Applications of Some Graph Operations in Computing Some Invariants of Chemical Graphs

M. TAVAKOLI AND F. RAHBARNIA

Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

(*Received October 20, 2013; Accepted October 29, 2013*)

ABSTRACT

In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.

Keywords: Topological index; graph operation; distance-balanced graph; chemical graph.

1. INTRODUCTION

 \overline{a}

(*Received October 20, 2013; Accepted October 29, 2013)*
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
ADSTRACT
ADSTRACT Throughout this paper all graphs considered are finite, simple and connected. The distance $d_G(u, v)$ between the vertices *u* and *v* of a graph *G* is equal to the length of a shortest path that connects *u* and *v*. Suppose *G* is a graph with vertex and edge sets $V = V(G)$ and $E =$ *E*(*G*), respectively. For an edge $e = ab$ of *G*, let $n_a(e)$ be the number of vertices closer to *a* than to *b*. In other words, $n_a^G(e) = |\{u \in V(G) \mid d(u, a) < d(u, b)\}|$. In addition, let $n_0(e)$ be the number of vertices with equal distances to *a* and *b*, i.e., $n_0^G(e) = |\{u \in V(G) \mid d(u, a) =$ $d(u, b)$]. We also denote the number of edges of *G* whose distance to the vertex *a* is smaller than the distance to the vertex *b* by $m_a(e)$. The Szeged, edge Szeged, revised Szeged, vertex–edge Szeged, vertex Padmakar–Ivan and edge Padmakar–Ivan indices of the graph *G* are defined as:

$$
S_{Zv}(G) = \sum_{e=uv \in E(G)} n_u(e) n_v(e) \text{ (see [1]),}
$$

\n
$$
S_{Ze}(G) = \sum_{e=uv \in E(G)} m_u(e) m_v(e) \text{ (see [2]),}
$$

\n
$$
S_{Zv}^*(G) = \sum_{e=uv \in E(G)} (n_u(e) + \frac{n_0(e)}{2}) (n_v(e) + \frac{n_0(e)}{2}) \text{ (see [3]),}
$$

Corresponding author (Email: Mostafa.tavakoli@stu-mail.um.ac.ir).

 $Sz_{ev}(G) = \frac{1}{2}$ $\frac{1}{2} \sum_{e=uv \in E(G)} (m_u(e)n_v(e) + m_v(e)n_u(e))$ (see[4]), $PI_v(G) = \sum_{e=uv \in E(G)} (n_u(e) + n_v(e))$ (see[5]), $PL_e(G) = \sum_{e=uv \in E(G)} (m_u(e) + m_v(e))$ (see[6]).

A graph *G* with a specified vertex subset $U \subseteq V(G)$ is denoted by $G(U)$. Suppose *G* and *H* are graphs and $U \subset V(G)$. The generalized hierarchical product, denoted by $G(U) \cap H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices (g, h) and (g', h') are adjacent if and only if $g = g' \in U$ and $hh' \in E(H)$ or, $gg' \in E(G)$ and $h = h'$. This graph operation has been introduced by Barriére et al. [7,8] and it has some applications in computer science. To generalize this graph operation to *n* graphs, assume that $G_i = (V_i, E_i)$ is a graph with vertex set V_i , $1 \le i \le N$, having a distinguished or root vertex 0. The hierarchical product *H* $G_N \sqcap ... \sqcap G_2 \sqcap G_l$ is the graph with vertices the N-tuples $x_N ... x_3x_2x_1, x_i \in V_i$, and edges defined by the following adjacencies:

in introduced by Barriére et al. [7,8] and it has some applications in computer scie
generalize this graph operation to *n* graphs, assume that
$$
G_i = (Y_i, E_i)
$$
 is a graph
ex set V_i , $1 \le i \le N$, having a distinguished or root vertex *0*. The hierarchical produ
 $i_N \sqcap ... \sqcap G_2 \sqcap G_1$ is the graph with vertices the *N*-tuples $x_N ... x_{3X2X_i}, x_i \in V_i$, and e
need by the following adjacencies:

