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 ABSTRACT Let G  be a finite connected simple graph. The degree distance index )(GDD  
of G  is defined as   )(},{ ))(deg)()(deg,(GVvu vGuGvuGd , where )(deg uG is the 

degree of vertex u  in G  and ),( vuGd  is the distance between two vertices u  and v  in G . 
In this paper, we determine the degree distance of the complement of arbitrary Mycielskian 
graphs. It is well known that almost all graphs have diameter two. We determine this graphical 
invariant for the Mycielskian of graphs with diameter two. 

KEYWORDS Degree distance • Zagreb indices • Mycielskian. 
 

1. INTRODUCTION 

 Throughout this paper we consider (non trivial) simple graphs, that are finite and undirected 
graphs without loops or multiple edges. Let E(G))(G), (V G   be a connected graph of 
order n = |V(G)| and of size m = |E(G)|. The distance between two vertices u  and v  is 
denoted by ),( vudG  and is the length of a shortest path between u  and v  in G . The 

diameter of G  is V(G)}  vu,  :v)(u,max{dG  . It is well known that almost all graphs have 
diameter two. The degree of vertex u  is the number of edges adjacent to u  and is denoted 
by )(deg uG . 

A chemical graph is a graph whose vertices denote atoms and edges denote bonds 
between those atoms of the underlying chemical structure. A topological index for a 
(chemical) graph G  is a numerical quantity invariant under automorphisms of G  and it 
does not depend on the labeling or pictorial representation of the graph. Topological indices 
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and graph invariants based on the distances between vertices of a graph or vertex degrees 
are widely used for characterizing molecular graphs, establishing relationships between 
structure and properties of molecules, predicting biological activity of chemical 
compounds, and making their chemical applications. 

The concept of topological index came from work done by Harold Wiener in 1947 
while he was working on boiling point of paraffin. The Wiener index of G  is defined as 

 


)(},{
),()(

GVvu G vudGW . Two important topological indices introduced about forty 

years ago by Ivan Gutman and Trinajstić [5] are the first Zagreb index )(1 GM  and the 
second Zagreb index )(2 GM  which are defined as 

.)(deg)(deg)(,))((deg))(deg)((deg)(
)(

2
)(

2

)(
1 




GEuv
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The degree distance was introduced by Dobrynin and Kochetova [1] and Gutman 
[4] as a weighted version of the Wiener index. The degree distance of G , denoted by 

)(GDD , is defined as follows and it is computed for important families of graphs ( see[8] 
and [12]  for instance): 





)(},{

)).(deg)((deg),()(
GVvu

GGG vuvudGDD  

For a graph ),( EVG  , the Mycielskian of G  is the graph )(G  (or simply,  ) 
with the disjoint union }{xXV   as its vertex set and 

}1:{}:{ nixxEvvxvE ijiji   as its edge set, where },...,,{ 21 nvvvV   and  

},...,,{ 21 nxxxX  , see [9]. The Mycielskian and generalized Mycielskians have fascinated 
graph theorists a great deal. This has resulted in studying several graph parameters of these 
graphs. Fisher et al. [3] determine the domination number of the Mycielskian in 1998, Taeri 
et al. [2] determine the Wiener index of the Mycielskian in 2012, and Ashrafi et al. [6] 
determine Zagreb coindices of the Mycielskian in 2012. 

In this paper we determine the degree distance index of the Mycielskian of each 
graph with diameter two. Also, we determine the degree distance of the complement of 
Mycielskian of arbitrary graphs. 
 
2. DEGREE DISTANCE OF THE MYCIELSKIAN  

In order to determine the degree distance index of Mycielskian graphs, we need the 
following observations. From now on we will always assume that G  is a connected graph, 

,)(,)(},,...,,{},,...,,{)( 2121 XGVxXGVxxxXvvvGV nn    

and   is the Mycielskian of G , where 
}.1:{)}(:{)()(},{)()( nixxGEvvxvGEExXGVV ijiji    
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Observation 1.  Let   be the Mycielskian of G . Then for each )(Vv  we have  
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Observation 2.  In the Mycielskian   of G , the distance between two vertices )(, Vvu   
are given as follows. 
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Specially, the diameter of the Mycielskian graph is at most four. 
 

