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ABSTRACT A quantitative structure-activity relationship (QSAR) study was conducted 
for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-
tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using 
chemometrics methods such as multiple linear regression (MLR) and least squares 
support vector machines (LS-SVM). The obtained models were applied to predict the 
inhibitory activity of compounds which were not in the modeling procedure. The results 
of models showed high prediction ability with root mean square error of prediction of 
0.167 and 0.061 for MLR and LS-SVM, respectively. The LS-SVM method was used for 
prediction of inhibitory activity of the new inhibitor derivatives. 
 
KEYWORDS QSAR • 1phenyl[2H]tetrahydrotriazine3oneanalogues • MLR • 
LSSVM. 

 

1. INTRODUCTION 

Lipoxygenases (LOs) are a class of widely occurring, non-heme iron-containing 
oxygenases that can be isolated from animals, higher plants, and fungi. Currently, three 
distinct mammalian LOs have been characterized, 5-LO, 12-LO, and 15-LO, which 
oxygenate arachidonic acid at specific carbon centers (C5, C12, and C15, respectively) 
[1].The 5-Lipoxygenase is the first dedicated enzyme in the biosynthetic pathway leading 
to the leukotrienes. Since leukotrienes have been implicated as important mediators in 
such diseases as asthma, psoriasis, ulcerative colitis, and rheumatoid arthritis, inhibition 
of 5-Lipoxygenase offers a potential approach for the therapy of these diseases [2]. 
 In the present study, the inhibitory activity data of 1-phenyl[2H]-tetrahydro-
triazine-3-one analogues as inhibitors of 5-Lipoxygenase were used to construct a 
mathematical model with structural information, a so-called QSAR (quantitative 
structure–activity relationship). Quantitative structure-activity relationships (QSAR) are 
an important tool in agrochemistry, pharmaceutical chemistry, toxicology, and eventually 
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most facts of chemistry [3, 4]. QSAR models are mathematical equations which relate 
chemical structure of a compound to its physical, chemical, biological and technological 
properties. The main goal of QSAR studies is to establish an empirical rule or function to 
relate the structural descriptors of compounds under investigation to bioactivities. This 
rule or function is then utilized to predict the same bioactivities of compounds which are 
not involved in the training set from their structural descriptors. Model development in 
QSAR studies comprises different critical steps as (1) descriptor generation, (2) data 
splitting to calibration (or training) and prediction (or validation) sets, (3) variable 
selection, (4) finding appropriate model between selected variables and activity and (5) 
model validation [5].  
 Among the investigation of QSAR, one of the most important factors affecting the 
quality of the model is the method to build the model. Many multivariate data analysis 
methods such as multiple linear regression (MLR) [6, 7], artificial neural network (ANN) 
[8] and partial least squares (PLS) [9] have been used in QSAR studies. MLR, as most 
commonly used chemometrics method, has been extensively applied to QSAR 
investigations. The artificial neural network (ANN) offers satisfactory accuracy in most 
cases but tends to over fit the training data. The PLS method is based on factor analysis 
that is originally suggested and chemically applied by Wold et al [10]. The support vector 
machine (SVM) is a popular algorithm developed from the machine learning community. 
Due to its advantages and remarkable generalization performance over other methods, 
SVM has attracted attention and gained extensive applications [11, 12]. As a 
simplification of traditional SVM, Suykens and Vandewalle [13, 14] have proposed the 
use of least-squares SVM (LS-SVM). LS-SVM encompasses similar advantages as SVM, 
but its additional advantage is that it requires solving a set of linear equations (linear 
programming), which is much easier computationally [15, 16]. In this study, the MLR 
and LS-SVM methods were proposed to model and predict the inhibitory activity of 1-
phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. 
 
