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ABSTRACT

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set
V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a ; b)(x , y)| ax € E(G) & by € E(H)}.
The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w
adjacent to both of them. In this article the tensor product of G + H under some distance-
based topological indices are investigated, when H is a strongly triangular graph. As a special
case most of results given by Hoji, Luob and Vumara in [Wiener and vertex Pl indices of
Kronecker products of graphs, Discrete Appl. Math., 158 (2010), 1848-1855] will be deduced.
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1 INTRODUCTION

Throughout this article G is a simple connected graph with vertex and edge sets V (G) and
E(G), respectively. A topological index is a numerical quantity related to a graph that is
invariant under graph automorphisms. As usual, the distance between the vertices u and v
of G is denoted by de(u , v)(d(u , v) for short) and it is defined as the number of edges in a
minimal path connecting them. A topological index related to distance function d(-, -) is
called a "distance—based topological index". The Wiener index W(G) is the first
distance—based topological index defined as the sum of all distances between vertices of G
[21]. The Wiener index has noteworthy applications in chemistry and interested readers can
be referred to [2, 3] and references therein for details. Hosoya [10] was the first scientist
introduced the name "topological index" and reformulated the Wiener index in terms of
distance function d(-, -).

In graph theory such numbers is usually called graph invariant. The hyper—Wiener
index was proposed by Klein et al.[17], as a generalization of the Wiener index of graphs. It
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is defined as WW(G) = SW(G) + - Yqumer(e) 4%(u,v), whered?(u, v) = d(u,v)2. We
encourage the reader to consult [14, 15] for mathematical properties of the hyper-Wiener
index and its applications in chemistry. These definitions can be further generalized in the
following natural way:W,(G) = Y, yev(ey d* (u, v)where d*(u,v) = d(u,v)*and A is a
real number[6, 7].

Several particular instances of the invariant W, have been previously studied for
instance, W_, ,W_, éWl + éWz and éWl +§W2 + §W3 are the so called Harary index,
reciprocal Wiener index, hyper-Wiener index and Tratch—Stankevich—Zefirov index, see
[7,12] and references therein for details. In the chemical literature also W1 [23] as well as

2

the general case W; were examined [5, 6, 8].
n(n-1)D

The reverse-Wiener index A(G) = — W(G) was proposed by Balaban et al.

in 2000 [1]. It is important for a reverse problem and it is-also found applications in
modeling of structure—property relations. Some mathematical properties of the
reverse—Wiener index may be found in [19, 20].

Up to now, many distance-based topological-indices of Cartesian product of graphs
are determined [4, 11, 13, 16, 22]. In this paper we consider distance-based topological
indices of tensor product of graphs. The tensor product of graphs has been extensively
investigated as regards graph colorings, graph recognition and decomposition, graph
embedding, matching theory and stability in graphs (see, for example [18]).

Throughout this paper, D(G),Ka, Knxz2, srg(n, k, r, s) and T denote the diameter of
graph, the complete graph, the cocktail party graph, the strongly regular graph with
parameters k, r, s and the number of edges lying on a triangle, respectively. Our other
notation is standard and taken mainly from the standard book on graph theory.

2 MAIN RESULTS

In this section, some distance—based topological indices of graphs under tensor product are
computed. The exact formulas are given for the Wiener, hyper-Wiener, reverse—Wiener,
Harary, reciprocal Wiener and Tracth—Stankevich—Zefirov indices of the tensor product of
connected graphs. The following lemma is crucial in our calculations.

Lemmal. d;,y ((u, v), (U, v/)) > Max{d;(u,u) ,dy(v,v)}.

