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ABSTRACT

Topological indices are numerical parameters of a graph which characterize its topology. In
this paper the PI, Szeged and Zagreb group indices of the tetrameric 1,3-adamantane are
computed.
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1. INTRODUCTION

Diamondoids are an important class of organic compounds with unique structures and
properties. This family of compounds with over 20000 variants is one of the best candidates
for molecular building blocks (MBBs) to construct nanostructures compared to other MBBs
known so far, Figure 1.

Let G be a simple molecular graph with vertex and edge sets V(G) and E(G),
respectively. As usual, the distance between the vertices u and v of G is denoted by dg(u,v)
(or d(u,v) for short) and it is defined as the number of edges in a minimal path connecting
vertices u and v.”

The first and second Zagreb indices, as well as the first Geometric-Arithmetic
indices of a graph G are defined as:

Mi(G) = Zend(u V)], Ma(G) = e [dWd(V)], GAIG) = Doy i 2
where d(u) is the degree of the vertex u and d(v) is defined analogously.'*'°

The eccentric connectivity index of the graph G is defined as: é(G) =
Yuev(c) deg(u) . €(u) where e(u) = max {d(u,x) : xeV(G)}.**
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The vertex PI, Szeged and second Geometric-Arithmetic indices of a graph G are
defined as PL(G) = Zew[n(e) + nie)], Sz(G) = Zewl[n(e)n(e)] and GAG) =

Ze:uv% , where ny(e) is the number of vertices lying closer to u than to v and

u v

ny(e) is defined analogously.” "
X1
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X
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Figure 1. The tetrameric 1,3-adamantane(TA[4]).

The PI, edge Szeged and third Geometric-Arithmetic indices of a graph G are
defined as PI(G) = Zeyp[mu(e)tmye)]; Sze(G) = Zew[mu(e)my(e)] and GA3(G) =
Z 2 my(e)my(e)

€=U [my(e) +my(e)]

my(e) is defined analogously.'”*”. The mathematical properties of these topological indices
21-22

, where my(e) is the number of edges lying closer to u than to v and

can be found in some recent papers.
In this paper our notation is standard and taken mainly from the standard book of
graph theory.

2. ZAGREB GROUP, GA; AND ECCENTRIC CONNECTIVITY INDICES OF
TA[N]

By simple calculations one can see that, |V (TA[n])| = 10n and |E(TA[n])| = 13n - 1. We
now compute the Zagreb group and GA; indices of TA[n]. We begin by the first and
second Zagreb index.

My(TAID = > (d(w) + d(v))

= 2[92;1 2)+3(4+2)]+(m-2)[6(BB+2)+6(4+2)]+(n-1)4+4)
= 74n — 14,
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My (TADD = )" [d(w) X dW)]

= 2[9E§u>v< 2)+ 34 x2)]+1n-2)[6(3%2)+6(4x2)]+16(mn-1)
= 100n — 28.

Lemma 1. GA, (TA[n]) = (12{ FZH1)n+t 125 _ 471,

Proof. By definition,

2v/du.d
GAl(TA["D:Z= durd\j
=2[2(9x?+3x?>+(n—2)<6x§+6x§> %(n—l)l
= (B4 T+ 1)+ 2 a2 -1, 0

58.5n% + 25n  if nis even

Theorem 2. {(TA[n]) = { 59n2 + 64n + 8 ifnisodd’

Proof. If n is even then for k™ copy of TA[1],2 <k < g , in the molecular graph of TA[n],
we have
e(x)) =e(x;) =e(vp_)=3+2n—k—-1)+(n—k)+ 2,

e(xy) =€e(x3) =e(xg) =34+2n=k—1)+(n—k)+3,
e(xy) =e(xs)=¢e(xg) =3+2(n—k—-1)+(n—k)+1,

s(z-tk)=3+2(n—k—1)+(n—k).

Thus for this copy of TA[1], Yyeverapy deg(uw) e(w) = 78 n+ 78 k + 70. For k"
copy of TA[1], §+ 1 <k <n-—1, in definition of TA[n] the value is equal to 78 n +
78 k + 70. Therefore,

§(TA[n]) = Xuev(c) deg(u) . e(w)

= zzz (781 — 78 k + 70)
k=2

+2[27n+6(3n+1)+6(3n—1)+4(3n - 2)]
= (58.5n% — 125 n + 16) + (150 n. — 16)
= 58.5n% + 25n.

If n is odd then for k = B] + 1, we have:
e(x;))=¢e(x;)=c(p_)=¢cluy) =3+2n—k—-1D)+n—-k)+2
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e(xy) =e(xg) =e(xy) =e(xg) =€(xg) =3+2(n—k—-1)+(n—k)+3
e(xs)=3+2(n—k—-1)+n—-k)+ 1.
Therefore

ETAMD =) deglu).£(w)

ueV(G
n
=2 Zi=2(78 n—78k+70) + (78n —78 (E] +1)+ 86) + (150 n — 16)

= 156n[g] —78[%]2 - 16[%] +72n+8
=59n? + 64n + 8.
The proof is complete. O

3. THE VERTEX PI, SZEGED AND GA2 INDEX OF TA|N].

In this section the vertex PI, Szeged and GA; indices of the tetrameric 1,3-adamantane,
TA[n], are computed. If A and B are graphs such that V(A) < V(B) and E(A) < E(B) then
A is called a subgraph of B, A < B. To compute these topological indices, we partition the
edge set of TA[n] into the classes with the same ny(e) and ny(e), where e = uv is an edge of
TA[n]. We first notice that the graph TA[n].can be constructed from subgraphs isomorphic
to TA[1] and the edges between them, see Figure 1 and 2.