2. THEORY 

The LS-SVM [13] is capable of dealing with linear and nonlinear multivariate 
calibration. In LS-SVM a linear estimation is made in kernel-induced feature space (y = 
wT(x) + b). As in SVM, it is necessary to minimize a cost function (C) containing a 
penalized regression error, as follow: 
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for all Ni ,...,1 , where  denotes the feature map.  
 The first part of this cost function is a weight decay which is used to regularize 
weight sizes and penalize large weights. Due to this regularization, the weights converge 
to similar value. Large weights deteriorate the generalization ability of the LS-SVM 
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because they can cause excessive variance. The second part of Eq. (1) is the regression 
error for all training data. The parameter , which has to be optimized by the user, gives 
the relative weight of this part as compared to the first part. The restriction supplied by 
Eq. (2) gives the definition of the regression error. Eq. (1) and its restriction given by Eq. 
(2), could be concluded to be a typical problem of convex optimization [14] which might 
be solved by the Lagrange multipliers method, as follow: 
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Obtaining the optimum, that is, carrying out webwL ii  /),,,(  , bebwL ii  /),,,(  , 

iii eebwL  /),,,(  , iiiebwL   /),,,( and setting all partial first derivatives to zero, 
generates  the weights that are the linear combinations of the training data:  
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where a positive definite kernel is used as follows: 
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 An important result of this approach is that the weights )(w  can be written as 
linear combinations of the Lagrange multipliers with corresponding data training )( ix . 

Substituting the result of Eq. (6) into the original regression line ),)(( bxwy T    the 
following result is obtained: 
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The   vector follows from solving a set of linear equation: 
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where M  is a square matrix given by: 
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As demonstrated in Eqs. (11) and (12), all Lagrange multipliers (the support vectors) are 
usually nonzero, which means that all training objects contribute to the solution. In 
contrast, with standard SVM the LS-SVM solution is usually not sparse. However, as 
described by Suykens and J. Vandewalle [13] a sparse solution can be easily achieved via 
pruning or reduction techniques. Depending on the number of training data set either 
direct solvers or iterative solvers such as conjugate gradients methods (for large data sets) 
can be used in both cases with numerically reliable methods.  
 In applications involving nonlinear regression, it is enough to change the inner 
product )(),( ji xx   of Eq. (9) by a kernel function and the ijth  element of matrix K  

equals ).()( j
T

iij xxK  If this kernel function meets Mercer’s condition, the kernel 

implicitly determines both a nonlinear mapping, )(xx  and the corresponding inner 

product ).()( j
T

i xx   This leads to the following nonlinear regression function: 
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for a point jx  to be evaluated it is:  
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 The attainment of the kernel function is cumbersome and it will depend on each 
case. However, the kernel function is more used as the radial basis function (RBF), 

),2/)(exp( 22
ji xx   a simple Gaussian function, and polynomial functions ,,

d
ji xx  

where 2  is the width of the Gaussian function and d is the polynomial degree, which 
should be optimized by the user, to obtain the support vector. For   of the RBF kernel 
and d of the polynomial kernel it is of significant importance to do a careful model 
selection of the tuning parameters, in combination with the regularization constant  , in 
order to achieve a good generalization model. 
 

3. MATERIALS AND COMPUTATIONAL METHODS 

3.1. HARDWARE AND SOFTWARE 
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The computations were made with the ASUS Personal Computer (1 GB RAM) that was 
equipped with the Windows 7 operating system and MATLAB (Version 9.0, Mathwork 
Inc.). The LS-SVM optimization and model results were obtained using the LS-SVM lab 
toolbox (Matlab/C Toolbox for Least-Squares Support Vector Machines). The MLR 
analysis with a stepwise forward selection method was carried out by using the SPSS 21 
software. Kennard-Stones program was written in MATLAB according to the algorithm 
[17, 18]. ChemOffice package (Version 2010) was used to draw the molecular structure 
and optimization by the AM1. Descriptors were calculated using Dragon software 
(Milano Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/). 
These descriptors are calculated using two-dimensional representation of the molecules 
and therefore geometry optimization is not essential for calculating these types of 
descriptors. 