Proof. It is clear that every shortest path connecting (u,v) and (u',v') are containing walk
between u, u' and walk between v, v', as desired.
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Theorem 2. Let G and H be connected graphs, where H be a strongly triangular graph.
Then for every vertex (u, v),(u’, v)eV (G + H) we have:

2 uu’ € E(G),vv' ¢ E(H)anduu'is anedge of a triangle;
oruu’ € E(G),v =v'and uu'is an edge of a triangle.

dgon (W, v), (W', v")) =13 uu' € E(G),vv' ¢ E(H)anduu'is not an edge of a triangle;
oruu' € E(G),v =v'and uu'is not an edge of a triangle.

ds(u,u") Otherwise

Proof. Suppose P : u =uj, Uy, ..., Uy =U"Is a shortest path connecting u and u' in G, w is
adjacent to v, v'e H and v', w are adjacent to z. Now our main proof will consider three
separate cases as follows:

Case 1: Let (u, v) and (u', v) be two arbitrary vertices of G + H such that u#u'and v # v".
We prove this case in three steps.

1) Suppose that dg(u, u’) = 2k + 1, k > 0. If w'e E(H), then the path (uy, v),(uz, V'),
(us, V), ..., (Un-1, V),(un, V') is connecting (u, v)and (u', v') and its length is de(u, u’), and if w'
ZE(H), (ug, v), (Uz,w), (us, 2), (Ug, V), (Us, 2), .+, (Un-1, 2), (Un, V') is a shortest path of length
ds(u, u'). Apply Lemma 1, we have de+u((u; V), (U', v')) = ds(u, u").

2) Suppose that dg(u , u") = 2k, k > 0. Hence (uy, V), (U2, w), (us, v), (Us, W), ...,
(Un-1, W), (un, V") is connecting (u , v) and (u',v") and its length is de(u , u’). By Lemma 1,
de+n((u, v),(U', v1)) = ds(u, U’).

3) Let dg(u, u) = 1. Ifvw' € E(H) then (u, v), (u', V') is a path of length one. Suppose
w'gE(H). If.uu’ is an edge of a triangle, since w' €E(H), de+n((u, V), (U, v")) > 2. Assume
that u™ is adjacent to.u and u'. Therefore, (u, v), (u", w), (u', v') is a path of length 2. Thus,
de+n((u, v), (u',v"))= 2. If uu' is not an edge of a triangle, then clearly dc+n((u, v), (u', v")) >
3. On the other hand (u, v), (U, w), (u, 2), (u', v') is a path of length 3 which implies that
de+n((u, v), (u',v)) = 3.

Case 2: Let (u, v) and (u', v') be arbitrary vertices of G + H, such that u# u" and v = Vv'".
Suppose that vertex v, is adjacent to v and vertex w' is adjacent to both of them too. If
de(u,u’) = 2k, k > 0. Then (ug, v), (Uz, V1), (Us, V), .. ., (U', v) is connecting (u, v) and (u', v)
having length dg(u, u’). If dg(u, u") = 2k + 1, k > 0, then (uy, v), (U2, v1), (Us, W), (Ua, V), ...,
(Un-1, W), (u', v) is a shortest path of length dg(u, u’). Thus, Lemma 1 shows that
de+n((u,Vv),(u’, v")) =dg(u, u.
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Now if dg(u,u’) = 1 then using a similar argument as those are given in 3, we have
de+n((u,v), (U', v')) = 2, where uu' is an edge of a triangle. On the other hand,
de+n((u,v),(u',v")) = 3, when uu' is not an edge of a triangle.

Case 3: Suppose (u, v) and (u', v') are arbitrary vertices of G + H such thatu = u" and v #
Vv'. In this case (ui, v), (uz, w), (us, V') is a shortest path of length 2 between (u, v), (u,
v'),which completes our proof.

