Some Lower Bounds for Estrada Index

$\overline{{\bf BO}}$ Zhou¹ and Zhibin ${\bf DU}^2$

Department of Mathematics, South China Normal University, Guangzhou 510631, China

(*Received* July 20, 2010)

ABSTRACT

(Received July 20, 2010)
 ABSTRACT

a graph *G* with *n* vertices, its Estrada index is defined as $EE(G) = \sum_{i=1}^{n} e^{\lambda_i}$ with $\lambda_2, ..., \lambda_n$ are the eigenvalues of *G*. A lot of properties especially lower and that sid For a graph *G* with *n* vertices, its Estrada index is defined as $EE(G) = \sum_{i=1}^{n}$ $\sum_{i=1}^{n} e^{\lambda_i}$ where $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of *G*. A lot of properties especially lower and upper bounds for the Estrada index are known. We now establish further lower bounds for the Estrada index.

Keywords: Estrada index, eigenvalues (of graph), spectral moments, lower bounds.

1 INTRODUCTION

Let *G* be a simple graph with *n* vertices. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of *G* arranged in a non-increasing order [1]. The Estrada index of the graph *G* is defined as

$$
EE = EE(G) = \sum_{i=1}^{n} e^{\lambda_i}.
$$

This graph invariant was proposed as a structure-descriptor, used in the modeling of certain features of the 3D structure of organic molecules [2], in particular of the degree of proteins and other long-chains biopolymers [3,4]. It has also found applications in a large variety of other problems, see, e.g., [5−7]. Lower and upper bounds have been established for the Estrada index, see [8−14]. Some other properties for the Estrada index may be found in [15−19]. Here we present some easily computed lower bounds for the Estrada index.

1

 $\frac{1}{2}$ -zhoubo@scnu.edu.cn

 2 - zhibindu@126.com

2 PRELIMINARIES

Let G be a graph with *n* vertices. For $k = 0, 1, 2, \dots$, denote by $M_k = M_k(G)$ the k-th spectral moment of the graph *G* , i.e., 1 . $\sum_{k=1}^{n} k^k$ $k = \angle I$ ⁿi *i* $M_{\scriptscriptstyle k} = \sum \lambda_i^{\scriptscriptstyle \prime}$ = $=\sum \lambda_i^k$. Note that $M_1 = 0$. Then

$$
EE(G) = \sum_{i=1}^{n} \sum_{k \geq 0} \frac{\lambda_i^k}{k!} = \sum_{k \geq 0} \frac{M_k}{k!} = n + \sum_{k \geq 2} \frac{M_k}{k!}.
$$

Archive 1201 Archive of vertex u and $V(G)$ is the vertex set of *G*. Let $t(G) = \sum_{a \in V(G)} f(a)$ degree of vertex *u* and $V(G)$ is the vertex set of *G*. Let $t(G)$ be the in *G*. Recall that M_k is equal to the number of The first Zagreb index [20] of the graph G is defined as $Zg(G) = \sum d_i^2$ (G) $(G) = \sum d_u^2$, $u \in V(G)$ $Zg(G) = \sum_{u \in V(G)} d_u^2$, where d_u is the degree of vertex u and $V(G)$ is the vertex set of G. Let $t(G)$ be the number of triangles in G. Recall that M_k is equal to the number of closed walks of length k in the graph [1].

Lemma 1. Let G be a graph with m edges. Then for $k \geq 4$, $M_{k+2} \geq M_k$ with equality for all even $k \geq 4$ if and only if G consists of m copies of complete graph on two vertices and possibly isolated vertices, and with equality for all odd $k \geq 5$ if and only if G is a bipartite graph.

Proof (i) For even $k \geq 4$, by repeating the first edge twice for a closed walk of length *k*, we get a closed walk of length $k+2$, and then $M_{k+2} \ge M_k$ with equality for all even $k \geq 4$ if and only if G consists of m copies of complete graph on two vertices and possibly isolated vertices.

(ii) For odd $k \ge 5$, by similar considering as above, it is easily seen that $M_{k+2} \ge M_k$ with equality for all odd $k \geq 5$ if and only if G is bipartite. ■

3 RESULTS

We now establish several lower bounds for the Estrada index and compare them with the known bounds in the literature.

Proposition 2. Let G be a graph with *n* vertices and *m* edges. Then

$$
EE(G) \ge n + m + t(G) + \frac{1}{2}(e + e^{-1} - 3)M_4 + \frac{1}{2}\left(e - e^{-1} - \frac{7}{3}\right)M_5
$$
\n(1)

$$
EE(G) \ge n + m + t(G) + (e + e^{-1} - 3)[Zg(G) - m] + 15\left(e - e^{-1} - \frac{7}{3}\right)t(G)
$$
 (2)

with either equality if and only if *G* consists of *m* copies of complete graph on two vertices and possibly isolated vertices.

