IJMC

On Second Atom-Bond Connectivity Index

M. ROSTAMI¹ , M. SOHRABIHAGHIGHAT² AND M. GHORBANI,3

¹Department of Mathematics, Mahallat Branch, Islamic Azad University, Mahallat, Iran

²*Department of Mathematics, Arak University, Arak, Iran*

³*Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran*

ABSTRACT

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as $ABC(G) = \sum_{uv \in E(G)} \sqrt{(d_u + d_v - 2) / d_u d_v}$, where the summation goes over all edges of *G*, d_u and d_v are the degrees of the terminal vertices *u* and *v* of edge *uv*. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

Keywords: atom–bond connectivity index, topological index, star–like graph.

1. INTRODUCTION

-

y, Tehran, 16785-136, I. R. Iran
 ABSTRACT

atom-bond connectivity index of graph is a topological index proposed by Estrada
 $ABC(G) = \sum_{uv \in E(G)} \sqrt{(d_u + d_v - 2)/d_u d_v)}$, where the summation goes over all edg,
 d_u and d_v are All graphs considered in this paper are simple graph and connected*.* The vertex and edge sets of a graph *G* are denoted by $V(G)$ and $E(G)$, respectively. A topological index of *G* is a numeric quantity related to it. In other word, let Λ be the class of connected graphs, then a topological index is a function *f*: $\Lambda \to R^+$, with this property that if *G* and *H* are isomorphic, then $f(G) = f(H)$. Topological indices are important tools in prediction of chemical phenomena, that's why several types of topological indices have been defined. One of them is the atom–bond connectivity index (or *ABC* index for short). This topological index was proposed by Estrada *et al*. [1] as follows:

$$
ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}},
$$

where the summation goes over all edges $e = uv$ of *G* and d_u and d_v are degrees of vertices *u* and *v*, respectively. For more details about this topological index see references [1–4]. Some upper bounds of *ABC* index with different parameters have been given in [5]. The properties of *ABC* index of trees have also been studied in [5–7]. Recently, Graovać and

Author to whom correspondence should be addressed.(e-mail: m.ghorbani@srttu.edu).

Ghorbani, defined a new version of the atom-bond connectivity index namely the second atom-bond connectivity index [8]:

$$
ABC_2(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}},
$$

where n_u is the number of vertices closer to vertex *u* than vertex *v* and n_v defines similarly. Some upper and lower bounds of ABC_2 index have been studied in [8]. Throughout this paper, our notations are standard and mainly taken from [9]. In this paper, in the next section, we give the necessary definitions and some preliminary results and in Section 3 we introduce some upper and lower bounds of *ABC*² index with given number of pendent vertices.

2. DEFINITIONS AND PRELIMINARIES

Let K_n , S_n and P_n be the complete graph, star and path on *n* vertices, respectively. Let also $K_{n,m}$ be the complete bipartite graph on $n + m$ vertices. A tree is said to be star–like if exactly one of its vertices has degree greater than two. By $S(2r,s)$, $r, s \ge 1$, we denote a star–like tree with diameter less than or equal to 4, which has a vertex v_1 of degree $r + s$ and

$$
S(2r,s)\setminus\{v_1\}=\underbrace{p_2\cup...\cup p_2}_{r}\cup\underbrace{p_1\cup...\cup p_1}_{s}.
$$

One can prove that, this tree has $2r + s + 1 = n$ vertices. We say that the star-like tree One can prove that, this tree has $2r + s + 1 = n$ vertices. We say the $S(2r,s)$ has $r + s$ branches, where the lengths of them are $2,...,2,1,...,1$ respectively. For *n*,

Archive of Maximum Sinds and Some premimially issues and in 36 **some upper and lower bounds of** *ABC***₂ index with given number** \int_{n}^{x} **and** P_{n} **be the complete graph, star and path on** *n* **vertices, respective the** $m \geq 2$, denoted by $S_{m,n}$ means a tree with $n + m$ vertices formed by adding a new edge connecting the centers of the stars S_n and S_m . Finally, the complement \overline{G} of a simple graph *G* is a simple graph with vertex set *V* and two vertices are adjacent in \overline{G} if and only if they are not adjacent in *G*.

3. BOUNDS OF ABC² INDEX

In this section some basic mathematical features of second atom–bond connectivity index are given. A pendent vertex is a vertex of degree one and an edge of a graph is said to be pendant if one of its vertices is a pendent vertex.