There are |)(| GE  unordered pairs of vertices in )(GVV   whose distance is one, and  

).(2))(deg)((deg2))(deg)((deg 1
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Lemma 1. Let G be a graph of size m whose vertex set is },...,,{ 21 nvvvV  . Then, 

.2)1())(deg)((deg
},{

mnvu
Vvv
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ji




 

Proof. For each },...,2,1{][ nni  , 1|}:][},{{|  nijnji . Therefore, 

.2)1()(deg)1())(deg)((deg
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� 

Lemma 2. For each graph G  of size m  we have 
).()1(2))(deg)((deg 1

)(},{

GMnmvv
GEvv

jGiG
ji
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Proof. Since each vertex )(GVvi   has )(deg iG v  neighbors in G , the number of non-

adjacent vertices to iv  in G  equals )(deg1 iG vn  . This implies that 

).()1(2

))((deg)(deg)1(

)(deg))(deg1())(deg)((deg
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It is a well known fact that almost all graphs have diameter two. This means that 
graphs of diameter two play an important role in the theory of graphs and their applications. 

 

Theorem 1. Let G  be an n -vertex graph of size m whose diameter is 2. If    is the 
Mycielskian of G , then the degree distance index of   is given by 

.)128()17()()(4)( 1 mnnnGMGDDDD   

Proof.  By the definition of degree distance index, we have 





)(},{

)).(deg)((deg),())((
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Regarding to the different possible cases which u  and v  can be chosen from the set )(V , 
the following cases are considered. In what follows, the notations are as before and two 
observations 1 and 2 are applied for computing degrees and distances in  . 

Case 1. xu   and Xv : 
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Case 2. xu   and )(GVv : 





n

i
iG

n

i
ii mnvnvxvxd

1

2

1
).4(2))(deg2(2))(deg)((deg),(   

Case 3. Xvu },{ : 
Using Lemma 1 we see that 
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Case 4. )(},{ GVvu  . Since the diameter of G  is two, Observation 2 implies that 
),(),( jiGji vvdvvd  . Hence,  

).(2

))(deg2)(deg2(),())(deg)((deg),(
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Case 5. ivu   and ixv  , ni 1 . 
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Case 6. ivu   and jxv  , ji  . 
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Since ),(),( ixjvdjxivd  , 0),(  ivivd , and using Observation 2, we have 
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Each edge )(GEivjvjviv   corresponds to two pairs },{ jxiv  and },{ ixjv  of 

distance 1 in the Mycielskian graph  . Since the diameter of G is two and using Lemma 2 
we get 
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Now the result follows through these six cases.  
� 

 
3. DEGREE DISTANCE OF THE COMPLEMENT OF MYCIELSKIAN  

In order to determine the degree distance index of the complement of Mycielskian graphs, 
we need two following observations. 

Observation 3. Let   be the complement of Mycielskian   of G . Then for each )(Vv  
we have  
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Observation 4. In the complement of Mycielskian   of G , the distance between two 
vertices )(, Vvu  are given as follows. 
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Specially, the diameter of   is exactly 2. 

 
Theorem 2. Let G  be an n -vertex graph of size m  and let   be the complement of the 
Mycielskian   of G .Then, the degree distance index of   is given by 

).(54)5106()( 1
2 GMmnnnDD   

Proof. By the definition of degree distance, we have 
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We consider the following cases. For computing degrees and distances in   we use two 
observations 3 and 4. 

Case 1. xu   and Xv . 
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Case 2. xu   and )(GVv . 
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Case 3. Xvu },{ . Using Lemma 1 we see that 
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Case 4. )(},{ GVvu  . Using Lemma 2 we have 
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Case 5. ivu   and ixv  , ni 1 . 
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Case 6. ivu   and jxv  , ji  . By Observation 4, ),(),( ixjvdjxivd   is 1 when 

)(GEjviv  , otherwise is 2. Thus,  
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Each vertex iv  can be paired with )(deg1 ivGn   vertices jv  as ),( jviv  with the 

condition )(GEvv ji  . Also, note that  ),( ))(deg)((degjviv jvGivG  is equal to 

 },{ ))(deg)((deg2 jviv jvGivG . Hence, using Lemma 2 we obtain 
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Note that mGEjvivjviv 2|)}(:),{(|   and  

  
n
i ivGGEjvivjviv ivG 1

2))((deg)(:),( )(deg , 

because each vertex iv  has )(deg ivG  neighbors and appears  )(deg ivG  times in the desired 
summation. Thus, using similar arguments we see that 
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Now the result follows through these cases. 
□ 

 
By considering Observation 3, it's not hard to check that 

.4242338)(15)(1 nmmnnnGMM   
Thus, Theorems 1 and 2 imply the following result. 
 

Corollary 4. Let G  be an n -vertex graph of size m  and let H  be the complement of the 

Mycielskian of G .Then, ).(12556205273316))(( GMmnmnnnHDD   
� 
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