Proof. Note that $M_2 = 2m$, $M_3 = 6t$ (G). By Lemma 1,

$$
EE(G) = n + m + t(G) + \sum_{k\geq 2} \frac{M_{2k}}{(2k)!} + \sum_{k\geq 2} \frac{M_{2k+1}}{(2k+1)!}
$$

\n
$$
\geq n + m + t(G) + \sum_{k\geq 2} \frac{M_4}{(2k)!} + \sum_{k\geq 2} \frac{M_5}{(2k+1)!}
$$

\n
$$
= n + m + t(G) + M_4 \left(\frac{e + e^{-1}}{2} - 1 - \frac{1}{2!} \right) + M_5 \left(\frac{e - e^{-1}}{2} - 1 - \frac{1}{3!} \right)
$$

\n
$$
= n + m + t(G) + \frac{1}{2} (e + e^{-1} - 3) M_4 + \frac{1}{2} \left(e - e^{-1} - \frac{7}{3} \right) M_5
$$

\nality if and only if $M_k = M_4$ for all even $k \geq 4$ and $M_k = M_5$ for all
\nLemma 1, is equivalent to the fact that G consists of m copies of com
\nvertices and possibly isolated vertices.
\nor a fixed vertex u, there are at least d_u^2 closed walks of length four st
\n $u(d_u - 1)$ closed walks of length four starting from a neighbor of u
\nin such walks are only u and its neighbors, and then $M_4 \geq 2Z$
\n $M_4 = 2Zg(G) - 2m + 8q$ where q is the number of quadrangles in G
\nthat $M_5 \geq 30t(G)$ because there are ten closed walks of length five st
\nertex on a fixed triangle such that the vertices of the walks are only the

with equality if and only if $M_k = M_4$ for all even $k \ge 4$ and $M_k = M_5$ for all odd $k \ge 5$, which by Lemma 1, is equivalent to the fact that *G* consists of *m* copies of complete graph on two vertices and possibly isolated vertices.

For a fixed vertex u , there are at least $d_u²$ closed walks of length four starting from *u* and $d_u(d_u - 1)$ closed walks of length four starting from a neighbor of *u* such that vertices in such walks are only *u* and its neighbors, and then $M_4 \geq 2Zg(G) - 2m$. (Actually, $M_4 = 2Zg(G) - 2m + 8q$ where *q* is the number of quadrangles in *G*, see [21]). Note also that $M_s \geq 30 t(G)$ because there are ten closed walks of length five starting from a fixed vertex on a fixed triangle such that the vertices of the walks are only the vertices of the triangle. (Actually, $M_5 = 30t(G) + 10p + 10r$ where p is the number of pentagons, and r is the number of subgraphs consisting of a triangle with a pendent vertex attached [21]. Now the second inequality follows. ■

Corollary 3. Let *G* be a graph with *n* vertices and *m* edges. Then

$$
EE(G) \ge n + m + (e + e^{-1} - 3)[Zg(G) - m]
$$
\n(3)

with equality if and only if G consists of m copies of complete graphs on two vertices and possibly isolated vertices.

Recently, Das and Lee [14] showed that for a connected graph with *n* vertices and $m \geq 1.8n + 4$ edges, $EE(G) > EE(P_n)$. This may be improved slightly using Corollary 3. Recall that [14] $EE(P_n) < 2.746n + 3.569$. If $m \ge 1.4n + 2$, then by Corollary 3 and the Cauchy-Schwarz inequality, we have

$$
EE(G) \ge n + m + (e + e^{-1} - 3) \left(\frac{4m^2}{n} - m \right) > 2.746n + 3.569 > EE(P_n).
$$

Remark 4. For a graph *G* with $n \ge 2$ vertices, it was shown in [12] that $\frac{\lambda_1}{n}$

$$
EE(G) \ge e^{\lambda_1} + (n-1)e^{-\frac{\lambda_1}{n-1}}
$$
 (4)

with equality if and only if G is the empty graph or the complete graph. Obviously, (3) and (4) are incomparable.

Remark 5. Let G be a graph with *n* vertices, *m* edges and nullity (number of zero eigenvalues) $n_0 < n$. Note that $n_0 = n$ if and only if G is an empty graph. Gutman [11] showed that

$$
EE(G) \ge n_0 + \frac{n - n_0}{2} (e^a + e^{-a})
$$
\n(5)

