
Arc
hi

ve
 o

f S
ID

Journal of Industrial Engineering 4 (2009) 51- 58 
 

51 

 

An Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with 
Sequence Dependent Setup Times and Processor Blocking 

Mostafa Zandieh a,* , Eghbal Rashidi b 

aDepartment of Industrial Management, Management and Accounting Faculty, Shahid Beheshti University, G.C., Tehran, Iran 
bDepartment of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran 

Received 15 Jul., 2009; Revised 5 Aug., 2009; Accepted 29 Sep., 2009  

Abstract 

    Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop 
problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task 
processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup 
times are neglected or considered independent from sequences of jobs. In this paper we study the hybrid flow shop problems with 
sequence dependent setup times and processor blocking. We present an effective hybrid genetic algorithm with some state-of-the-art 
procedures for these NP-hard problems to minimize total completion time or makespan. We established a benchmark to draw an 
analogy between the performance of our algorithm and RKGA. The obtaining results clearly show the superiority performance of our 
algorithm.  

Keywords: Hybrid flow shop; sequence dependent setup times; Processor blocking; Genetic algorithm; Local search. 

1. Introduction 

    Scheduling is an important process widely used in 
manufacturing, production, management, computer 
science, and so on. In simple flow-shop problems, each 
machine center (stage) has just one machine. If at least 
one stage has more than one machine, the problem is 
called a flexible flow-shop or hybrid flow shop problem. 
Hybrid Flow Shops (HFS) are manufacturing 
environments in which a set of jobs must be processed in 
a series of stages with multiple parallel machines [39]. 
Given the NP-hard nature, [7], [10], of this problem, to 
be effective, generic methods rely on the information 
provided by specialized ones. Often, this information is 
decided by the objective being optimized. Consequently, 
the resulting hybrids are not as effective on problems 
with other objectives. This is a serious shortcoming since, 
in practice; it is desirable to have solution tools that are 
reliable on problems with different objectives. Successful 
algorithms for HFS use Meta-heuristics to schedule the 
first stage of the shop and a simple constructive 
procedure to schedule the rest, [40], [43], [46], [31], [25].  
 
 

 
Genetic Algorithms (GA) have been used successfully in 
exploiting this idea. In [14] and [15], for instance, a 
Random Keys Genetic Algorithm (RKGA) performed 
well against many specialized heuristics and meta-
heuristics such as the problem space-based search 
method, [16], on HFS problems with sequence dependent 
setup times. In [31], a GA with a permutation 
representation of the individuals, and many variants of 
the crossover operator, also performed well against 
several heuristics such as ant colonies, Tabu Search, 
Simulated Annealing, other GA’s and deterministic 
methods on HFS with sequence dependent setup times 
and machine eligibility. Note that, most of these methods 
and the ones reviewed in [45] and [19] consider problems 
with makespan as the optimization criterion, mainly. 
      A single machine sequence-dependent setup 
scheduling problem is equivalent to a traveling-salesman 
problem and is NP-hard [20]. Even for a small system, 
the complexity of this problem is beyond the exact 
theories [32]. Hybrid flow shop problems are 
significantly more complex than the regular single 
machine scheduling. On the other hand, Gupta [8] shows 
the flow shop with multiple processors (FSMP) problem 
with only two stages (t=2) to be NP-hard even when one 

*Corresponding author E-mail: m_zandeih@kntu.ac.ir 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Mostafa Zandieh et al./ An Effective Hybrid Genetic Algorithm for Hybrid Flow shops with Sequence… 

