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ABSTRACT 

A novel algorithm for the fast detection of hubs in chemical networks is presented. The 
algorithm identifies a set of nodes in the network as most significant, aimed to be the most 
effective points of distribution for fast, widespread coverage throughout the system. We show 
that our hubs have in general greater closeness centrality and betweenness centrality than 
vertices with maximal degree, while having comparable or higher degree than vertices with 
greatest closeness centrality and betweenness centrality. As such, they serve as all-purpose 
network hubs. Several theoretical and real world chemical and biological networks are tested 
and results are analyzed. 
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1 INTRODUCTION 

Complex networks have proven effective models of many social, biological, and 
technological systems as diverse as neural networks [1], food webs [2], the Internet [3], the 
World Wide Web [4], systems of social interaction [5,6,7,8], acquaintance networks [9], 
scientific collaborations [10], problem solving networks [11], and linguistic networks [12]. 
In biology and chemistry in particular, complex networks are used to represent protein 
structures [13,14]. Whereas cell biology has traditionally identified proteins based on their 
individual rules as catalysts, signaling molecules, or building blocks of cells and 
microorganisms, recently a post-genomic view has expanded the protein's role, regarding it 
as an element in a network of protein-protein interactions as well. The local and global 
topological properties of these protein interaction networks can reveal protein structure and 
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function. Also, complex networks play an important role in the analyses of interaction of 
drug fragments [15]. 

Furthermore, it has been shown that many real-world networks are „scale-free“, 
following a power law degree distribution [16,17]. The overwhelming majority of nodes in 
the network have relatively low degree, just a few connections, while a small percentage of 
“hubs” have very high degree. It has furthermore been shown that identifying and targeting 
hubs is an effective way to influence network behavior [18,19,20]. Hubs are the most 
influential nodes in the network, key to the spread of network processes and effects, and 
crucial with respect to network resilience to intentional attacks [21]. Indeed, this has been 
demonstrated to be true in protein interaction networks as well. Consider for example the 
protein interaction network of the yeast, S. Cerevisiae, which is described by 1879 proteins 
as nodes, connected by 2240 identified direct physical interactions [22,23]. It has been 
found that random mutations in the genome of S. Cerevisiae, modeled by the removal of 
randomly selected yeast proteins, do not affect the overall topology of the network. In 
contrast, when the most connected proteins are computationally eliminated, the network 
diameter increases rapidly [24]. 

Ultimately, however, there has not been established a precise definition of a 
network hub. Generally, three measures of vertex centrality are used − degree centrality, 
closeness centrality and betweenness centrality [25], and network hubs are usually taken as 
nodes with maximal degree centrality. In this paper, we calculate a novel connectivity value 
for each vertex in the network taking into consideration not only the degree of the vertex, 
but also its distances to other vertices in the system. We choose vertices with highest 
connectivity, so-called distribution points, as hubs. Our distribution points have greater 
closeness centrality and betweenness centrality than vertices with maximal degree, and on 
the whole, comparable or greater degree than vertices with maximal closeness centrality or 
betweenness centrality. We propose that this type of all-purpose centrality measure 
provides a more powerful classification of hubs takes into consideration not only the degree 
of each node. 
 
2 HUB DETECTION 

We consider the general case, for a network of n nodes. In the first step of the algorithm, 
each vertex is assigned a value according to the proximity of its neighbors. For each vertex 
i , calculate the connectivity value of i : 
 ܸሺ݅ሻ ൌ  ௗሺ,ሻିଵן1                                                        ሺ1ሻ

ୀଵஷ
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where d (i, j) is the shortest path distance between i and j .Choose i with maximal initial 
connectivity value as the Initial Distribution Point, DP0 . If there are several vertices with 
equivalent values, they are all chosen as initial distribution points, the set { DP0}.Proceed to 
choose the vertex or set of vertices with the next highest connectivity as {DP1} , and 
continue to choose vertex hubs in order of their connectivity until all vertices have been 
chosen. 
 
3 MODIFICATION OF THE ALGORITHM FOR VARYING DIFFUSION 

Additionally, we can modify the algorithm to accommodate different kinds of spread in 
different types of networks, and enable adjustments to the hub detection algorithm for 
modeling varied effects. In social networks, for example, influence may aggregate, while 
modeling a power grid or an epidemic, we may wish to disallow compounded influence on 
one node. Accordingly, we include an additional weight in our connectivity value 
calculation, so-called cumulative handicap, assigned to vertices based on their proximity to 
a nearest prior-chosen distribution point. Higher weights indicate a preference to target a 
more widespread section of the network, at the expense of total cumulative impact. 