$$
\begin{cases}\n x_N ... x_3x_2y_1 & \text{if } x_1y_1 \in E(G_1), \\
x_N ... x_3y_2x_1 & \text{if } x_2y_2 \in E(G_2) \text{ and } x_1 = 0, \\
& \vdots \\
y_N ... x_3x_2x_1 & \text{if } x_Ny_N \in E(G_N) \text{ and } x_1 = x_2 = 0,\n \end{cases}
$$

end $x_N ... y_3x_2x_1$ if $x_3y_3 \in E(G_N)$ and $x_1 = x_2 = ... = x_{N-1} = 0$.
encourage the reader to consult [9] for the mathematical properties of the hierarchical
duct of graphs.
The Cartesian product $G \times H$ of the graphs *G* and *H* has the vertex set $V(G \times i) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G \times H$ if $a = b$ and $xy \in E(H)$, or $ab \in E(G)$ a
see [10].
The disjunction $G \vee H$ of graphs *G* and *H* is the graph with vertex set $V(G) \times$
at that (u_i, v_i) is adjacent to (u_2, v_2) whenever $u_i u_2 \in E(G)$ or $v_i v_2 \in E(H)$ [10].

We encourage the reader to consult [9] for the mathematical properties of the hierarchical product of graphs.

The Cartesian product $G \times H$ of the graphs *G* and *H* has the vertex set $V(G \times H) =$ $V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of *G* \times *H* if $a = b$ and $xy \in E(H)$, or $ab \in E(G)$ and x *= y*, see[10].

The disjunction $G \vee H$ of graphs *G* and *H* is the graph with vertex set $V(G) \times V(H)$ such that (u_1, v_1) is adjacent to (u_2, v_2) whenever $u_1u_2 \in E(G)$ or $v_1v_2 \in E(H)$ [10].

Let $G=(V, E)$ be a simple graph of order $n=|V|$. Given $u, v \in V$, $u \sim v$ means that u and *v* are adjacent vertices. Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph *G*, the metric representation of a vertex $v \in V$ with respect to *S* is the vector $r(v/S)=(d_G(v, v_1),$ $d_G(v, v_2)$, …, $d_G(v, v_k)$). We say that *S* is a resolving set for *G* if for every pair of distinct vertices *u*, $v \in V$, $r(u/S) \neq r(v/S)$. The metric dimension of *G* is the minimum cardinality of any resolving set for *G*, and it is denoted by *dim(G).*

Now, we present some certain types of graphs that play prominent roles in this work. A graph *G* is called nontrivial if $|V(G)| > 1$. The *n*-cube Q_n $(n \ge 1)$ is the graph whose vertex set is the set of all *n*-tuples of *0*s and *1*s, where two *n*-tuples are adjacent if they differ in precisely one coordinate. A tree is an [undirected graph](http://en.wikipedia.org/wiki/Undirected_graph) in which any two [vertices](http://en.wikipedia.org/wiki/Vertex_(graph_theory)) are connected by [exactly one simple path.](http://en.wikipedia.org/wiki/Path_(graph_theory)) In other words, any [connected](http://en.wikipedia.org/wiki/Connectedness) graph without [cycles](http://en.wikipedia.org/wiki/Cycle_(graph_theory)) is a tree. A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree *k* is called a *k*–regular graph or regular graph of degree *k*. Note that the path graph, the complete and the cycle of order *n* are denoted by P_n , K_n and C_n , respectively.

2. MAIN RESULTS

IAIN RESULTS
 ATAIN RESULTS
 In what follows, we assume that \prod_i^j $\sum_i^j f_i = 1$ and \sum_i^j $i \int_i f_i = 0$ for each $i, j \in \{0, 1, 2, ...\}$, that *i* $-j = 1$. Furthermore, let \prod_i^j $\sum_i^j f_i = \sum_i^j$ *i*_i $f_i = 0$, for every *i, j* ∈ {0, 1, 2, ...}, such that *i − j > 1*. For a rooted graph *G* with root vertex *r*, we will use $\Box T_v(G)$ to denote the sum of $n_v^G(e)$ over all edges $e = uv$ of *G* that $d_G(u, r) < d_G(v, r)$ and $\Gamma_v^c(G)$ $v_v^c(G)$ to denote the sum of $n_u^G(e)$ over all edges $e = uv$ of *G* that $d_G(u, r) < d_G(v, r)$. Moreover, $\Gamma_e(G)$ denotes the sum of m_v^G (*e*) over all edges $e = uv$ of *G* that $d_G(u, r) < d_G(v, r)$ and $\Gamma_e^C(G)$ $\binom{c}{e}(G)$ denotes the sum of m_u^G *(e)* over all edges *e* = *uv* of *G* that $d_G(u, r) < d_G(v, r)$. In other words,