52 

 

of the two stages contains a single machine. Since the 
FSMP problem can be considered as a specific case of 
the hybrid flow shop, then we can conclude that this 
latter problem is also NP-hard [32]. Since these types of 
problems belong to NP-hard class, no exact method has 
so far been introduced to be able to tackle these problems 
within a reasonable amount of time. Hence, in this paper 
we aim to introduce an effective hybrid genetic algorithm 
for the problem considered. The researchers have studied 
various objective functions in production scheduling, 
ranging from minimizing makespan, maximum tardiness, 
total completion time, total tardiness, early and tardy 
penalties [44], and job waiting variance [18]. In this 
paper, we consider total completion time or makespan.  
   To the best of our knowledge there isn’t any study in 
the literature that applies heuristic or meta-heuristic 
algorithms to solve the HFLB with SDST constraint. 
Kurz and Askin [14] developed a random-keys genetic 
algorithm to solve the problem of flexible flow lines with 
sequence dependent setup times by minimizing the 
makespan. Zandieh et al. [48] introduce an immune 
algorithm for HFS with SDST constraint which 
outperforms the RKGA of Kurz and Askin. Tavakkoli-
Moghaddam et al. [41] proposed a genetic algorithm 
(GA) with a novel, GA representation and operators to 
solve the FFLB by minimizing the makespan. Torabi et 
al. [42] proposed a hybrid genetic algorithm (HGA) to 
solve a lot-size and delivery scheduling problem in a 
simple supply chain, where a single supplier produces 
multiple components on an FFL and delivers them 
directly to an assembly facility (AF). Jenabi et al. [11] 
proposed two meta-heuristic algorithms, including the 
HGA and simulated annealing (SA), to solve a new 0–1 
mixed-nonlinear mathematical model of the economic 
lot-sizing and scheduling problem in flexible flow lines 
with unrelated parallel processors over a finite planning 
horizon. The objective determines a cyclic schedule by 
minimizing the sum of setup and inventory holding costs 
per unit time without any stock-out. Akrami et al. [1] 
developed two heuristic approaches, including GA and an 
optimal enumeration method (OEM), to solve a new 
model of common cycle multi-product lot-sizing and 
scheduling problem in deterministic flexible flow shops 
with a finite planning horizon and limited intermediate 
buffers. The objective minimizes the sum of setup cost, 
inventory holding costs, and number of cycles. 
Kaczmarczyk et al. [12] proposed an improvement 
heuristic approach for scheduling of printed wiring board 
assembly in SMT lines. They considered the processor 
blocking and limited processor availability due to the 
scheduled downtimes. The heuristic approach, which is a 
combination of Tabu Search (TS) and set of dispatching 
rules, has a hierarchical structure based on the 

decomposition of the scheduling problem into two sub-
problems: sequencing and assignment/timing solved 
sequentially. 
     So far, many literatures are available for scheduling 
problems with limited buffers. Hall and Sriskandarajah 
[9] provided a survey for scheduling problems with 
blocking and no-wait in process. Salvador [34] first 
considered hybrid flow shop with no buffers between 
stages. He applied branch-and-bound techniques to 
minimize makespan. Rajendran and Chaudhuri [28] 
utilized branch-and-bound but they also focus only on 
permutation schedules. Brah and Hunsucker [4] used 
branch-and-bound in the hybrid flow shop with an 
arbitrary number of stages and intermediate buffers. 
Moreover, they provide a means by which non-
permutation schedules or schedules with inserted idle 
time can be created. Sawik [37] presented a mixed 
integer programming formulation for scheduling flexible 
flow line with limited buffers and also a FFS with limited 
intermediate buffers [35] and with no-process buffers 
[36]. In addition, batch scheduling in buffer constrained 
flow shop and flexible flow shop has also received 
academic attention [38, 27]. Norman [23] applied Tabu 
Search to schedule problems containing both sequence-
dependent setup times and finite buffers but in flow shop 
environment. Wardono and Fathi [46] developed a Tabu 
Search for multi-stage parallel machine problem with 
limited buffers.    
    The rest of the paper is organized as follows: Section 2 
is dedicated to describe the problem in detail. In Section 
3 we elaborate our proposed algorithm. Section 4 discuss 
about robust calibration process by means of Taguchi 
method. Section 5 contains description of generation test 
data and computational results. At last Section 6 
concludes the research and suggests some guidelines for 
future studies.  