Theorem 1. Let *G* be a connected graph of order *n* with *m* edges and *p* pendent vertices, then

$$
ABC_2(G) < p\sqrt{\frac{n-2}{n-1}} + (m-p).
$$

Proof. Assume $n \geq 3$. For a pendant edge *uv* of graph *G* we have $n_u = 1$, and $n_v = n - 1$. On the other hand, for a non-pendent edge $uv \frac{n_u + n_v - 2}{n_u} < 1$ u^{\prime} ^{*v*} $u^{\top} u_v$ n_{μ} n_{μ} $\frac{n_u + n_v - 2}{s}$ < 1 and so,

$$
ABC_2(G) = \sum_{uv \in E} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} = \sum_{uv \in E, d_u = 1} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} + \sum_{uv \in E, d_u, d_v \neq 1} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}
$$

\n
$$
< p \sqrt{\frac{n-2}{n-1}} + m - p.
$$

\nAn easy calculation shows that the Diophantine equation $x + y - 2 = xy$ does not have
\npositive solution and so this bound is not sharp.
\n**Theorem 2.** Let *T* a tree of order $n > 2$ with *p* pendant vertices. Then
\n
$$
ABC_2(T) \le p \sqrt{\frac{n-2}{n-1}} + \frac{\sqrt{2}}{2}(n-p-1) \qquad (1)
$$
\nwith equality if and only if $T \cong K_{1,n-1}$ or $T \cong S(2r, s)$, $n = 2r + s + 1$.
\n**Proof.** Let *T* be an arbitrary tree with $n \ge 3$ vertices, for any edge $e = uv$, $n_u + n_v = n$. This
\nmplies that
\n
$$
ABC_2(T) = \sqrt{n-2} \sum_{w \in E(T)} \frac{1}{\sqrt{n_u n_v}}.
$$
\nNow we assume that the tree *T* have *p* pendant vertices. One can easily prove that for
\npendant edge $e = uv$, $n_u = 1$, $n_v = n - 1$ and for other edges $2 \le n_u$, $n_v \le n - 2$. Hence
\n
$$
ABC_2(T) = \sqrt{n-2} \left(\sum_{uv \in E(T), d_u = 1} \frac{1}{\sqrt{n_u n_v}} + \sum_{uv \in E(T), d_u, d_v \neq 1} \frac{1}{\sqrt{n_u n_v}} \right)
$$

An easy calculation shows that the Diophantine equation $x + y - 2 = xy$ does not have positive solution and so this bound is not sharp.

Theorem 2. Let *T* a tree of order $n > 2$ with *p* pendent vertices. Then

$$
ABC_2(T) \le p\sqrt{\frac{n-2}{n-1}} + \frac{\sqrt{2}}{2}(n-p-1)
$$
 (1)

with equality if and only if $T \cong K_{1,n-1}$ or $T \cong S(2r,s)$, $n = 2r + s + 1$.

Proof. Let *T* be an arbitrary tree with $n \ge 3$ vertices, for any edge $e = uv$, $n_u + n_v = n$. This implies that

$$
ABC_2(T) = \sqrt{n-2} \sum_{uv \in E(T)} \frac{1}{\sqrt{n_u n_v}}.
$$

Now we assume that the tree *T* have *p* pendent vertices. One can easily prove that for pendant edge $e = uv$, $n_u = 1$, $n_v = n - 1$ and for other edges $2 \le n_u$, $n_v \le n - 2$. Hence

$$
ABC_2(T) = \sqrt{n-2} \left(\sum_{uv \in E(T), d_u = 1} \frac{1}{\sqrt{n_u n_v}} + \sum_{uv \in E(T), d_u, d_v \neq 1} \frac{1}{\sqrt{n_u n_v}} \right)
$$

$$
\leq \sqrt{n-2} \left(\frac{p}{\sqrt{n-1}} + \frac{n-p-1}{\sqrt{2(n-2)}} \right) = p \sqrt{\frac{n-2}{n-1}} + \frac{\sqrt{2}}{2} (n-p-1).
$$
 (2)

Suppose now equality holds in equation (1), hence we should consider two following cases:

Case (*a*) $p = n - 1$, in this case for all edges $e = uv$, $n_u = n - 1$, $n_v = 1$ and so $T \cong K_{1,n-1}$.

Case (*b*) $p \le n - 1$, in this case the diameter of *T* is strictly greater than 2. Let *a* be a pendent vertex. One can easily prove that there is a vertex in $N_G(a)$ such as *w* adjacent to some non-pendent vertices. Since for all edges $e = wx$ incidence with $w, n_x = n - 2$ and

 \Box

 $n_w = 2$, we conclude that $T \approx S(2r,s)$. Conversely, one can prove that in (1) for two graphs $K_{1,n-1}$ and $S(2r, s)$ ($n=2r+s$) equality holds.

Theorem 3. Let *G* be a graph on $n > 2$ vertices, *m* edges and *p* pendent vertices. Then

$$
ABC_2(G) \ge p \sqrt{\frac{n-2}{n-1}}
$$

with equality if and only if $G \cong K_{1,n-1}$ or $G \cong K_n$.