$$
\Gamma_v(G) = \sum_{uv \in E(G), d_G(u,r) < d_G(v,r)} n_v^G(uv),
$$
\n
$$
\Gamma_v^c(G) = \sum_{uv \in E(G), d_G(u,r) < d_G(v,r)} n_u^G(uv),
$$
\n
$$
\Gamma_e(G) = \sum_{uv \in E(G), d_G(u,r) < d_G(v,r)} n_v^G(uv),
$$
\n
$$
\Gamma_e^c(G) = \sum_{uv \in E(G), d_G(u,r) < d_G(v,r)} n_u^G(uv).
$$

If the vertex *r* lies on no odd cycle of *G*, then one can easily seen that

 $PI_{\nu}(G) = \Gamma_{\nu}(G) + \Gamma_{\nu}^{c}(G)$ $P_{\text{L}}^{\text{C}}(G)$ and $PI_{\text{e}}(G) = \Gamma_{\text{e}}(G) + \Gamma_{\text{e}}^{\text{c}}(G)$ $\frac{c}{e}(G)$.

Also, for a sequence of graphs, G_l , G_2 , ..., G_n , we set $|V_{i,j}| = \prod_{k=1}^j$ $\int_{k=i}^{J} |V(G_k)|$ and $=\prod_{k=i,k\neq i}^{j}$ $\int k = i, k \neq l$ ^{$|V(G_k)|$} *l* $/V_{i,j}^l / \sqrt{\frac{V_{i,j}}{V_{i,j}}} = \prod_{k=1}^J V(G_k) / \sqrt{\frac{V_{i,j}}{V_{i,j}}}$ To say the next result, we have to present some notation. For a connected rooted graph *G* with root vertex *r*, let $N^G(r)$ be the set of vertices of *G* with the property that $u \in N^G(r)$ if there exists $v \neq u$ in $V(G)$ such that $d_G(u, r) = d_G(v, r)$. We say that

 $S(N^G(r)) \subseteq V(G)$ is a resolving set for $N_G(r)$ if for each pair of distinct vertices *u*, $v \in N^G(r)$, $r(u/S(N^G(r))) \neq r(v/S(N^G(r)))$. Therefore, it is clear that $dim(N^G(r)) \leq dim(G)$. The metric dimension of $N^G(r)$ is the minimum cardinality of any resolving set for $N^G(r)$, and it is denoted by $dim(N^G(r))$.

Theorem 1. [9]. Suppose G_1 , G_2 , ..., G_n are nontrivial connected rooted graphs with root vertices r_1 , ..., r_n , respectively. Then

Figure 1: Irregular Dicentric $IDD_{5(2,1,3,1,2)}$ Dendrimer.

Example 2. Let $IDD_{r,(p_1,\dots,p_r)}$ be the graph of the irregular dicentric dendrimer that $p_i > 1$, *i*=1,.., *r*, see [11] for more information. Then $IDD_{r,(p_1,\dots,p_r)} = P_2 \cap H$, where *H* is a tree of progressive degrees p_i , $i=1,...,r$, respectively, and generation r (see Figure 1). One can see that $dim(N^H(r)) = \prod p_i(p_r - 1)$ *r-1 i 1* $\prod p_i(p_r =$. Therefore, by Theorem 1, we have:

$$
dim(IDD_{r,(p_1,\dots,p_r)})=|V(P_2)| dim(N^H(r))=2\prod_{i=1}^{r-1}p_i(p_r-1).
$$

A graph *G* is said to be (vertex) distance-balanced, if $n_a^G(e) = n_b^G(e)$, for each edge $e = ab \in E(G)$, see [12, 13] for details. These graphs first studied by Handa [14] who considered distance-balanced partial cubes. In [15], Jerebic et al. studied distance-balanced

graphs in the framework of various kinds of graph products. After that, in [16], the present authors introduced the concept of edge distance-balanced graphs. Such a graph *G* has this property that $m_a^G(e) = m_b^G(e)$ holds for each edge $e = ab \in E(G)$.