2. Problem description 

   Hybrid flow shops are generalization of simple flow 
shops. The line produces several different product types, 
and each product must be processed by at most one 
processor in each stage. A product, once its processing is 
completed on a processor in some stage, is transferred 
directly to either an available processor in the next stage 
(or another downstream stage depending on the product 
processing route), or a buffer ahead of that stage, when 
such an intermediate buffer is available [26]. When an 
intermediate buffer is unavailable, the product remains 
blocking the processor until a downstream processor 
becomes available. However, this blocking prevents 
processing of other products on the blocked processor. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Journal of Industrial Engineering 4 (2009) 51- 58 
 

53 

 

This type of problem is referred to as a hybrid flow shop 
problem with processor blocking (HFLB). We also 
consider another assumption in this paper: the setup times 
are dependent to sequences of jobs. After finishing 
processing of one job and before starting processing of 
the next job, some sort of setup such as cleaning up or 
changing tools must be carried out. In SDST, the 
magnitude of this time depends on both the immediately 
preceding and current jobs to be performed on the same 
machine [47, 2, 5]. The major reason for this 
consideration is to tackle scheduling problems in a real 
manner and also because of the remarkable savings when 
setup times are explicitly consolidated in the scheduling 
decisions. Additionally, we consider that setup is non-
anticipatory meaning that the setup can be started as soon 
as the machine and the job are available. With respect to 
the corresponding explanation, we take into consideration 
sequence-dependent setup times to further actualize our 
problem. 

3. Proposed hybrid genetic algorithm  

   We want to use of fundamental concepts of RKGA. 
First Bean [3] has introduced a novel encoding 
representation using random numbers called random keys 
genetic algorithm. This type of GA differs in the solution 
representation from usual type. Randomness is the main 
characteristic of RKGA. This representation is widely 
used in the literature e.g. [14, 48, 6, 24]. According to 
Kurz and Askin [14] RKGA has been applied to resource 
allocation problems, quadratic assignment problems, 
multiple machine tardiness scheduling problems, job-
shop makespan minimization problems and the 
generalized traveling salesman problem [23, 24, 13]. 
Kurz and Askin [14] reports good performance of RKGA 
in FFL with sequence-dependent setup times. Here, we 
present an effective genetic algorithm hybridized with a 
stochastic local search called HGA. Besides the local 
search procedure that we added to HGA, our HGA also 
enjoys a helpful procedure called Restart, which the 
RKGA did not have. We also use Taguchi method to tune 
the algorithm, which again differs from the experimental 
process that use in the RKGA and many other algorithms 
in the literature. However we use the same representation 
as used in the RKGA. 
3.1.  Genetic operators  

3.1.1. Crossover 

   The well-known traveling salesman problems (TSPs) 
are frequently used to model and solve manufacturing 
scheduling [13]. Michalewicz [21] showed that crossover 
operators such as the partially mapped crossover (PMX), 

the order crossover (OX) and the cycle crossover (CX), 
can be used to handle TSPs. One of the most applied 
crossovers in the literature for random keys 
representation is parameterized uniform crossover 
(PMX). We evaluate three crossovers in the calibration 
process to pick the best one for our algorithm. 
• Parameterized uniform crossover (PUX): This type of 

crossover uses of random numbers to determine 
which parent is selected to make current cell of 
children. For each job, a random number is generated. 
If the value is less than 0.7 the value from the ‘‘first’’ 
chromosome is copied to the new chromosome, 
otherwise the value from the ‘‘second’’ chromosome 
is selected. 

• One point crossover (OPX): Two parent 
chromosomes are joined at a randomly selected 
crossover point somewhere along the length of the 
chromosome and the sections on either side are 
swapped. 

• Two points crossover (TPX): Two positions are 
chosen at random in each parent and the segments 
between them are exchanged. 

3.1.2. Mutation operator or random generation engine 

• Swap mutation (SWAP): Two randomly selected 
positions are chosen and their contents swapped. 

• Random generation (RG): It isn’t a mutation operator. 
Instead of mutating, chromosomes are generated 
randomly.  

• Shift mutation (SHIFT): A randomly picked position 
in the sequence is relocated at another random 
position and the jobs between these two positions 
move along. For example, if we remove job at 
position 3 of the sequence and we want to reinsert it 
at position 7, jobs at positions from 4 to 7 slide and 
occupy positions from 3 to 6 [30]. 