Specifically, the modified algorithm proceeds as follows for each vertex i calculate 
the initial connectivity value of i: 

ܸሺ݅ሻ ൌ  ௗሺ,ሻିଵן1                                                            ሺ2ሻ
ୀଵஷ

 

where d(i, j) is the shortest path distance between i and j. Choose i with maximal initial 
connectivity value as the Initial Distribution Point, DP0. Again, if there are several vertices 
with equivalent values, they are all chosen as initial distribution points, the set DP0. Next, 
assign a weight to each vertex in the network ב{DP0} based on its distance to the nearest 
member of {DP0}, given by {d(i, DP0)}. That is: 

ܹሺ݅ሻ ൌ ௗሺ,ሼబሽሻିଵߚ1                                                                         ሺ3ሻ 

The First Distribution Point(s) {DP1}are chosen as the vertex or vertices which maximize 
the value of 

ଵܸሺ݅ሻ ൌ max ۔ۖەۖ
ۓ  ቆ ௗሺ,ሻିଵߙ1 െ ܹሺ݆ሻቇ , 0

ୀଵஷ,בሼబሽ ۙۘۖ
ۖۗ .                ሺ4ሻ 

Subsequently, new weights are assigned to every vertex in the network (not an initial or 
first distribution point) : 
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ଵܹሺ݅ሻ ൌ max ൜ ௗሺ,ሼబሽሻିଵߚ1 ,  ௗሺ,ሼభሽሻିଵൠ.                           ሺ5ሻߚ1

The algorithm repeats; at the th x step, a vertex is assigned a weight based on its distance 
from the  nearest distribution point, from the set of all distribution points chosen in the first 
x −1 steps. Vertices {DPx } are chosen as those which maximize 

௫ܸሺ݅ሻ ൌ max ۔ۖەۖ
ۓ  ቆ ௗሺ,ሻିଵן1 െ ௫ܹିଵሺ݆ሻቇ

ୀଵஷ,בሼሽ
, 0ۙۘۖ

ۖۗ ,                         ሺ6ሻ 

where {DP}={{ܦ ܲሽ ሽୀ௫ିଵ  is the set of all previous distribution points, and 
 

௫ܹିଵሺ݆ሻ ൌ max ൜ ௗሺ,ሼబሽሻିଵߚ1 , ௗሺ,ሼభሽሻିଵߚ1 , ڮ , ௗሺ,ሼೣߚ1 షభሽሻିଵൠ.                  ሺ7ሻ 

 

The algorithm concludes when the connectivity values of all remaining vertices is 0. 
 
4 MODIFICATION OF THE ALGORITHM FOR DIRECTED AND WEIGHTED 

GRAPHS 
 
Many real-world networks are directed or weighted. The neural network of C. Elegans [1], 
an important model organisim, is both directed and weighted. 
 

A natural adaptation of our notion of vertex connectivity can tackle these cases. In 
particular, for directed networks, connectivity of vertex i is again given by 

௫ܸሺ݅ሻ ൌ max ۔ۖەۖ
ۓ  ቆ ௗሺ,ሻିଵן1 െ ௫ܹିଵሺ݆ሻቇ

ୀଵஷ,בሼሽ
, 0ۙۘۖ

ۖۗ ,                           ሺ8ሻ 

where d(i, j) is the distance from i to j given by length of the shortest directed path, and 

௫ܹିଵሺ݆ሻ ൌ max ൜ ௗሺ,ሼబሽሻିଵߚ1 , ௗሺ,ሼభሽሻିଵߚ1 , ڮ , ௗሺ,ሼೣߚ1 షభሽሻିଵൠ.                ሺ9ሻ 

where (݀,DPj) is the distance from i to DPj given by length of the shortest directed path. 
Weighted networks follow similarly; we use shortest weighted path length as the distance 
measurement. 
 
5 HUB TESTING 

We test the validity of our choice of hubs by distribution points, considering degree 
centrality, closeness centrality and betweenness centrality [25]. We show on several 
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benchmark network graphs, that distribution points tend to have greater closeness centrality 
and betweenness centrality than vertices with maximal degree, while they have comparable 
or greater degree than vertices with maximal closeness centrality or maximal betweenness 
centrality. As such, we propose that distribution points serve as all-purpose, holistic hubs, 
crucial to various, diverse measures of connectivity within their networks. 

For testing, we consider networks which accommodate aggregated influence on 
individual nodes. That is, we set the cumulative handicap to zero, ܹሺ݆ሻ ൌ 0, ,ሺ݅ ݆ሻ, the 
original method presented in section 2. 

We use α = 2 in order to balance the contributions of the first neighbors with the 
contributions of the vertices at a distance greater than 1. 