Proposition 3. [13]. Let *G* and *H* be arbitrary, nontrivial and connected graphs. Then $G \vee H$ is distance-balanced if and only if *G* and *H* are regular graphs.

Example 4. Consider *G'*, see Figure 2, that was constructed in [17] as an example of a bipartite regular graph that is not distance-balanced. It would be interesting to know that we can produce a distance-balanced graph by two graphs which are not distance-balanced. Let *G* is arbitrary, nontrivial and connected regular graph then by the above proposition, $G' \vee G$ is distance-balanced (note that *G* can be not distance-balanced).

Theorem 5. [16]. Let *G* and *H* be edge and vertex distance-balanced graphs. Then $G \times H$ is edge distance-balanced graphs.

Example 6. Consider the *N*-cube Q_N . It is well-known fact that it can be written in the form $Q_N = \times_{i=1}^N K_2$ $\times_{i=1}^{N} K_2$. On the other hand, K_2 is edge and vertex distance-balanced graph. So, by the above theorem, Q_N is edge distance-balanced graph.

Theorem 7. [18]. Suppose $G_1, G_2, ..., G_n$ are connected rooted graphs with root vertices r_1 , *…, rn*, respectively. Then

$$
S_{\mathcal{Z}_{\nu}}(G_n \cap ... \cap G_2 \cap G_1) = \sum_{i=1}^n |V_{i+1,n}|/|V_{I,i-1}|^2 S_{\mathcal{Z}_{\nu}}(G_i)
$$

$$
+ \sum_{i=I}^{n-1} \left(\sum_{j=i+I}^{n} (|V(G_j|)/-1)|V_{I,j-I}| \right) |V_{I,n}^i / \Gamma_v(G_i|).
$$

Corollary 8. [18]. Suppose *G1, G2, …, Gⁿ* are connected, rooted and distance-balanced graphs with root vertices r_1 , ..., r_n , respectively, such that r_i lies on no odd cycle of G_i , $i =$ *1, 2, . . . , n*. Then

$$
S_{\mathcal{Z}_{\nu}}(G_n \cap ... \cap G_2 \cap G_1) = \sum_{i=1}^n |V_{i+1,n}|/|V_{1,i-1}|^2 S_{\mathcal{Z}_{\nu}}(G_i)
$$

+
$$
\frac{1}{2} \sum_{i=1}^{n-1} \left(\sum_{j=i+1}^n (|V(G_j)|-1)|V_{1,j-1}| \right) / |V_{1,n}^i| P I_{\nu}(G_i).
$$

Theorem 9. [18]. Suppose $G_1, G_2, ..., G_n$ are connected rooted graphs with root vertices r_1 , *…, rn*, respectively. Then

$$
i=I
$$
\n
$$
+ \frac{1}{2} \sum_{i=1}^{n-1} \left(\sum_{j=i+1}^{n} \left(\frac{V}{V(G_j)} - 1 \right) / V_{1,j-1} \right) / V_{1,n}^i / P I_{\nu}(G_i).
$$
\nTheorem 9. [18]. Suppose $G_l, G_2, ..., G_n$ are connected rooted graphs with root v\n
$$
... , r_n
$$
, respectively. Then\n
$$
S_{Z_e}(G_n \sqcap ... \sqcap G_2 \sqcap G_l) = \sum_{i=1}^{n} / V_{i+1,n} / S_{Z_e}(G_i)
$$
\n
$$
+ \sum_{i=1}^{n} / V_{i+1,n} / \left(\sum_{j=1}^{i-1} E(G_j) / |V_{j+1,i-1}| \right) S_{Z_{\nu}}(G_i)
$$
\n
$$
+ 2 \sum_{i=1}^{n} / V_{i+1,n} / \left(\sum_{j=1}^{i-1} E(G_j) / |V_{j+1,i-1}| \right) S_{Z_{ev}}(G_i)
$$
\n
$$
+ \sum_{i=1}^{n} / V_{i+1,n} / \left(\sum_{j=1}^{i-1} E(G_j) + \sum_{i \in I} (G_i) \sum_{j=1}^{i-1} E(G_j) / |V_{j+1,i-1}| \right)
$$
\n
$$
+ \sum_{i=1}^{n} \left(\left(V(G_j) / -1 \right) \sum_{k=1}^{j-1} \left[E(G_k) / |V_{k+1,j-1}| + |E(G_j) / \right] \right).
$$