Theorem 3. Let G and H be connected graphs such that H is a strongly triangular graph.
Then

Wy = HW(6) + (3% = DIE@)I + (22 =3I - 215D+ 24161 (1)

Proof. We compute the Wiener type invariant of (G + H) in.asimilar argument as Theorem
2. We prove the theorem in six cases as follows:

1) We assume that u #u’, v #v' and dg(u, u')>1. Then
= ) dh (@w), @)= 2> Saieu)=2(H e - 1@,

2) Letu #u'and dg(u,u’) = 1 then we have the following three cases:
i) v'e E(H) then

o= Y b (@), @)= 2) N 1A =20E@IIEG)]
ii) vw¢ E(H) and uu' is an edge of a triangle then

Ly, = Zdém ((w,v), @', v")) = 22 ’Z ’2’1

— oA+l |H|
= 217 (( ) )—IE(H)I).
iii) vvr ¢ E(H) and uu' is not an edge of a triangle then

= di (@ @) =2y Y @

_ H
= 2.3%(|E(G)| - IT1) (('2') - |E(H)|).
3) Assume thatu # u', v=v'and dg(u, u’) > 1. Then
oy = ) dien (o). @)= D7 > dd ) = HIWH(6) — IEG)D,
4) Suppose uu' is an edge of a triangle and v = v' then

Iy, = Z di,y ((wv), (W' v")) = Zv ZWZ’1 = 22|T||H].

5) Let uu' is not an edge of a triangle and v = v' then
oy = Y diu (o). @)= " 3 =3HI(EG)] - IT]),
6) Consider u = u"and v # vo. Then
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- Staenw=23, 3=

Therefore, by using the above results and adding them, proof is completed.

Corollary 4. Let G and H be connected graphs and H be strongly triangular graph. Then

8) WG +H) = IHPW(G) + (HI? — 21EED@IE@)] - 7D + 2161 (A1),
b) W_y(G +H) = [HPW_,(6) + (I — 21EG)D (171 - 21E@)1) + 2161 (1),
C) W_o(G + H) = IHIPW_(6) + (I = 21EGDD (2171 - 21E@)N) + 2161 (A1),

d) W +H) = IHPWW(G) + (I — 2EEDGIEG)] - 317D + 3161 (1),

49

&) WG +H) = [HPWL(6) + (H P —21E G (V3 - DIE@)] = (3 - v2)Irl) + V26l (1)

0 2w + )+ 2Wy(G + H) +2Wi(6 + ) = [HP (2ws(@) + 2Wa(@) + 1wy (6) ) +

(H1Z = 21EEDOIE@)] - 617D + 416l (1),

Proof. Apply Theorem 3.

Corollary 5. Suppose G and H are connected graphs and H is strongly triangular graph.

Then
(U0 _ 112w 6) - (= 21EEDDIEG) 1T — 2161 (1) D(G) 23
AG +H) = S = [HPW () — (1 — 21EmDEIEG) —1Th - 2161 (M) by <31m1 2 1EG)1
l|c||H|(|a||H|—1) 12w @)~ (HI? - 21EaDD@IEG) - 17D - 2161 (1) b6y <3171 =BG

Proof. Apply Theorem 2 and Corollary 4(a).
Corollary 6. Suppose G is a connected graph and H=srg(n, k, r, s), wherer s >0. Then

a) W(G +H)=n*W(G)+n(n—k)Q2|EG)| - |T|) + n(n — 1)|G],
b) WW(G + H) = n2WW(G) +n(n — k)GIE(G)| - 3IT]) + >n(n — 1G],

€) W.i(G+H) = n2W,,(6) +nn— k) (GIT| = 2IE(O)]) +;n(n - DlG],
d) W.,(G+H)=n?W_,(6) +n(n—k) (= |T|——|E(G)|)+ n(n— 1IG|,
&) Wi+ H) = n2Wi(6) +nln— k) (V3- DIEE@)] - (V3 - V2)ITI) + Fnln — DIG]

Proof. Apply Corollary 4.
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Corollary 7 (Hoji, Luob and Vumara [9]). Suppose G is a connected graph. Then for n >2,

W(G + K,) = n?W(G) +n(2|E(G)| - 3IT]) + n(n — 1)IG],
3
WW(G + H) = n*WW(G) +n(5|E(G)| — |T|) + En(n - 1)|G].
Proof. Apply Corollary 6.

