
Arc
hive

 of
 S

ID

Iranian Journal of Mathematical Chemistry, Vol. 2, No. 2, December 2011, pp. 67  71  IJMC 
 
 

Remarks on DistanceBalanced Graphs  
 
 
M. TAVAKOLI AND H. YOUSEFI-AZARI 

 
School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, 
I. R. Iran 
 

(Received May10, 2011) 
 

ABSTRACT 

Distance-balanced graphs are introduced as graphs in which every edge uv has the following 
property: the number of vertices closer to u than to v is equal to the number of vertices closer 
to v than to u. Basic properties of these graphs are obtained. In this paper, we study the 
conditions under which some graph operations produce a distance-balanced graph.  
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1. INTRODUCTION 

For an edge e = ab of a graph G, let )(enG
a  be the number of vertices closer to a than to b. 

That is, )(enG
a  =|{u  V(G) | d(u, a) < d(u, b)}| . In addition, let )(0 enG  be the number of 

vertices with equal distances to a and b; )(0 enG = |{u  V(G) | d(u, a) = d(u, b) }| . 

Here is our key definition. We call a graph G distance-balanced, if )()( enen G
b

G
a   

holds for any edge e = ab of G. These graphs were, at least implicitly, first studied by 
Handa [4] who considered distance-balanced partial cubes. The term itself, however, is due 
to Jerebic et al. [1] who studied distancebalanced graphs in the framework of various 
kinds of graph products. The transmission T(u) of a vertex u  V is defined as follows: 

     Vv vuduT , . 
A graph G is said to be transmission-regular if all its vertices have the same 

transmission. As examples of transmission-regular graphs, we can cite the complete graph 
Kn on n ≥ 2 vertices, the complete bipartite graph Kn,n on 2n ≥ 2 vertices. 

                                                
 Corresponding author (Email: hyousefi@ut.ac.ir). 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

68                                                                               M. TAVAKOLI AND H. YOUSEFI-AZARI 

 

Let G and H be two graphs. The corona product G o H is obtained by taking one 
copy of G and |V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-
th vertex of G, i = 1, 2, …, |V(G)|, see [2,3]. The join G + H of graphs G and H with 
disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union HG  together 
with all the edges joining V1 and V2. The symmetric difference G   H of two graphs G and 
H is the graph with vertex set V(G) × V(H) and edge set 

         }bothnot but   HEvuor        GEvu |  v,vu,u{HGE 22112121  . 
The cluster G{H} is obtained by taking one copy of G and | V(G)| copies of a rooted  

graph H, and by identifying  the root of the ith copy of H with the ith vertex of G, i = 1,2 ,..., 
| V(G) |. The composite graph G{H} was studied by Schwenk [9]. Throughout this paper 
our notation is standard and taken mainly from the standard book of graph theory. We 
encourage the reader to consult papers [5,7,8,1012] for background material as well as 
basic computational techniques. 
 

2. MAIN RESULTS 

A regular graph is a graph where each vertex has the same number of neighbors. A regular 
graph with vertices of degree k is called a k-regular graph or regular graph of degree k. In 
this section, we study the conditions under which some graph operations produce a 
distance-balanced graph. We begin by the following theorem which states the relationship 
between distance-balanced and transmission-regular graphs: 
 
Theorem 1. A graph G is distance-balanced if and only if G is transmission-regular. 
 

Proof. It is wellknown fact that if G is a connected graph and uv = e E(G), then G
un (e) 

= G
vn (e) if and only if T(u) = T(v) [6], proving the result.                                                   ▼ 

 
Theorem 2. Let G and H be connected graphs. Then G + H is distance-balanced if and only 
if G and H are r and k regular graphs, respectively, and     k HV r GV  . 
 
Proof. Consider the following partition of E(G + H): 

                                       GVvu, |  HGEuv   A  , 
                                        HVvu, |  HGEuv    B  , 

       HV  vand   GVu |HGEuv   C  . 

 

We first assume that G and H are r and kregular graphs respectively, and 

    k HV r GV  . Let uv = e   A and )(0 emG = |{x V(G) | d(u, x) = d(v, x) = 1}|. 

Notice that  
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Thus we have HG
un  (e) = Gdeg (u)   )(0 emG  and HG

vn  (e) = Gdeg (v)  )(0 emG . 