Corollary 10. [18]. Suppose *G1, G2, …, Gⁿ* are connected, rooted, distance-balanced and edge distance-balanced graphs with root vertices r_1 , r_2 , ..., r_n , respectively, such that r_i lies on no odd cycle of G_i , $i = 1, 2, ..., n$. Then

$$
S_{\mathcal{Z}_{e}}(G_n \sqcap \ldots \sqcap G_2 \sqcap G_l) = \sum_{i=1}^n \frac{V_{i+1,n}}{S_{\mathcal{Z}_{e}}(G_i)}
$$

$$
+ \sum_{i=1}^{n} \langle V_{i+1,n} \rangle \Bigg(\sum_{j=1}^{i-1} \langle E(G_j) \rangle / |V_{j+1,i-1}| \Bigg)^2 S_{zv}(G_i)
$$

+ $2 \sum_{i=1}^{n} \langle V_{i+1,n} \rangle \Bigg(\sum_{j=1}^{i-1} \langle E(G_j) \rangle / |V_{j+1,i-1}| \Bigg) S_{zev}(G_i)$
+ $\frac{1}{2} \sum_{i=1}^{n} \langle V_{i+1,n} \rangle \Bigg(Pl_e(G_i) + Pl_v(G_i) \sum_{j=1}^{i-1} \langle E(G_j) \rangle / |V_{j+1,i-1}| \Bigg)$
 $\times \sum_{j=i+1}^{n} \Bigg(\langle V(G_j) \rangle - I \Bigg) \sum_{k=1}^{j-1} \langle E(G_k) \rangle / |V_{k+1,j-1}| + \langle E(G_j) \rangle | \Bigg).$

Theorem 11. [18]. Suppose G_1 , G_2 , ..., G_n are connected rooted graphs with root vertices r_1, r_2, \ldots, r_n , respectively. Then

$$
\times \sum_{j=i+1}^{n} \left((|V(G_j)|-1) \sum_{k=1}^{j-1} |E(G_k)|/|V_{k+1,j-1}| + |E(G_j)|) \right).
$$

\n**Theorem 11.** [18]. Suppose $G_1, G_2, ..., G_n$ are connected rooted graphs with root
\n $r_1, r_2, ..., r_n$, respectively. Then
\n
$$
Sz_{\nu}^*(G_n \sqcap ... \sqcap G_2 \sqcap G_1) = \sum_{i=1}^{n} |V_{1,i-1}|^2 |V_{i+1,n}| \ Sz_{\nu}^*(G_i)
$$
\n
$$
+ \sum_{i=1}^{n} \frac{N_{i,n}^i}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)|-1)|V_{1,j-1}| \right) |V(G_i)||E(G_i)|
$$
\n
$$
+ \sum_{i=1}^{n} \frac{N_{i,n}^i}{4} \left(\sum_{j=i+1}^{n} (|V(G_j)|-1)|V_{1,j-1}| \right)^2 N_{r_i}
$$
\n
$$
+ \sum_{i=1}^{n} \frac{N_{i,n}^i}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)|-1)|V_{1,j-1}| \right) (r_{\nu}(G_i) - r_{\nu}^c(G_i))
$$
\nwhere $N_{r_i} = |\{uv \in E(G_i)| \ d_{G_i}(u, r_i) = d_{G_i}(v, r_i)\}|$.
\nCorollary 12. [18]. Suppose $G_1, G_2, ..., G_n$ are connected, rooted, bipartite and

where $N_{r_i} = |\{uv \in E(G_i) / d_{G_i}(u, r_i) = d_{G_i}(v, r_i)\}|.$

Corollary 12. [18]. Suppose G_1 , G_2 , ..., G_n are connected, rooted, bipartite and distancebalanced graphs with root vertices r_1 , r_2 , ..., r_n , respectively. Then

$$
Sz_{\nu}^{*}(G_{n} \sqcap ... \sqcap G_{2} \sqcap G_{1}) = \sum_{i=1}^{n} /V_{I,i-1} \hat{f}/V_{i+1,n} / Sz_{\nu}^{*}(G_{i})
$$