3.2. Restart procedure 

     To avoid premature convergence in the population we 
have implemented a modified restart method. The restart 
scheme is based on [17] and is similar to the one 
implemented in [33]. According to Ruiz and Maroto [30] 
this method works as follows: At each generation we 
store the minimum makespan. If in the following 
generation the minimum makespan has not changed, we 
increment a counter. When this counter becomes higher 
than a control parameter called rG , the following 
procedure is applied: 
• Create a sorted list of Pop_size (size of population) 

elements with the maxC of the chromosomes in 
ascending order. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Mostafa Zandieh et al./ An Effective Hybrid Genetic Algorithm for Hybrid Flow shops with Sequence… 

54 

 

• Skip the chromosomes in the first 20% of elements of 
the list, i.e. elements 1,2, . . . , [0.2  Pop_size]. 

• The remaining 80% of chromosomes in the sorted 
list ([0.2  Pop_size] + 1, [0.2  Pop_size] + 2, . . . , 
Pop_size) are disregarded and re-generated in the 
following way: 

Half of these new chromosomes ([0.2  Pop_size] + 1, 
[0.2  Pop_size] + 2, . . . , [0.6  Pop_size]) are 
generated by copying a randomly chosen chromosome 
from the first 20% of list. This new copied chromosome 
is mutated once with the mutation operator which we 
make use of Swap mutation here. 
 The other half ([0.6  Pop_size] + 1, [0.6  Pop_size] + 
2, . . . , Pop_size) are completely new random 
chromosomes. 

Make counter = 0. 
With this procedure, whenever the lowest makespan in 
the population does not change for more than 

rG generations, the restart procedure replaces the 80% 
worst individuals of the population with both new good 
chromosomes and new random genetic material. 

3.3. Local search 

    The idea of adding an improvement phase to a GA has 
been widely exploited before. For example, Murata et al. 
[22] suggest an improvement phase by applying a local 
search step before selection and crossover in a GA. The 
drawback of this approach is that applying local search to 
all individuals in every generation results in a very slow 
GA. Our proposal is to apply a local search after 
selection, crossover and mutation, but not to all 
individuals in the population. We define an 
“enhancement probability” or Penh as follows: We draw a 
random uniformly distributed number between 0 and 1 
and if this number is less than or equal to Penh the 
individual will undergo local search. For the 
improvement phase we make use of a simple method: for 
the chromosomes which have been determined to go 
under improvement phase, one machine number at stage 
one is chosen randomly; for this machine we select a 
random job which is on the machine considered and by 
using Swap mutation we try to find better position for the 
job. This method is simple and efficient as we can see 
from the section 5. A pseudo code is shown in Fig. 1. for 
better understanding of our HGA. 
(1) Program HGA; 

(2) Begin 

(3) Initialization ();  // Produce initial solutions 

(4) Iter := 1;        // Counter for number of iteration 

(5) Counter := 0;        // Counter used in Restart procedure 

(6) While stopping criterion is not met yet do  

(7)     Begin            

(8)       Evaluation (); 

(9) Elitism (); 

(10)       Crossover (); 

(11)       Mutation (); 

(12)       For I := 1 to Pop_size do 

(13)       Begin 

(14)             Random (i) : = a random number between 0 and 1; 

(15)             If (Random(i) < = Penh) then  

(16)                 Local search (i);  //  perform Local search for 
individual number i  

(17)       End; 

(18)       Iter := Iter + 1;          

(19)       Evaluate Min_Makespan (); 

(20)       If (Min_Makespan (Iter) := Min_Makespan (Iter -1)) 
then 

(21)           Counter := Counter +1 

(22)       Else Counter :=0; 

(23)       If (Counter >= Gr) then // Gr : a parameter used 
in Restart procedure 

(24)            Restart (); 

(25)    End;     // End while 

(26) End. 

Fig. 1. General outline of our proposed HGA (Pseudo code). 