 

3.2. DATA SET  

The inhibitory activity values of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues were 
taken from literature [2]. The chemical structures of 1-phenyl[2H]-tetrahydro-triazine-3-
one analogues (Figure 1) and their corresponding inhibitory activity values have been 
listed in Table 1. In order to assure that training and prediction sets cover the total space 
occupied by the original data set, it was divided into parts of training and prediction set 
according to the Kennard-Stones algorithm [17, 18]. The Kennard-Stones algorithm is 
known as one of the best ways of building training and prediction sets and it has been 
used in many QSAR studies. 

 
Figure 1. Chemical structure of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 

 

Table 1. Structures and observed inhibitory activity of 5-Lipoxygenase of 
1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 

 
No. Substitution  log(1/IC50) 

X R3′ R5′ R2 R4 R5 obsa 
1 CH H H H H CH2OCH2Ph 6.00 
2 CH H H H H Bu 5.82 
3 CH H H H H i-Pr 5.17 
4 CH H H H H Me(R) 5.17 

5 b CH H H H H Me2 5.17 
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6 CH H H H H Et 5.16 
7 b CH H H H H Me 4.94 
8 CH H H H H CH2OC2H4OMe 4.85 
9 CH H H H H Me(S) 4.85 

10 CH H H H H CO2Me 4.70 
11 b CH H H H H H 4.68 
12 CH H OCH2Ph H H H 5.96 
13 CH H Br H H H 5.31 
14 CH H Cl H H H 5.20 
15 CH H Et H H H 4.89 
16 CH H SMe H H H 4.85 

17b CH H Me H H H 4.82 
18 CH H CF3 H H H 4.77 
19 CH H F H H H 4.72 
20 CH H CN H H H 4.43 
21 CH H OMe H H H 4.33 
22 CH H NO2 H H H 4.31 
23 CH H NH2 H H H 3.75 
24 CH H Br H H Me 5.59 
25 CH H Cl H H Me 5.57 
26 CH H F H H Me 5.20 

27b CH H Me H H Me 4.72 
28 CH H H H C(=O)-i-Pr H 5.89 
29 CH H H H C(=O)Et H 5.59 
30 CH H H H C(=O)Me Me  5.48 
31 CH H H H C(=O)Me H 5.47 
32 CH H H H OCH2Ph Me 5.37 
33 CH H H H OH Me 5.22 
34 CH H H H OEt Me 5.13 
35 CH H H H OCH2Ph H 5.08 
36 CH H H C(=O)Et C(=O)Et H 4.90 
37 CH H H H OMe Me 4.65 
38 CH H H C(=O)Me C(=O)Me H 4.40 
39 N Br H H H Me 5.62 
40 N Br H H H H 5.46 
41 N Cl H H H Me 5.46 

42 b N Me H H H Me 5.42 
43 N Me H H H H 5.26 
44 N OMe H H H Me 5.26 
45 N Cl H H H H 5.25 
46 N F H H H Me 5.18 
47 N F H H H H 5.04 
48 N OMe H H H H 5.02 
49 N H H H H Me 4.66 
50 N H H H H H 4.59 
51 CH H Cl H C(=O)Me H 5.89 
52 CH H Cl H OH Me 5.41 
53 CH H F H OH Me 5.16 
54 CH Me Me H OH H 5.08 
55 CH F F H H H 5.05 
56 CH Me Me H H H 4.92 

57 b N Cl H H H H 5.48 
58 b CH H Cl H H H 5.35 
59 b CH H H H H H 4.77 
60 CH Cl Me H H H 5.48 

a Observed inhibitory activity . 
b The compounds selected as the test set. 
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3.3. MOLECULAR DESCRIPTORS 

A major step in constructing QSAR model is generation of the corresponding numerical 
descriptors of the molecular structures. Molecular descriptors define the molecular 
structure and physicochemical properties of molecules by a single number. To calculate 
the different kinds of theoretical descriptors for each molecule, the Dragon (Milano 
Chemometrics and QSAR research group, http://www.disat.unimib.it/chm/) software was 
utilized. The Dragon is able to calculate different molecular descriptors such as 
constitutional, topological, molecular walk counts, BCUT, Galvez topol. Charge indices, 
2D autocorrelations, charge, aromaticity indices, Randic molecular profiles, geometrical, 
RDF, 3D-MoRSE, WHIM, GETAWAY, functional groups, atom-centered fragments,  
properties and empirical. In this study, just GETAWAY (geometry, topology, and atom-
weights assembly) and WHIM (weighted holistic invariant molecular) descriptors were 
used. Here, 293 descriptors were calculated by Dragon for each molecule, therefore we 
have 60×293 data matrix X. The rows and columns of this matrix are the number of 
molecules and molecular descriptors respectively. 
 