Recall that in scale-free networks, there are a few nodes with very high degree while 
the vast majority of nodes have much smaller degree. Since we choose hubs one by one in 
order of significance, we need only consider the first small percentage of nodes chosen. We 
will examine up to 10 percent of graph vertices, though in reality the number of hubs in a 
network is even fewer. A powerful new set of benchmark graphs recently proposed by 
Santo Fortunato [26] make possible the generation of testing networks with demonstrated 
real-world properties, and with choice of various input parameters, including extent of 
mixing (µ ), average degree (k), max degree (maxk), and sizes (minc and maxc) as well as 
overlap of network communities. We examine our results on several of these networks. 

Figure 1 and Figure 2 illustrate a series of comparisons between distribution points 
and hubs chosen via the other three centrality measures on two of the Fortunato 
benchmarks with given parameters. 

 
 

Figure 1a. Closeness centrality. Average distance from each chosen hub to all other 
vertices in the network. Fortunato benchmark graph (N = 100, k = 5, maxk = 10, µ = 
0.1, minc = 5, maxc = 30). 
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Figure 1b. Betweenness centrality. Average number of shortest paths running 
through each chosen hub.Fortunato benchmark graph (N = 100, k = 5, maxk = 10, 
µ=0.1, minc = 5, maxc = 30). 

 

 
 
Figure 1c. Degree centrality. Average degree of each chosen hub. Fortunato 
benchmark graph (N = 100,k = 5, maxk = 10,µ = 0.1, minc = 5, maxc = 30). 
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Figure 2a. Closeness centrality. Average distance from each chosen hub to all other 
vertices in the network. Fortunato benchmark graph (N = 300, k = 5, maxk = 10, 
µ= 0.1, minc = 5 , maxc = 100). 
 
 

 
 
Figure 2b. Betweenness centrality. Average number of shortest paths running 
through each chosen hub.Fortunato benchmark graph (N = 300, k = 5, maxk = 
10,µ= 0.1, minc = 5, 
 maxc=100). 

 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

88                                                       DAMIR VUKIČEVIĆ AND SARAH MICHELE RAJTMAJER  

 

 
Figure 2c. Degree centrality. Average degree of each chosen hub. Fortunato 
benchmark graph (N = 300,k = 5, maxk = 10,µ= 0.1, minc = 5, maxc = 100). 
 
We also consider four chemical real-world networks. First, the protein interaction 

network of S.cerevisiae, consisting of 2114 proteins and 4480 interactions between them 
[24]. Second, the protein interaction network of A. fulgidus is considered. The A. fulgidus 
network consists of 32 proteins and 36 validated interactions between them [27]. Third, the 
network of direct transcriptional regulation between 328 operons in E. coli is analyzed [27]. 
And lastly, we consider the drug network on 616 nodes, analyzed by Ernesto Estrada and 
his team [15]. 

 
Figures 3, 4, 5 and 6 show the comparison of hubs' centrality measures on chemical 

and biological networks, where hubs are again chosen either as distribution points or as 
vertices with maximal degree, closeness centrality, or betweenness centrality. 
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Figure 3a. Closeness centrality on the protein interaction network of S.cerevisiae. 
 

 
 

Figure 3b. Betweenness centrality on the protein interaction network of S.cerevisiae. 
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Figure 3c. Degree centrality on the protein interaction network of S.cerevisiae. 

 

 
Figure 4a. Closeness centrality on the protein interaction network of A. fulgidus. 
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Figure 4b. Betweenness centrality on the protein interaction network of A. fulgidus. 

 

 
 
 

Figure 4c. Degree centrality on the protein interaction network of A. fulgidus. 
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Figure 5a. Closeness centrality on the transcriptional regulation network of E. coli. 

 

 
 

Figure 5b. Betweenness centrality on the transcriptional regulation network of E. 
coli. 
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Figure 5c. Degree centrality on the transcriptional regulation network of E. coli. 
 

 
Figure 6a. Closeness centrality on Drugs network. 
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Figure 6b. Betweenness centrality on Drugs network. 
 
 
 

 
 
Figure 6c. Degree centrality on Drugs network. 
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6 CONCLUSIONS 

Many methods of hub detection exist. In practice, they all have advantages and drawbacks. 
Various types and number of hubs are important in different types of networks, where some 
centrality measures are more representative of network behavior than others. Our 
distribution points are a compromise between the three types of vertex centrality. As such, 
our all-purpose hub detection method is aimed to be a fast, useful, universal estimate of 
node importance, accounting for the inherent difficulties of using snapshots of data to 
represent the structure of dynamic networks. Several examples illustrate possible chemical 
applications.  
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