+
$$
\sum_{i=1}^{n} \frac{N_{I,n}^{i}}{2} \left(\sum_{j=i+1}^{n} \left(/V(G_{j}) / -1 \right) / V_{I,j-1} / \right) PI_{\nu}(G_{i}).
$$

[www.SID.ir](www.sid.ir)

Figure 3: The Molecular Graph of Octanitrocubane.

Example 13. Octanitrocubane is the most powerful chemical explosive with formula $C_8(NO_2)_8$, Figure 3. Let *H* be the molecular graph of this molecule. Then obviously *H*= $Q_3 \Box P_2$. On the other hand, one can easily see that $S_{Z_v}(Q_3) = S_{Z_e}(Q_3) =$ $Sz_{ev}(Q_3) = Sz^*(Q_3) = 192$, $\Gamma_v(P_2) = 1$ and $\Gamma_e(P_2) = 0$ and so, by the above results, we have: $S_{z_v}(H) = S_{z_v}(Q_3 \Box P_2) = 888$, $S_{z_e}(H) = S_{z_e}(Q_3 \Box P_2) = 768$, $S_{z_{ev}}(H) = S_{z_v}(Q_3 \Box P_2) = 888$.

Example 14. Let $\{G_i\}_{i=1}^d$ $G_i\big|_{i=1}^d$ be a set of finite pairwise disjoint graphs with $v_i \in V(G_i)$. The bridge–cycle graph $BC(G_1, G_2, ..., G_d) = BC(G_1, G_2, ..., G_d; v_1, v_2, ..., v_d)$ of $\{G_i\}_{i=1}^d$ $G_i \big|_{i=1}^d$ with respect to the vertices $\{v_i\}_{i=1}^d$ $v_i \big|_{i=1}^d$ is the graph obtained from the graphs G_1 , …, G_d by connecting the vertices v_i and v_{i+1} by an edge for all $i = 1, 2, ..., d - 1$ and connecting the vertices v_I and v_d by an edge, see Figure 4. Suppose that $G_I = ... = G_d = G$. Then we have $BC(G_1, G_2, \ldots, G_d) \cong C_d \cap G$. On the other hand, It is not so difficult to check that $\overline{}$ $\int n^3$ *2 | n*

$$
S_{z_v}(C_n) = \begin{cases} \frac{1}{4} & 2 \nmid n \\ \frac{n^2(n-1)}{4} & 2 \nmid n \end{cases}
$$
. Therefore, if $2 \nmid n$, by Theorem 1, we have $S_{z_v}(C_n \cap G) = n$

[www.SID.ir](www.sid.ir)

$$
S_{Z_{\nu}}(G) + \frac{n^3}{4} / V(G) /^2 + n(n - 1) / V(G) / \Gamma_{\nu}(G)
$$
 and if 2 | n, then $S_{Z_{\nu}}(C_n / \pi G) = n S_{Z_{\nu}}(G) + \frac{n(n-1)^2}{4} / V(G) /^2 + n(n-1) / V(G) / \Gamma_{\nu}(G).$