Proof. For each pendant edge *uv*, $n_u = 1$, $n_v = n - 1$ and for the others n_u , $n_v \ge 1$. This implies that

Proof. For each pendant edge
$$
uv
$$
, $n_u = 1$, $n_v = n - 1$ and for the others n_u , $n_v \ge 1$. This
implies that

$$
ABC_2(G) = \sum_{uv \in E} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} = \sum_{uv \in E, d_u = 1} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} + \sum_{uv \in E, d_u, d_v \ne 1} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}
$$

$$
= p \sqrt{\frac{n-2}{n-1}} + \sum_{uv \in E, d_u, d_v \ne 1} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} \ge p \sqrt{\frac{n-2}{n-1}}
$$
For equality we should consider two cases:
Case(a) $p = 0$, in this case for all edges $e = uv$, $n_u = n_v = 1$ and this implies $G \cong K_n$.
Case(b) $p = m$, in this case all edges are pendant and so $G \cong K_{1,n-1}$.
Theorem 4. Let T be a tree of order $n > 2$ with p pendant vertices. Then

$$
ABC_2(T) \ge p \sqrt{\frac{n-2}{n-1}} + \frac{2\sqrt{n-2}}{n} (n-p-1)
$$

$$
with equality if and only if $T \cong K_{1,n-1}$ or $T \cong S_{n/2,n/2}$.
Proof. It is clear that in a tree for every edge uv , $n_u + n_v = n$ and hence

$$
ABC_2(T) = \sqrt{n-2} \sum_{uv \in E}(T) \frac{1}{\sqrt{n_1 n_2}}
$$
.
$$

For equality we should consider two cases:

Case(*a*) $p = 0$, in this case for all edges $e = uv$, $n_u = n_v = 1$ and this implies $G \cong K_n$.

Case(b) $p = m$, in this case all edges are pendant and so $G \cong K_{1,n-1}$.

Theorem 4. Let *T* be a tree of order $n > 2$ with *p* pendent vertices. Then

$$
ABC_2(T) \ge p \sqrt{\frac{n-2}{n-1}} + \frac{2\sqrt{n-2}}{n} (n-p-1)
$$
 (3)

with equality if and only if $T \cong K_{1,n-1}$ or $T \cong S_{n/2,n/2}$.

Proof. It is clear that in a tree for every edge *uv*, $n_u + n_v = n$ and hence

$$
ABC_2(T) = \sqrt{n-2} \sum_{uv \in E(T)} \frac{1}{\sqrt{n_u n_v}}.
$$

Now we assume that *T* have *p* pendent vertices, then there exist *p* edges such as $e = uv$ where $n_u = 1$ and $n_v = n - 1$. Also, for each non-pendant edge *uv*, $n_u n_v \le n^2 / 4$ and so

$$
ABC_2(T) = \sqrt{n-2} \left(\sum_{uv \in E(T), d_u = 1} \frac{1}{\sqrt{n_u n_v}} + \sum_{uv \in E(T), d_u, d_v \neq 1} \frac{1}{\sqrt{n_u n_v}} \right)
$$

= $\sqrt{n-2} \left(\frac{p}{\sqrt{n-1}} + \sum_{uv \in E(T), d_u, d_v \neq 1} \frac{1}{\sqrt{n_u n_v}} \right)$

$$
\ge \sqrt{n-2} \left(\frac{p}{\sqrt{n-1}} + \frac{2}{n} (n-p-1) \right) = p \sqrt{\frac{n-2}{n-1}} + \frac{2\sqrt{n-2}}{n} (n-p-1).
$$

Let in above formula equality holds, we can consider two following cases:

Case(*a*) $p = n-1$, in this case all edges are pendant. Therefore $T \cong K_{1,n-1}$ and so $ABC_2(T) = \sqrt{(n-1)(n-2)}$.

Case(b) $p < n-1$, in this case equality holds if and only if for all non-pendant edges, n_u $n_v = n/2$ and this completes the proof.

Theorem 5. Let *G* and \overline{G} are connected graphs on *n* vertices with *p* and \overline{p} pendent vertices, respectively. Then

$$
ABC_2(G)+ABC_2(\overline{G})<\left(p+\overline{p}\right)\left(\sqrt{\frac{n-2}{n-1}}-1\right)+\binom{n}{2}.
$$

Proof. Since $m + \overline{m} = n(n-1)/2$ by using Theorem 1, we get

\n- \n
$$
\sqrt{n-1}
$$
 n n <

Corollary 6. We have

$$
ABC_2(G)+ABC_2(\overline{G})\geq (p+\overline{p})\sqrt{\frac{n-2}{n-1}}.
$$

REFERENCES

[1] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom–bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem*. **37A** (1998) 849–855.

[2] E. Estrada, Atom–bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett*. **463** (2008) 422–425.

[3] K. C. Das, Atom–bond connectivity index of graphs, *Discrete Appl. Math*. **158** (2010) 1181–1188.

[4] R. Xing, B. Zhou, F. Dong, On atom–bond connectivity index of connected graphs, Technical Report M 2010-04, Mathematics and Mathematics Education National Institute of Education.

[5] B. Zhou, R. Xing, On atom–bond connectivity index, Z. Naturforsch., 66A (2011) 61– 66.

[6] B. Furtula, A. Graovac, D. Vukicevic, Atom–bond connectivity index of trees, Discrete *Appl. Math*. **157** (2009) 2828–2835.

[7] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, *Discrete Appl. Math.* **158** (2010) 1536–1545.

[8] A. Graovać, M. Ghorbani, A new version of atom-bond connectivity index, *Acta. Chim. Slov*. **57** (2010) 609–612.

10) 609–612.
dy, U. S. R. Murty, *Graph theory with applica* [9] J. A. Bondy, U. S. R. Murty, *Graph theory with application*, New York: North Holland, 1976.