EE(G) $\ge n + m + (e + e^{-1} - 3) \left(\frac{m}{n} - m \right) > 2.746n + 3.569 > E E(P_n)$.
 4. For a graph *G* with $n \ge 2$ vertices, it was shown in [12] that
 EE(G) $\ge e^{\lambda_1} + (n-1)e^{-\frac{\lambda_1}{n-1}}$

ality if and only if *G* is the empty graph o with equality if and only if $n - n_0$ is even, G consists of copies of complete bipartite graphs K_{r_j,t_j} , $j = 1, 2, \ldots, (n - n_0)/2$, such that all $r_j t_j$ are equal, and the remaining vertices if exist are isolated vertices, where $a = \sqrt{2m/(n-n_0)}$. A different proof may be found in [12]. For odd cycle C_n with $n \ge 3$, $n_0 = 0$ (see [21]) and $m = n$, we have

$$
n + m + (e + e^{-1} - 3)[Zg(G) - m] - \left[n_0 + \frac{n - n_0}{2} \left(e^a + e^{-a}\right)\right]
$$

= $n \left[2 + 3(e + e^{-1} - 3) - \frac{e^{\sqrt{2}} + e^{-\sqrt{2}}}{2}\right] > 0.$

Then for odd cycle C_n with $n \ge 3$, the bound in (3) is better than the one in (5), and thus it is easily seen that (3) and (5) are incomparable in general.

ACKNOWLEDGEMENTS: This work was supported by the Guangdong Provincial Natural Science Foundation of China (Grant No. 8151063101000026).

REFERENCES

- 1. D. M. Cvetković, M. Doob and H. Sachs, *Spectra of Graphs Theory and Application*, Johann Ambrosius Barth, Heidelberg, 1995.
- 2. E. Estrada, Characterization of 3D molecular structure, *Chem. Phys. Lett.* **319** (2000) 713−718.
- 3. E. Estrada, Characterization of the folding degree of proteins, *Bioinformatics* **18** (2002) 697−704.
- 4. E. Estrada, Characterization of the amino acid contribution to the folding degree of proteins, *Proteins* **54** (2004) 727−737.
- *Archive Characterization of 3D inotectual structure, Chem. 1 hys. Lett.*
 Archive Characterization of the folding degree of proteins, Biomformatic:
 Archive of Archive of the amino acid contribution to the folding tens 5. E. Estrada and J. A. Rodríguez-Valázquez, Subgraph centrality in complex networks, *Phys. Rev. E* **71** (2005) 056103−1−9.
- 6. E. Estrada and J. A. Rodríguez-Valázquez, Spectral measures of bipartivity in complex networks, *Phys. Rev. E* **72** (2005) 046105−1−6.
- 7. E. Estrada, J. A. Rodríguez-Valázquez and M. Randić, Atomic branching in molecules, *Int. J. Quantum Chem.* **106** (2006) 823−832.
- 8. J. A. de la Peña, I. Gutman and J. Rada, Estimating the Estrada index, *Lin. Algebra Appl.* **427** (2007) 70−76.
- 9. I. Gutman and S. Radenković, A lower bound for the Estrada index of bipartite molecular graphs, *Kragujevac J. Sci.* **29** (2007) 67−72.
- 10. I. Gutman, E. Estrada and J. A. Rodríguez-Velázquez, On a graph-spectrum-based structure descriptor, *Croat. Chem. Acta* **80** (2007) 151−154.
- 11. I. Gutman, Lower bounds for Estrada index, *Publ. Inst. Math. Beograd* (*N.S.*) **83** (2008) 1−7.
- 12. B. Zhou, On Estrada index, *MATCH Commun. Math. Comput. Chem.* **60** (2008) 485−492.
- 13. B. Zhou and N. Trinajstić, Estrada index of bipartite graphs, *Int. J. Chem. Model.* **1** (2008) 387−394.
- 14. K. C. Das and S.-G. Lee, On the Estrada index conjecture, *Lin. Algebra Appl.* **431** (2009) 1351 −1359.
- 15. I. Gutman, S. Radenkovi ć, A. Graovac and D. Plavši ć, Monte Carlo approach to Estrada index, *Chem. Phys. Lett.* **446** (2007) 233 −236.
- 16. I. Gutman, B. Furtula, V. Markovi ć and B. Gliši ć, Alkanes with greatest Estrada index, *Z. Naturforsch.* **62a** (2007) 495 −498.
- 17. I. Gutman and A. Graovac, Estrada index of cycles and paths, *Chem. Phys. Lett.* **436** (2007) 294-296.
- 18. I. Gutman, S. Radenkovi ć and B. Furtula, Relating Estrada index with spectral radius, *J. Serb. Chem. Soc.* **72** (2007) 1321 −1327.
- 19. I. Gutman and S. Radenkovi ć, Estrada index of benzenoid hydrocarbons, *Z. Naturforsch.* **62a** (2007) 254 −258.
- 20. I. Gutman and K. C. Das, The first Zagreb index 30 years after, *MATCH Commun. Math. Comput. Chem.* **50** (2004) 83 −92.
- 21. D. M. Cvetkovi ć, M. Doob, I. Gutman and A. Torgašev, *Recent Results in the Theory of Graph Spectra*, North-Holland, Amsterdam, 1988.