4. Parameter tuning  
    Recent works show the effectiveness of parameter 
tuning procedure on the performance of Gas [32, 30]. To 
this end, authors carry out extensive experiments to 
correctly calibrate their algorithms. They tested all 
possible combinations of the given factors by means of 
several full factorial experimental designs.  
   But when the number of factors becomes significantly 
high, it becomes increasingly difficult and exhaustive to 
carry out investigation. In this paper we use of Taguchi 
approach to reduce the number of required tests. Dr 
Genechi Taguchi [29] has offered a standardized and a 
relatively simpler method of applying the DOE 
technique. He is regarded as the foremost proponent of 
robust parameter design, which is an engineering method 
for product or process design that focuses on minimizing 
variation and/or sensitivity to noise.  
   In Taguchi method, the orthogonal arrays are used to 
study a large number of decision variables with a small 
number of experiments. In robust parameter design, the 
primary goal is to find factor settings that minimize 
response variation, while adjusting (or keeping) the 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Journal of Industrial Engineering 4 (2009) 51- 58 
 

55 

 

process on target. After you determine which factors 
affect variation, you can try to find settings for 
controllable factors that will either reduce the variation, 
make the product insensitive to changes in uncontrollable 
(noise) factors, or both.  
In this study, the GA control factors are: 

• Crossover type: 3 levels (PUX, OPX, TPX) 

• Mutation type: 3 levels (RG, Shift, Swap) 
• (Crossover rate, Mutation rate): 6 levels ((70, 10), 

(70, 15), (70, 20), (80, 5), (80,10), (80,15)) 
(Elitism strategy is used for remain individuals of 
population) 

• Population size (Pop_size): 3 levels (200, 250, 300) 
• Enhancement probability: 3 levels (0.001, 0.01, 0.1) 

 
Table 1 
 Factors and their levels  

Level  Factor  

(70, 10), (70, 15), (70, 20), (80, 5), (80, 10), (80, 15)  (Crossover rate, Mutation rate)  

RG, SHIFT, SWAP  Mutation  

0.001, 0.01, 0.1  Enhancement probability  

200, 250, 300 Pop_size 

OPX, TPX, PUX  Crossover  
  

  Different levels of the abovementioned factors are 
shown in Table 1. The L18 is selected as the fittest 
orthogonal array design. A set of 18 instances was 
generated as such: the set of instances comprises 9 
combinations of n and g, being n = {6, 30, 100} and g = 
{2, 4, 8} with the processing times uniformly distributed 
on (1, 99) and setup times are uniformly distributed on 
(1, 49) and (1, 99). Number of machines is uniformly 
distributed from one to four. To yield more reliable 
information, we tackled each instance five times to 
finally average the results. Therefore, we have 18 results 
for each trial to do the statistical analyses. All 
experiments were performed in Delphi 2007 and run on a 
PC with 2.0 GHz Intel Core 2 Duo and 1 GB of RAM 
memory. The stopping criterion for calibration and 

comparative analogy is set to a CPU time limit fixed to 
n×g×100 m. sec. 
The response variable is based on the following 
performance measure:  
Relative Percentage 

Deviation 100lg)( ×
−

=
sol

solsol

Best
BestARPD  

   Where solA lg  is the makespan obtained by a given 
algorithm alternative on a given instance and in this case 

solBest is the best makespan obtained for each instance.  
   After obtaining the results of the Taguchi experiment, 
they are transformed into S/N ratio. Fig. 2 shows the S/N 
ratio obtained at each level. As indicated in Fig. 2, better 
robustness of the algorithm is achieved when the 
parameters are set as shown indicated in Table 2. 

 

 
Fig. 2. The mean S/N ratio plot for each level of the factors 

 

 

 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Mostafa Zandieh et al./ An Effective Hybrid Genetic Algorithm for Hybrid Flow shops with Sequence… 

56 

 

 

Table 2 
 Factors and their optimal levels 

Optimal level  Factor  

(70, 10)  (Crossover rate, Mutation rate)  