Corollary 8 (Hoji, Luob and Vumara [9]). Let G be a connected triangle—free graph of
order at least 2. Then for n > 3,

W (G + K,) = n*W(G) + 2n|E(G)| + n(n — 1)|Gl,

3
WW(G + K,) = n*WW(G) + 5n|E(G)| + En(n —1)|G].
Proof. Apply Corollary 6.

Corollary 9. Suppose G is a connected graph then forn >3
8) W_1(G+Ky) = n*W_1(6) +n (31T = 2|EG)])* 2n(n = 1)IG],
b) W_o(G +Ky) = n?W_,(G) +n (=TI - 2|B(G) +3n(n — 1)IG],

c) Wi(G+K,) =n*Wi(G)+n ((\/§— DIE@I - (V3 - x/§)|T|) +§n(n - 1IGI.

Proof. Apply Corollary 6.

Corollary 10. Suppose G is a connected graph and Knx, where n > 2 is a cocktail party
graph. Then

) W(G + Knxz) = 2n)*W(G) + 4n(2|E(G)| — IT]) + 2n(2n — 1)IG],
b) WW(G + Kuxz) = (@n)*WW(G) + 4n(5|E(G)| — 3|T]) + 3n(2n — 1)|G],

€) Wo1(G *Kuxz) = (20)*W_1(6) + 4n (SIT| = 2|E(G)]) + 2 n(2n - 1)IG],

d) W_5(G +Kpuz) = (20)*W_,(6) + 4n (S |T| - 2|E(G)]) +1n(2n — 1)]G],

&) W16+ Knxa) = (2m)*W2(6) + 4n ((V3 - 1)IE@)| ~ (V3 V2)IT|) +
V2n(2n — 1)|G.

Proof. Apply Corollary 6.

Corollary 11. Suppose G is a connected graph and H = srg(n, k, r, s) is a strongly regular
graph with parameters r, s > 0 then for n >3,
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nIGI(nIGI 1DDEG)

n*W(G) —n(n — k)(2|E(G) — IT]) — n(n — 1)|G]|, D(G) =3

2

[
A(G”’)‘{ snclic1=D) R2W(G) - nn — )IE@) — T —nn - DIG|,  D(G) <3,IT| * |EG)|
U nlGl@l61 - 1) = n2W(6) - nn — Y QIEG) — 1T —n(e— DIGL. D(G) <3171 = |EG)]

(nlG|(n|G| - 1)D(G)

2

ME+i6) =) SGIIZY o) - el - T~ na = DIGL D) <3171 % [E@)
U nl61(ni61 - 1) - n?W(6) ~n(@lE@) ~ IT) ~n(n - DlGl.  D(@) <3.ITI = |E@)

—n2W(G) — n(2lE(G) — |T]) — n(n — 1)|G]|, D([G)=3

nl61nlG] — 1)D(G) — @n)*W (G) — 4nRIE(G) — IT]) — 2n(2n — 1)IGI, D(G) =3
AG + Ky p) :{ 3nl61(2n]G| — 1) — @n)2W(G) — 4n(2|E(G) — IT]) — 2n(2n — 1)IGI, D(G) <3,|T| # |E(G)|
IGIHIAGIIH] = 1) = |HI*W (G) — (IHI? = 2IE(H))IEG) = IT]) = 2n(2n — D|G]. D(G) <3,IT| =|E(G)]

Proof. Apply Corollary 5.

Corollary 12. Suppose G is a connected graph and H = srg(n, k, r, s) with parameters r, s
> 0 then

a) %WJG+H)+%WKG+H)+§WKG+H)=nZGM@w)+a%UD+§WA®>+
n(n— K)OIEG)] - 6IT1) + 2n(n + 1)[61,

D) 2WL(G+Kn) + W, (6 + K) + WG+ Ky) = v (2w () + 2 wa (@) + 2w (@) ) +
n(9IE(G)] - 6IT]) + 2n(n= DIGI

Q) 2W(6 + Knea) + W56+ Kusg) + W, (6 + Kisr) = (20)? (2W(6) +2w(6) +

2W1(6)) + 4n(9IE(G)| = BITI) + 4n(2n — 1)IGI.

Proof. Apply Corollary 4(f).
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