Figure 2. TA[1].

We can see ny(e) + ny(e)=10n for e in E(TA[n]), thus PIv(TA[n])=10nx(13n - 1)=
130n°-10n.

Theorem 3. Sz (TA[n]) = % n® + 240 n? — %

Proof. We partition the edges TA[n] in two ways, the edges between two copies of TA[1]
and the edges copy of TA[l](figure 1). If e = u;v; thus ny,(e) = 10i and n,,(e) =
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10(n—1i). For k™ copy of TA[l], if e =uv = x;%,,UXs,Xcx; then n,(e) =
10(n—k)+6 and n,(e) =10(k—1)+ 4. If e=uv = x;x4 ,Vp_1X5 ,X7Xg then
ny(e) and n,(e) are as above. For e = XxyX3, XoV;_1 , Vk—1Xg , XaUy ,UxXg ,X3X7 WE
have n,(e) = 10(n — 1) + 6 and n,(e) = 4.

Therefore

se@a =) (@)

n—-1
=100 Zi:l i(n —i)
+3 Z (10(n — k) + 6)(10(k — 1) + 4)
k=1
+3 z (10(n — k) + 4)(10(k — 1) + 6)
k=1

n
+6Z 4(6 + 10(n — 1))
k=1
=? (n3— n) + 1003 + 240n% —52n

=%n3+240n2—%n. O

Theorem 4. GA, (TA[n]) <n—1+1.2¥25n2—1+ 2.4V10n — 4.

Proof. By above calculation

A = Y 2y (@1y(e)

e=uv Ny (€) + ny(e)

2 n—-1 3 n
=—Z ni— 2 +—Z J(10n — 10k + 6)(10k — 6)
+Sinzg=1J(10n — 10k + 4)(10k — 4) + % Vi0n — 4.

Thus by Cauchy-Schwarz Inequality we have
GA, (TA[n]) <n—-1+12V25n?2—-1+24v10n—4. 0

4. THE PI, EDGE SZEGED AND THIRD GEOMETRIC-ARITHMETIC
INDEX OF TA[N].
The aim of this section is to compute The PI, edge Szeged and third GA index of TA[n].

Theorem 5. PI(TA[n]) =169n° — 63n + 2 and Sz(TA[n]) = 169n® + 65n° — 17n — 1 +
(169/6)(n’ — n).
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Proof. By definition, if e = u; v; then m,,(e) =13i—1 and m, (e) =13(n—i) — 1.
For e = uv = xyX, ,XsUy ,Xex; we have my(e) = 6 + 13(n — k) and m, (e) = 3 +
13(k — 1) and for e = uv = xyx4, Vy_1Xs, X7Xg, my(e) = 6 + 13(k — 1) and m,, (e) =
3+13(n—k). If e =uv = x,v5_1,%x3x7,x4u;, then my(e) = 3 and m, (e) = 6 +
13(n— k) + 13(k — 1) and also for e = uv = x;X3,UxXg, Vx—1Xe We can see my(e) =
6 +13(n—k) +13(k —1) and m, (e) = 3. Therefore

PITAID = ) (my(@)+my(e)

e=uv

= Zn_l((mi —1)+ 13(n—-1)—1)

i=1
+12 Zn 9+ 13(n—K) + 13(k — 1))
k=1
= (n—1)(13n - 2) + 12 (13n — 4)

=169n* — 63n+ 2.
Also by similar argument

S7e(TAID = )" (my(@)my(e))

_ Zn_l(lzﬁ ~1)(13n—13i— 1) + 3Zn (6+13(—19)3 + 130~ 1))
_ k=1

i

e

+3 Zk=1(6 +13(k—-1))(3+13(n—K)) + 18 Zk=1(6 +13(n—Kk) + 13(k — 1))

=169n3 + 65n? —17n — 1 + % (n® — n). 0
- N 2 _ 6n 7 _
Theorem 6. GA; (TA[n]) < N (13n“ —15n+2) + 1371_4\/169 n? —104n+7
12n
+ Vv39n —21.
13n—4

Proof. By definition of GAj; index and the computation of Theorem 5,

GA; (TA[n]) = Z 2,/my,(e)my (e)

e=uv My(e) + my(e)

2 n-1 . .

=3 zzm J(13i—1)(13n—13i—1)
6 n

F— 4Zk=1‘/(13n ~13k+ 6)(13k— 10)
6 n

o 4Zk=1‘/(13n — 13k + 3)(13k — 7)

L2 BdEac7
13n— 4 n=70
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Therefore by Cauchy-Schwarz Inequality, we have

GA; (TA[n]) < (13n? —15n + 2)

~13n-2
Lo J169n% —104n + 7 + 39n— 21
13n—4 " " Bn—4 > "7
This complete the proof. 0
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