Remarks on DistanceBalanced Graphs

M. TAVAKOLI AND H. YOUSEFI-AZARI

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran

(*Received May10, 2011*)

ABSTRACT

Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.

Keywords: Distance-balanced graphs, graph operation.

1. INTRODUCTION

(Received May10, 2011)
 ABSTRACT
 ABSTRACT

ance-balanced graphs are introduced as graphs in which every edge uv has the follo

betweent; the number of vertices closer to uthan to vis equal to the number of vertices For an edge $e = ab$ of a graph *G*, let $n_a^G(e)$ be the number of vertices closer to *a* than to *b*. That is, $n_a^G(e) = |\{u \in V(G) \mid d(u, a) < d(u, b)\}|$. In addition, let $n_0^G(e)$ be the number of vertices with equal distances to *a* and *b*; $n_0^G(e) = |\{u \in V(G) | d(u, a) = d(u, b)\}|$.

Here is our key definition. We call a graph *G* distance-balanced, if $n_a^G(e) = n_b^G(e)$ *b* $_{a}^{G}(e) =$ holds for any edge $e = ab$ of *G*. These graphs were, at least implicitly, first studied by Handa [4] who considered distance-balanced partial cubes. The term itself, however, is due to Jerebic et al. [1] who studied distance-balanced graphs in the framework of various kinds of graph products. The transmission $T(u)$ of a vertex $u \in V$ is defined as follows:

$$
T(u) = \sum_{v \in V} d(u, v).
$$

A graph *G* is said to be transmission-regular if all its vertices have the same transmission. As examples of transmission-regular graphs, we can cite the complete graph *K_n* on $n \geq 2$ vertices, the complete bipartite graph $K_{n,n}$ on $2n \geq 2$ vertices.

-

Corresponding author (Email: hyousefi@ut.ac.ir).

Let G and H be two graphs. The corona product G o H is obtained by taking one copy of G and $|V(G)|$ copies of H; and by joining each vertex of the i-th copy of H to the ith vertex of G, $i = 1, 2, ..., |V(G)|$, see [2,3]. The join $G + H$ of graphs G and H with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G \cup H$ together with all the edges joining V_1 and V_2 . The symmetric difference $G \oplus H$ of two graphs G and *H* is the graph with vertex set $V(G) \times V(H)$ and edge set

 $E(G \oplus H) = \{(u_1, u_2)(v_1, v_2) | u_1v_1 \in E(G) \text{ or } u_2v_2 \in E(H) \text{ but not both}\}.$

The cluster $G(H)$ is obtained by taking one copy of G and $|V(G)|$ copies of a rooted graph *H*, and by identifying the root of the ith copy of *H* with the ith vertex of *G*, i = 1,2 ,..., $|V(G)|$. The composite graph $G\{H\}$ was studied by Schwenk [9]. Throughout this paper our notation is standard an d taken mainly from the standard book of graph theory. We encourage the reader to consult papers [5, 7,8,10 12] for background material as well as basic computational techniques.

2. MAIN RESULTS

and by identifying the root of the ith copy of *H* with the i⁻³ vertex of *G*.
The composite graph $G[H]$ was studied by Schwenk [9]. Throughout
ion is standard and taken mainly from the standard book of graph
e the read A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree *k* is called a k -regular graph or regular graph of degree *k* . In this section , we study the conditions under which some graph operations produce a distance-balanced graph. We begin by the following theorem which states the relationship between distance -balanced and transmission -regular graphs :

Theorem 1. A graph G is distance-balanced if and only if G is transmission-regular.

Proof. It is well–known fact that if G is a connected graph and $uv = e \in E(G)$, then $n_u^G(e)$ $= \mathbf{n}_{v}^{G}$ (e) if and only if $\mathbf{T}(\mathbf{u}) = \mathbf{T}(\mathbf{v})$ [6], proving the result. ▼

Theorem 2. Let G and H be connected graphs. Then $G + H$ is distance-balanced if and only if G and H are r and k regular graphs, respectively, and $|V(G)| - r = |V(H)| - k$.