SWAP  Mutation  

0.01  Enhancement probability  

300  Pop_size 

OPX  Crossover  

5. Computational evaluation 

   In this section we aim to test efficiency and 
effectiveness of our proposed HGA against popular 
RKGA. To test we need to generate required data. Data 
required for a problem consist of the number of jobs, 
range of processing times, range of setup times, number 
of stages and number of machines per stage. A set of 36 
instances was generated as such: the set of instances 
comprises 9 combinations of n and g, being n = {6, 30, 
100} and g = {2, 4, 8} with the processing times 
uniformly distributed on (1, 99) and setup times 
uniformly distributed on (1, 24), (1, 49), (1, 99) and 
(1,124). The duration of sequence-dependent setup times 
is defined as 25%, 50%, 100%, and 125% percent of the 
processing time [33]. A random uniformly distributed 
number of machines ranging from one to four machines 
per stage are considered. For each instance we have 
generated 5 different problems. The algorithms are 
stochastic in nature and we have conducted five different 
replicates of each experiment to finally average the 
results. For the tests we use the same computing platform 
as in Section 5.  
     After obtaining results, ANOVA test is invoked. As 
regards the ANOVA’s models adequacy to the data we 
can say that all three hypotheses (normality, homogeneity 
of variance and independence of the residuals) were 
accepted at 95% confidence level. The means plot and 
LSD intervals for our HGA against RKGA are shown in 
Fig. 3. As it could be seen, the performances of our 
proposed HGA statistically supersede the RKGA. Our 
proposed algorithm, as we said and described before, 
uses an effective Local Search procedure which  is one of 
the most important factors that makes our HGA to be 
successful against the RKGA. We also went through a 
logical and scientific way to fine tune the algorithm 
(Taguchi method). And we also examined more than one 
types and rates of crossovers and mutations and finally 
selected the best ones. The Restart procedure also helps 
our HGA to be more effective against the RKGA. 

6. Conclusion and future work 

   In this paper we consider the hybrid flow shops with 
additional assumptions: sequence dependent setup times 
and processor blocking without intermediate buffer. The 
problem has proven to be NP-hard in strong sense; hence 
we introduce a genetic algorithm combined with simple 
stochastic local search developing an effective HGA. For 
the purpose of having a robust parameter tuning, we 
made use of Taguchi method. The obtained results  

 
Fig. 3. Means and 95% LSD intervals plot for the computational results   

Demonstrated the superiority of our proposed HGA with 
respect to RKGA. As a direction for future research, it 
would be interesting to work on other metaheuristics, 
such as Particle Swarm Optimization, Tabu Search and 
Simulated Annealing, and compare them with our HGA, 
or to examine the performance of our algorithm in other 
complex scheduling problems, such as the flexible job 
shop and an open shop, to see whether the high 
performance of our HGA is transferable to other 
scheduling problems. Another direction for future 
research is to consider other realistic assumptions, such 
as machine availability constraints and transportation 
times between stages. Another opportunity for research is 
to consider the problems with other optimization 
objectives, such as total weighted tardiness or total 
completion time, or even multi-objective cases.  

www.SID.ir



Arc
hi

ve
 o

f S
ID

Journal of Industrial Engineering 4 (2009) 51- 58 
 

57 

 

References 

[1]  B. Akrami, B. Karimi, SM. Moattar-Hosseini, Two 
metaheuristic methods for the common cycle economic lot sizing 
and scheduling in flexible flow shops with limited intermediate 
buffers: the finite horizon case. Applied Mathematics and 
Computation, 183:634–45, 2006. 

[2]  K. R. Baker, Introduction to sequence and scheduling. Wiley, 
New York, 1974. 

[3] J. C. Bean, Genetic algorithms and random keys for sequencing 
and optimization. ORSA Journal on Computing 6, 154–160, 
1994. 

[4]  S. A. Brah, J. L. Hunsucker, Branch and bound algorithm for the 
flow shop with multiple processors. European Journal of 
Operational Research 51, 88–99, 1991. 

[5]  R. W. Conway, W. L. Maxwell, Theory of scheduling. Addison- 
Wesley, Boston, 1967. 

[6] M. Gholami, M. Zandieh, A. Alem-Tabriz, Scheduling hybrid 
flow shop with sequence-dependent setup times and machines 
with random breakdowns. International Journal of Advanced 
Manufacturing Technology, doi: 10.1007/s00170-008-1577-3, 
2008. 