Since G is regular Gdeg (u) = Gdeg (v), and thus )()( enen HG
v

HG
u

  . We now assume 

that uv = eB. In a similar way we can see that )()( enen HG
v

HG
u

  . Assume that 

uv=eC. Then we have HG
un  (e) = | V(H) |   Hdeg (v) and HG

vn  (e) = | V(G) |   degG(u). 

Therefore, HG
un  (e) = HG

vn  (e) and thus G + H is distance-balanced. Conversely, assume 

that G + H is distance-balanced. By above argument for an edge e of A, we see HG
un  (e) = 

HG
vn  (e) implies that any two adjacent vertices of G have the same degree. Since G is 

connected, this implies that G is rregular for some r. In a similar way we can see that H is 
k-regular, for some k. For an edge uv = e  C, it follows again from earlier analysis that 

HG
un  (e) = | V(H) |   degH(v) and HG

vn  (e) = | V(G) |   degG(u). Since G + H is distance - 

balanced, two above equations imply that | V(H) |  degH(v) = | V(G) |   degG(u).              ▼ 
 
Corollary. Let G and H be connected graphs. G + H is transmission-regular if and only if 
G and H be r and k regular respectively, such that     k HV r GV  . 
 
Proof. The proof follows from Theorems 1 and 2.                                                               ▼ 
 

A graph G is called nontrivial if | V(G) | > 1. 
 

Theorem 3. The corona product of two arbitrary, nontrivial and connected graphs is not 
distancebalanced. 
 
Proof. Let G and H be arbitrary, nontrivial and connected graphs and Hi be the i-th copy of 
H. Assume that uv = e  E(GoH) such that uV(G) and vV(Hi). Thus, we have : 

                                   GoH
un (e) = |V(G) | ( | V(H)| + 1)  degGoH(v) and GoH

vn (e) = 1. 

Therefore, we have GoH
un (e) ≠ GoH

vn  (e). Thus GoH is not distance-balanced.                  ▼ 
 
Corollary. The corona product of two arbitrary, nontrivial and connected graphs is not 
transmission - regular. 
 
Proof. The proof follows from Theorems 1 and 3.                                                               ▼ 
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Let e = (a,x)(b,y)   E(GH) such that ab   E(G), and N(a,x)(e) = {(u,v)  
V(GH) | d((u,v),(a,x)) < d((u,v),(b,y))}. Consider the following partition of N(a,x)(e) : 
 
A(a,x) =  {(u,v)  V(GH) | auE(G) , vxE(H) , ubE(G) , vyE(H) }, 
B(a,x)  = {(u,v)  V(GH) | (u,v) ≠ (b,y), auE(G) , vxE(H) , ubE(G) , vyE(H) }, 
C(a,x)  = {(u,v)  V(GH) | auE(G) , vxE(H) , ubE(G) , vyE(H) }, 
D(a,x)  = {(u,v)  V(GH) | auE(G) , vxE(H) , ubE(G) , vyE(H) } and 
 F(a,x) = {(a,x)}. We have: 
 
Theorem 4. Let G and H be nontrivial and regular graphs. Then the symmetric difference 
G   H is distance-balanced. 
 
Proof. Let e = (a,x)(b,y) E(GH), where abE(G). Then n(a,x)(e) = |N(a,x)(e) |, N(a,x)(e) = 
A(a,x) B(a,x)    C(a,x)   D(a,x)  F(a,x) and N(b,y)(e) = A(b,y) B(b,y)    C(b,y)   D(b,y)  F(b,y). 

On the other hand, since  G and H are regular, |A(a,x) | = |A(b,y) |, …, |B(a,x) | = |B(b,y) |, |C(a,x) | = 
|C(b,y) |, |D(a,x) | = |D(b,y) | and |F(a,x) | = |F(b,y) |. Therefore, n(a,x)(e) = n(b,y)(e). If e = (a,x)(b,y), 
xyE(H), then a similar argument shows that n(a,x)(e) = n(b,y)(e), proving the result.           ▼ 
 
Theorem 5. The cluster of two arbitrary, nontrivial and connected graphs is not distance-
balanced. 
 
Proof. Let G and H be arbitrary, nontrivial and connected graphs and Hi be the i-th copy of 
H. Assume that uv = e  E(G{H}) such that u is the root of the ith copy of H and u ≠ v 
V(Hi). Thus, we have : 
                   )e(n HG

u  = |V(H)| ( | V(G)|   1) + )e(n H
u    and      )e(n HG

v  = )e(n H
v . 

Therefore,   )e(n HG
u  ≠   )e(n HG

v  and so G{H} is not distance-balanced.                              ▼ 
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