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ABSTRACT 

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial 

M3(G, x) of  the graph G are defined as:   )(
][),( GEuve
 d(v) + d(u)xxG1M , 

  )(),( GEuve
|d(v) - d(u)|x xG3M . In this paper, we compute the first and third Zagreb 

polynomials of Cartesian  product of two graphs and a type of dendrimers. 
 
Keywords: Zagreb polynomial, Zagreb index, graph. 

 

1. INTRODUCTION 

Molecules and molecular compounds are often modeled by molecular graph. A molecular 
graph is a representation of the structural formula of a chemical compound in terms of 
graph theory, whose vertices correspond to the atoms of the compound and edges 
correspond to chemical bonds.  

A topological index is a graph invariant applicable in chemistry. The Wiener index 
is the first topological index introduced by chemist Harold Wiener.1,2 There are some 
topological indices based on degrees such as the first and third Zagreb indices of molecular 
graphs. The first Zagreb index M1 = M1(G) and the third Zagreb index M3 = M3(G) of a 
graph G are defined as: 
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where d(u) denotes the degree of a vertex u in G. 38 
The first Zagreb polynomial M1(G,x) and the second Zagreb polynomial M3(G,x)of 

a graph G are defined as: 

 


)(
] d(v) + d(u)[

1 ),(M
GEuve

xxG ,               


)(
d(v)| -|d(u)

3 x ),(M
GEuve

xG . 

For more study about polynomial in graph theory you can see 914. 
The path Pn is the shortest walk between two vertices. We denote Star, wheel, cycle 

and complete graph by   Sn, Wn, Cn and Kn, respectively. The union of GH of graphs G 
and H is a graph such that V(GH) = V(G)  V(H), and E(G  H) = E(G)  E(H). The 
Cartesian product G   H of graphs G and H is a graph such that V(G   H) = V(G)   V(H), 
and any two vertices (a,b) and (u,v) are adjacent in G   H if and only if either a = u and b 
is adjacent with v, or b = v and a is adjacent with u. 12 

 
2. THE FIRST AND THIRD ZAGREB POLYNOMIALS OF A GRAPH.  

The considerations in the subsequent sections are based on the applications of the following 
definitions. In this section, we present some new bounds for the first and third Zagreb 
indices of graphs and compare them with each other. 
 
Example. Let Kn, Sn and Wn are complete, star and wheel graphs, then 
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Lemma 1. Let G and H be two graphs, then  

),(),(),( 111 xHMxGMxHGM   
and 

).,(),(),( 333 xHMxGMxHGM   

Proof. The proof is straightforward.                                                                                       �  
 

Theorem 2. Let G and H be two graphs,  then  

),,(1)2,(),(1)2,(),(1 xGMxHdxHMxGdxHGM   
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where d(G, x)=  

n

i
dix

1
. 

 
Proof. By definition of G × H, we have dG×H(a,b) = dG(a) + dH(b) then 
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This completes our argument.                                                                                                 � 
 

 
Figure 1. Cm×Cn. 

 
Corollary 3. M1 mnxxCC nm 2),(   and M2 mnxxCC nm 2),(  . 
 
Proof. The graph Cm×Cn is 4regular, so by Theorem 2 we have M1 mnxxCC nm 2),(  . 

The second equation is obtained by definition of the second Zagreb index.                          � 
 
Theorem 4. Let G and H be two graphs then  
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Proof. At first we prove for G×H. We have dG×H(a,b) = dG(a) + dH(b) then 
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Now we proceed by induction on k to complete the proof.                                                    � 
 

Corollary 5. .2),(3 mnxCCM nm   
 
3. THE FIRST AND THIRD ZAGREB POLYNOMIALS OF  A NANOSTAR 

DENDRIMER 
 
In this section, we compute the first and third Zagreb polynomials of a type of nanostar 
dendrimers, Figure 1. 
 
Theorem 6.  Let Ns[n] be above nanostar dendrimer,  then 
 

,)326()326()22()),(( 415161
1 xxxxnNSM nnn    

and 
.)427()426()),(( 111

3 xxnNSM nn    
 
Proof. The graph NS[n] has three type of edge, with degrees 2 and 2, degrees 2 and 3, 
degrees 1 and 3. Thus by definition of Zagreb polynomials we can compute 
 

,)326()326()22()),(( 415161
1 xxxxnNSM nnn    

and 
.)427()426()),(( 111

3 xxnNSM nn    
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Figure 2. Nanostar Dendrimer Ns[4]. 
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