Proof. Consider the following partition of $E(G + H)$:

$$
A = \{ uv \in E(G + H) | u, v \in V(G) \},
$$

\n
$$
B = \{ uv \in E(G + H) | u, v \in V(H) \},
$$

\n
$$
C = \{ uv \in E(G + H) | u \in V(G) \text{ and } v \in V(H) \}.
$$

We first assume that G and H are $r-$ and $k-$ regular graphs respectively, and $V(G)$ | - r = | V(H) | - k. Let uv = e \in A and $m_0^G(e) = |\{x \in V(G) | d(u, x) = d(v, x) = 1\}|$. Notice that

$$
d_{G+H}(x,y) = \begin{cases} 0 & x = y \\ 1 & \text{($x \in V(G)$ and $y \in V(H)$)} \text{ or $(xy \in E(H)]$ or $(xy \in E(G)$)} \\ 2 & \text{otherwise} \end{cases}
$$

Archive of $Q = \frac{1}{4}$ *(c)* \Rightarrow $\frac{1}{4}$ (e) and thus $G + H$ is distance-balanced. Converse
Archive of SID and thus $G + H$ is distance-balanced. Converse
Archive of SI and the solution of SID and thus G is distance Thus we have n_u^{G+H} h^{H} (e) = deg_{*G*} (u) – m_0^G (*e*) and n_v^{G+H} H^+H (e) = deg_{*G*} (v) – m_0^G (*e*). Since *G* is regular $deg_G(u) = deg_G(v)$, and thus $n_u^{G+H}(e) = n_v^{G+H}(e)$ *v G H u* $A^{H}(e) = n_v^{G+H}(e)$. We now assume that $uv = e \in B$. In a similar way we can see that $n_u^{G+H}(e) = n_v^{G+H}(e)$ *v G H u* h^+ $(e) = n_v^{G+H}(e)$. Assume that uv=e \in C. Then we have n_u^{G+H} h^{+H} (e) = |V(H)| - deg_{*H*} (v) and n_v^{G+H} $^{+H}$ (e) = $|V(G)| - deg_G(u)$. Therefore, n_u^{G+H} $h^+ H$ (e) = n_v^{G+H} H^+ (e) and thus G + H is distance-balanced. Conversely, assume that G + H is distance-balanced. By above argument for an edge e of A, we see n_u^{G+H} H^{+H} (e) = n_v^{G+H} (e) implies that any two adjacent vertices of G have the same degree. Since G is connected, this implies that G is r-regular for some r . In a similar way we can see that H is k-regular, for some k. For an edge $uv = e \in C$, it follows again from earlier analysis that n_{μ}^{G+H} h^{+H} (e) = |V(H)| - deg_H(v) and n_v^{G+H} A^{+H} (e) = |V(G)| $-\text{deg}_G(u)$. Since G + H is distance balanced, two above equations imply that $|V(H)| - deg_H(v) = |V(G)| - deg_G(u)$. ▼

Corollary. Let G and H be connected graphs. $G + H$ is transmission-regular if and only if *G* and *H* be *r* and *k* regular respectively, such that $|V(G)| - r = |V(H)| - k$.

Proof. The proof follows from Theorems 1 and 2.

A graph *G* is called nontrivial if $|V(G)| > 1$.

Theorem 3. The corona product of two arbitrary, nontrivial and connected graphs is not distance balanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H_i be the i-th copy of *H*. Assume that $uv = e \in E(GoH)$ such that $u \in V(G)$ and $v \in V(H_i)$. Thus, we have :

$$
n_u^{GoH} (e) = |V(G)| (|V(H)| + 1) - deg_{GoH}(v) \text{ and } n_v^{GoH} (e) = 1.
$$

Therefore, we have n_u^{GoH} (e) $\neq n_v^{GoH}$ (e). Thus GoH is not distance-balanced.

Corollar y . The corona product of two arbitrary, nontrivial and connected graphs is not transmission - regular.

Proof. The proof follows from Theorems 1 and 3.

▼

▼

▼

Let $e = (a,x)(b,y) \in E(G \oplus H)$ such that $ab \in E(G)$, and $N_{(a,x)}(e) = \{(u,v) \in E(G) \}$ $V(G \oplus H) | d((u,v),(a,x)) < d((u,v),(b,y))$. Consider the following partition of $N_{(a,x)}(e)$:

 $A_{(a,x)} = \{(u,v) \in V(G \oplus H) \mid au \in E(G), vx \notin E(H), ub \in E(G), vy \in E(H)\}\,$ $B_{(a,x)} = \{(u,v) \in V(G \oplus H) \mid (u,v) \neq (b,y), \, au \in E(G), \, vx \notin E(H), \, ub \notin E(G), \, vy \notin E(H)\}\,$ $C_{(a,x)} = \{(u,v) \in V(G \oplus H) \mid au \notin E(G), vx \in E(H), ub \in E(G), vy \in E(H)\}\,$ $D_{(a,x)} = \{(u,v) \in V(G \oplus H) \mid au \notin E(G), vx \in E(H), ub \notin E(G), vy \notin E(H)\}$ and $F_{(a,x)} = \{(a,x)\}\.$ We have:

Theorem 4. Let G and H be nontrivial and regular graphs. Then the symmetric difference $G \oplus H$ is distance-balanced.