By replacing *G* with P_m (such that *r* is a pendant vertex of P_m) in the above relations, we obtain S_{z_v} of $Sun_{n,m-1}$, see [19], as follow:

$$
S_{Zv}(Sum_{n,m-l}) = \begin{cases} \frac{1}{4}n^3m^2 + \frac{1}{2}n^2m^3 - \frac{1}{2}n^2m^2 - \frac{1}{3}nm^3 + \frac{1}{2}nm^2 - \frac{1}{6}nm & 2/n \\ \frac{1}{4}n^3m^2 - n^2m^2 + \frac{3}{4}nm^2 + \frac{1}{2}n^2m^3 - \frac{1}{3}nm^3 - \frac{1}{6}nm & 2/n \\ \frac{1}{4}n^3m^2 - n^2m^2 + \frac{3}{4}nm^2 + \frac{1}{2}n^2m^3 - \frac{1}{3}nm^3 - \frac{1}{6}nm & 2/n \\ \text{DWLEDGMENTS. This research was supported by a grant from Feruity of Mashhad; (No. MA91292RAH). \end{cases}
$$

EXECISENCES.
\nL. Gutman, A formula for the Wiener number of trees and its extension to g containing cycles, *Graph Theory Notes N. Y.* 27 (1994) 9–15.
\nL. Gutman, A. R. Ashrafi, The edge version of the Szeged index, *Croat. Chem.* 81 (2008) 263–266.
\nL. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged inde
measuring network bipartivity, *Discrete Appl. Math.* 158 (2010) 1936–1944.
\nM. Randić, *On generalization of Wiener index for cyclic structures, Acta (Slov.* 49 (2002) 483–496.
\nP. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applica
\n60 QSPR/QSAR studies, *J. Chem. Inf. Comput. Sci.* 41 (2001) 934–949.
\nM. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, Vertex and edge PI indic

ACKNOWLEDGMENTS. This research was supported by a grant from Ferdowsi University of Mashhad; (No. MA91292RAH).

REFERENCES

- 1. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, *Graph Theory Notes N. Y*. **27** (1994) 9–15.
- 2. I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, *Croat. Chem. Acta* **81** (2008) 263–266.
- 3. T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, *Discrete Appl. Math.* **158** (2010) 1936–1944.
- 4. M. Randić, On generalization of Wiener index for cyclic structures, *Acta Chim. Slov*. **49** (2002) 483–496.
- 5. P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, *J. Chem. Inf. Comput. Sci.* **41** (2001) 934–949.
- 6. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, *Discrete Appl. Math.* **156** (2008) 1780–1789.
- 7. L. Barriére, F. Comellas, C. Daflo and M. A. Fiol, The hierarchical product of graphs, *Discrete Appl. Math.* **157** (2009) 36–48.
- 8. L. Barriére, C. Daflo, M. A. Fiol and M. Mitjana, The generalized hierarchical product of *graphs, Discrete Math.* **309** (2009) 3871–3881.
- 9. M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Distribution of some graph invariants over hierarchical product of graphs, *Appl. Math. Comput*. **220** (2013) 405–413.

.

- 10. R. Hammack, W. Imrich and S. Klavžar, handbook of product graphs (Second edition), Taylor Francis Group, (2011).
- 11. M. V. Diudea, Molecular topology. 21. Hyper–Wiener index of dendrimers, *MATCH Commun. Math. Comput. Chem.* **32** (1995) 71–83.
- 12. M. Aouchiche, P. Hansen, on a conjecture about the Szeged index, *Eur. J. Combin.* **31** (2010) 1662–1666.
- 13. M. Tavakoli, F. Rahbarnia, A. R. Ashrafi, Further results on distance-balanced graphs, *U.P.B. Sci. Bull., Ser. A* **75** (2013) 77–84.
- 14. K. Handa, Bipartite graphs with balanced (a,b) -partitions, *Ars Combin.* **51** (1999) 113–119.
- 15. J. Jerebic, S. Klavžar, D.F. Rall, Distancebalanced graphs, *Ann. Combin.* **12** (2008) 71–79.
- 16. M. Tavakoli, H. Yousefi-Azari, A. R. Ashrafi, Note on edge distance-balanced graphs, *Trans. Comb.* **1** (2012) 1–6.
- 17. E. Chiniforooshan, B. Wu, Maximum values of Szeged index and edge-Szeged index of graphs, *Electron. Notes Discrete Math.* **34** (2009) 405–409.
- 18. M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Further results on hierarchical product of graphs, *Discrete Appl. Math*. **161** (2013) 1162–1167.
- **Archives** 19. Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, *Discrete Math*. **135** (1994) 359–365.