4. RESULTS AND DISCUSSION 

4.1. PRINCIPAL COMPONENT ANALYSIS OF THE DATA SET  

Principal components analysis (PCA) was performed on the calculated structural 
descriptors to the whole data set (Table1), for investigation the distribution in the 
chemical space, which shows the spatial location of samples to assist the separation of the 
data into training and prediction sets. The PCA results show that three PCs (PC1, PC2 
and PC3) describe 81.35% of the overall variances (Figure 2). Since almost all variables 
can be accounted for the first three PCs, their score plot is a reliable presentation of the 
spatial distribution of the points for the data set. As can be seen in Figure 2, there is not a 
clear clustering between compounds. The data separation is very important in the 
development of reliable and robust QSAR models. The quality of the prediction depends 
on the data set used to develop the model. For regression analysis, data set was separated 
into two groups, a training set (51 data) and a prediction set (9 data) according to 
Kennard-Stones algorithm. As shown in Figure 2, the distribution of the compounds in 
each subset seems to be relatively well-balanced over the space of the principal 
components. 
 
4.2. MLR ANALYSIS 

The multivariate calibration is a powerful tool for modeling, because it extracts more 
information from the data and allows building more robust models. Among the 
descriptors calculated, the most significant molecular descriptors were identified using 
multiple linear regression analysis with a stepwise forward selection method. According 
to inhibitory activity data (Table 1), the data classified to training and prediction sets 
according to Kennard-Stones algorithm and the MLR model was run.  
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Figure 2. Principal components analysis of the descriptors for the data set,  

                  (a) PC2 versus PC1, (b) PC3 versus PC1 and (c) PC3 versus PC2. 
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 The best equation obtained for the inhibitory activity of 1-phenyl[2H]-tetrahydro-
triazine-3-one analogues derivatives was: 
 
log(1/IC50) = 3.095–1.131R7e –38.269R6U+–4.942R1u+ 4.897R2u–5.247P2u + 
3.787H2v + 18.425G3e–0.008Vu 
 
 As seen, the resulting model has eight significant descriptors. Table 2 shows the 
calculated descriptors for each molecule, the descriptors coefficients, the standard error 
of coefficients, the t values for null hypothesis, and their related P values.  

 
Table 2. Results of multiple linear regression analysis. 

 

Notation Descriptors Coefficient S.E.a of 
coefficient t value P value 

Intercept - 3.095 2.358 1.312 0.197 

R7e 
R autocorrelation of lag 7 / 

weighted by Sanderson 
electronegativity 

-1.131 0.282 -4.018 0.000 

R6U+ 
R maximal autocorrelation of 

lag 6 / unweighted -38.269 8.865 -4.317 0.000 

R1u R autocorrelation of lag 1 / 
unweighted -4.942 0.747 -6.613 0.000 

R2u R autocorrelation of lag 2 / 
unweighted 4.897 0.794 6.169 0.000 

P2u 
2nd component shape 

directional WHIM index / 
unweighted 

-5.247 1.147 -4.575 0.000 

H2v 
H autocorrelation of lag 2 / 
weighted by van der Waals 

volume 
3.787 0.455 8.330 0.000 

G3e 

3rd component symmetry 
directional WHIM index / 

weighted by Sanderson 
electronegativity 

18.425 5.821 3.165 0.003 

Vu V total size index / 
unweighted -0.008 0.003 -2.209 0.033 

a Standard error. 
 