14. Let *G* and *H* be nontrivial and regular graphs. Then the symmetric
distance-balanced.
 Archive of $A(x,y) \in E(G \oplus H)$, where ab $\in E(G)$. Then $n_{(a,x)}(e) = |N_{(a,x)}(e)|$
 $N_{(a,x)} \cup C_{(a,x)} \cup D_{(a,x)} \cup F_{(a,x)}$ and $N_{(b,y)}(e) = A$ **Proof.** Let $e = (a,x)(b,y) \in E(G \oplus H)$, where $ab \in E(G)$. Then $n_{(a,x)}(e) = |N_{(a,x)}(e)|$, $N_{(a,x)}(e) =$ $A_{(a,x)} \cup B_{(a,x)} \cup C_{(a,x)} \cup D_{(a,x)} \cup F_{(a,x)}$ and $N_{(b,y)}(e) = A_{(b,y)} \cup B_{(b,y)} \cup C_{(b,y)} \cup D_{(b,y)} \cup F_{(b,y)}$. On the other hand, since G and H are regular, $|A_{(a,x)}| = |A_{(b,y)}|$, ..., $|B_{(a,x)}| = |B_{(b,y)}|$, $|C_{(a,x)}| =$ $|C_{(b,y)}|, |D_{(a,x)}| = |D_{(b,y)}|$ and $|F_{(a,x)}| = |F_{(b,y)}|$. Therefore, $n_{(a,x)}(e) = n_{(b,y)}(e)$. If $e = (a,x)(b,y)$, $xy \in E(H)$, then a similar argument shows that $n_{(a,x)}(e) = n_{(b,y)}(e)$, proving the result. ▼

Theorem 5. The cluster of two arbitrary, nontrivial and connected graphs is not distancebalanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H_i be the i-th copy of *H*. Assume that $uv = e \in E(G{H})$ such that *u* is the root of the ith copy of *H* and $u \neq v$ $\in V(H_i)$. Thus, we have :

$$
n_u^{G(H)}(e) = |V(H)| (|V(G)| - 1) + n_u^H(e)
$$
 and $n_v^{G(H)}(e) = n_v^H(e)$.

Therefore, $n_u^{G\{H\}}(e)$ $_{\mathrm{u}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e})\neq\mathrm{n}_{\mathrm{v}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e})$ $V_{\text{V}}^{\text{G/H}}(\text{e})$ and so G{H} is not distance-balanced.

REFERENCES

- 1. J. Jerebic, S. Klav žar and D. F. Rall, Distance balanced graphs, *Ann. Combin.* **12** (2008) 71 –79.
- 2 . Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs , *Discrete Math.* **135** (1994) 359 –365.
- 3 . D. Stevanovic, Hosoya polynomial of composite graphs, *Discrete Math.* **235** (2001) 237 244.
- 4 . K. Handa, Bipartite graphs with balanced (a,b) partitions, *Ars Combin.* **51** (1999) 113 119.
- 5 . M. H. Khalifeh, H. Yousefi Azari and A. R. Ashrafi, The hyper Wiener index of graph operations ,*Comput. Math. Appl* . **56** (2008) 1402 –1407 .

▼

- 6 . M. Aouchiche and P. Hansen **,** On a conjecture about the Szeged index , *European J.* Combin. 31 (2010) 1662-1666.
- 7 . M. K. Khalifeh, H. Yousefi –Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance based graph invariants, *European J. Combin.* **30** (2009) 1149 –1163.
- 8 . A. Ili ć, S. Klav žar and M. Milanovi ć, On distance -balanced graphs, *European J. Combin.* **31** (2010) 733 737.
- 9 . A. J. Schwenk, Computing the characteristic polynomial of a graph, in: A. Dold and B. Eckmann, eds., Graphs and Combinatorics, *Lecture Notes in Mathematics* , **406** (Springer, Berlin, 1974) 153 172.
- 10 . M. Tavakoli and H. Yousefi Azari*,* Computing PI and Hyper Wiener indices of corona product of some graphs, *Iranian J. Math. Chem .* **1** (2010) 131 135 .
- 11 . A. T. Balaban, P. V. Khadikar and S. Aziz*,* Comparison of topological indices based on iterated ' sum' versus ' product' operations, *Iranian J. Math. Chem .* **1** (2010) 43 60.
- 12. P. V. Khadikar, Padamakar-Ivan Index in Nanotechnology, *Iranian J. Math. Chem*, 1 (2010) 7 42.

Archive 0