑ ∏∏

∏∏
−

=
+−+−

+−=

−

=

=

−

=

mforqkqknn

qGWnqkqknqGGGW

m

l
lmlm

m

lmj
j

m

i
i

m

i
imm

m

i
imooo

. 

Proof. The proof is by induction. The case  2=m  is a consequence of Lemma 3. Suppose 
the result is valid for m graphs and we will prove its validity for m+1 graph. Let

mGGGG ooo ...21= . Then by Lemma 3 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )qGWnqkqknnn

qkqknnqkqknqGWn

qkqknnqkqknnqkqkn

qGWnqkqknqGGW

m

i
i

m

l
lmlm

m

lmj
j

m

i
im

mm

m

i
immm

m

i
i

m

i
i

m

l
lmlm

m

lmj
j

m

i
imm

m

i
immm

m

i
i

mmm

m

i
im

;.

;.

..

;.;

1

1

2

2
1

2

2
11

2

2
1

1

2
1

2
1

1

2
1

2
11

1
1

2

2

1

2

2
11

2

2
1

1

2
1

1

2
1

2
11

1

2
1

2
11

1
1









+












+
















+

+







++








=












+



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
+





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
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

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
++








++








=

++







=

∏∑ ∏∏

∏∏∏

∑ ∏∏∏∏

∏

+

=

−

=
+−+−

+−=

−

=
+

−

=
+++

==

−

=
+−+−

+−=

−

=

−

=
+++

=

+++
=

+o

 

( ) ( )

( ) .

;.

2

2
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1

3

2
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1
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2
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1
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                                                                  � 

 
Lemma 4. Let 1 2 mG ,G ,...,G be graphs, then we have  

1) If G1 and G2 are connected then 1 2G G∨  and 21 GG ⊕ are connected. 

2) Let mGGGG ⊕⊕⊕= ...21 then we have ( )∑ ∏∏
⊆≠ −∈∈

−−=
MA AMi

i
Ai

i
A nkGE

φ

214)(  
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( ) ( )

( ) 221
1

21
21

4
2

                                         

4;...

qnkn

qnkqGGGW

MA AMi
i

Ai
i

A

m

i
i

MA AMi
i

Ai
i

A
m











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











−−














+









−=⊕⊕⊕

∑ ∏∏∏

∑ ∏∏

⊆≠ −∈∈

−

=

⊆≠ −∈∈

−

φ

φ

3) Let mGGGG ∨∨∨= ...21  then we have ( ) ∏∑ ∏
−∈⊆≠ ∈

−−=
AMi

i
MA Ai

i
A nkGE 212)(

φ

 

where { }mM ,...,2,1= . 
 

Proof. The proof of part 1 is clear. We prove part 2 by induction on m. For m=2 one can 
see ( ) 21

2
12

2
2121 4 kknknkGGE −+=⊕ . We now assume the result is valid for m and 

1+⊕= mGGH . So  

                                  ( ) ( ) ( ) ( ) 1
2

1
2

1 4 +++ −+= mmm kGEGVknGEHE                              (2) 

On the other hand we know { }( ) ( ) { }{ }MAAmMPmMP ⊆∪+∪=+∪ 11                 (3) 

where ( )MP  is the power set of M. Clearly, ( ) { }{ }MAAmMP ⊆∪+= 1Iφ  and so   

( ) ( )
{ }( )

( )

( )
{ }
∏∑ ∏

∏∑ ∏∏∏∑ ∏

−+∪∈+∪⊆≠ ∈

−

−∈⊆≠ ∈

−
+

∈
+

−+∪∈⊆≠ ∈

−

−=

=−−+−=

BmMi
i

mMB Bi
i

B

AMi
i

MA Ai
i

A
m

Mi
im

AmMi
i

MA Ai
i

A

nk

nkknknkHE

1

2

}1{

1

21
1

2
1

1

21

4           

4 44

φ

φφ

 

The proof of part 3 is similar to the proof of part 2.                                                               � 
 
Theorem 4. Let mGGG ,...,, 21 be connected graphs then 
 
 
 
and 
 
 
 
 
 
 
 
Proof. Since distance between distinct vertices of graphs 21 GG ⊕  and 21 GG ∨ is 1 or 2, 

( ) ( ) ( ) 2; qGEqGEqGW += . We now apply Lemma 4 to complete the proof.                    � 

 
 We conclude this paper by computing the Wiener index of the operations on m 
graphs. We mentioned that the derivative of ( )qGW ;  is q-analog of )(GW . By Theorem 
[1,1.5], ( ) ( )GWGW =′ 1;  and we have: 
 

( ) ( )

( ) .2
2

                                       

2;...
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1
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qnkn
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A
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