4.3. LSSVM ANALYSIS  

LS-SVM was performed with radial basis function (RBF) as a kernel functions. In the 
model development using LS-SVM and RBF kernel,  and 2 parameters were a 
manageable task. To determine the optimal parameters, a grid search was performed 
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based on leave-one-out cross-validation on the original training set for all parameter 
combinations of γ and σ2 from 0.1 to 10 and 1 to 100, respectively.  In Table 3 is shown 
the optimum  and 2 parameters for the LS-SVM and RBF kernel, using the training sets 
for 51 inhibitory activity data.  
 

Table 3. Observation and calculation values of log(1/IC50) using MLR and LS-SVM 
models. 

 

No. of 
compounds 
(Table 1 ) 

Observation 
log(1/IC50) 

MLR LS-SVM 
 

Predicted 
 

Error (%) 
 

Predicted 
 

Error (%) 
5 5.170 4.980 -3.675 5.081 -1.721 
7 4.940 4.792 -2.996 4.856 -1.700 

11 4.680 4.836 3.333 4.716 0.769 
17 4.820 4.851 0.643 4.832 0.249 
27 4.720 4.916 4.152 4.771 1.080 
42 5.420 5.189 -4.262 5.356 -1.181 
57 5.480 5.327 -2.792 5.389 -1.660 
58 5.350 5.227 -2.299 5.309 -0.766 
59 4.770 4.966 4.109 4.746 -0.503 

    0.500 
2   10.000 
RMSEP  0.167 0.061 
RSEP (%)  3.315 1.212 

 
4.4. MODEL VALIDATION AND PREDICTION OF INHIBITORY ACTIVITY 

The predictive ability of these methods (MLR and LS-SVM) were investigated by 
prediction of inhibitory of 9 molecules (their structures are given in Table 1). Validation 
of predictive ability is another key step in QSAR studies. Several statistical parameters 
have been used for the evaluation of the suitability of the developed QSAR models for 
prediction of the property of the studied compounds this include the root mean square 
error of prediction (RMSEP) and relative standard error of prediction (RSEP), validation 
through an external prediction set.  
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where prediy ,  is the predicted of the inhibitory activity using different model, obsiy ,  is the 

observed value of the inhibitory activity, and n  is the number of compounds in the 
prediction set. The statistical parameters obtained by these methods are listed in Table 3. 
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Table 3 shows RMSEP, RSEP and the percentage error for prediction of inhibitory 
activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. As can be seen, the good 
results were achieved in LS-SVM model with percentage error ranges from -1.721 to 
1.080 for inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. The 
plots of the predicted inhibitory activity versus actual values are shown in Figure 3 for 
each model (line equations and R2 values are also shown). The correlation coefficients 
(R2) for LS-SVM model were better than the MLR model. Also, it is possible to see that 
LS-SVM presents excellent prediction abilities when compared with MLR model. 

 
Figure 3. Plots of predicted versus actual log(1/IC50), (a) MLR and (b) LS-SVM. 

 
4.5. MOLECULAR DESIGN 

As an application of proposed method, we investigated LS-SVM model to predict the 
inhibitory activity of four new 1-phenyl[2H]-tetrahydro-triazine-3-one analogues whose 
biological tests were not performed with them yet. Table 4 shows the chemical structure 
of four new compounds and their inhibitory activity calculated by this proposed method. 
 

Table 4. New structures of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues and 
predicted log(1/IC50) by LS-SVM. 

 
Number 

of 
Design 

Substitution log(1/IC50) 
Calc.a X R3′ R5′ R2 R4 R5 

1 N H Me H H Me 4.617 
2 N F H H H Br 6.138 
3 CH Br H H H Cl 5.856 
5 CH H OH H Cl H 5.149 

a Calculated by LS-SVM model. 
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5. CONCLUSION 

Using LS-SVM, a QSAR model has been successfully developed for the prediction of 
inhibitory activity for 60 compounds. The results well illustrate the power of descriptors 
in prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues. 
The model could predict the inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues derivatives not existed in the modeling procedure accurately. The work, shows 
that descriptors are capable to recognize the physicochemical information and be can 
useful to predict the inhibitory activity of the new compounds. 
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