[7] J. N. D. Gupta. Two-stage hybrid flow shop scheduling problem. 
Operational Research Society, 39:359–364, 1988. 

[8] J. N. D. Gupta, Two-stage hybrid flow shop scheduling problem. 
Journal of Operation Research 39(4):359–364, 1988. 

[9] N. G. Hall, C. Sriskandarajah, A survey of machine scheduling 
problems with blocking and no-wait in process. Operations 
Research 44:510–25, 1996. 

[10] J. A. Hoogeveen, J. K. Lenstra, and B. Veltman. Preemptive 
scheduling in a two-stage multiprocessor flow shop is NP-hard. 
European Journal of Operational Research, 89:172–175, 1996. 

[11] M. Jenabi, S. M. T. Fatemi-Ghomi, S. A. Torabi, B. Karimi, Two 
hybrid meta-heuristics for the finite horizon ELSP in flexible 
flowlines with unrelated parallel processors. Applied 
Mathematics and Computation; 186(1):230–45, 2007. 

[12] W. Kaczmarczyk, T. Sawik, A. Schaller, T. M. Tirpak, Optimal 
versus heuristic scheduling of surface mount technology lines. 
International Journal of Production Research; 42(10):2083–110, 
2004. 

[13] L. P. Khoo, S.G. Lee, X.F. Yin, A prototype genetic algorithm-
enhanced multi-objective scheduler for manufacturing systems, 
International Journal of Advanced Manufacturing Technology 16 
131–138, 2000. 

[14] E. Mary, Kurz and Ronald G. Askin, Scheduling flexible flow 
lines with sequence dependent set-up times. European Journal of 
Operational Research, 159:66–82, 2003. 

[15] M. E. Kurz, M. Runkle, and S. Pehlivan. Comparing problem-
based-search and random keys genetic algorithms for the SDST 
FFL makespan scheduling problem. working paper, 2005. 

[16] V. J. Leon and Balakrishnan Ramamoorthy. An adaptable 
problem space based search method for flexible flow line 
scheduling. IIE Transactions, 29:115– 125, 1997. 

[17] V. J. Leon, B. Ramamoorthy, An adaptable problem space-based 
search method for flexible flow line scheduling. IIE Transactions 
29, 115–125, 1997. 

[18] X. Li, N. Ye, X. Xu, R. Sawhey, Influencing factors of job 
waiting time variance on a single machine. European Journal of 
Industrial Engineering 1(1):56– 73, 
doi:10.1504/EJIE.2007.012654, 2007. 

[19]  R. Linn, W. Zhang, Hybrid flow shop scheduling: A survey. 
Computers & Industrial Engineering, 37:57–61, 1999. 

[20] P. B. Luh, L. Gou, Y. Zhang, T. Nagahora, M. Tsuji, K. Yoneda, 
T. Hasegawa, Y. Kyoya, T. Kano, Job shop scheduling with 
group dependent setups, finite buffers, and long time horizon. 
Annal Opns Res 76:233–259, doi:10.1023/A:1018948621875, 
1998. 

[21] Michalewicz, Genetic Algorithms + Data Structure = Evolution 
Programs, Springer, New York, 1994. 

[22] T. Murata, H. Ishibuchi, H. Tanaka, Genetic algorithms for 
flowshop scheduling problems. Computers & Industrial 
Engineering; 30(4):1061–71, 1996. 

[23] B. A. Norman, Scheduling flow shops with finite buffers and 
sequence-dependent setup times. Computers & Industrial 
Engineering; 36:163–77, 1999. 

[24] B. A. Norman, J. C. Bean, A genetic algorithm methodology for 
complex scheduling problems. Naval Research Logistics 46, 
199–211, 1999. 

[25] C. Oguz and M. Fikret Ercan. A genetic algorithm for hybrid 
flow shop scheduling with multiprocessor tasks. Journal of 
Scheduling, 8:323–351, 2005. 

[26] M. Pinedo, Scheduling: theory, algorithms, and systems. 2nd ed., 
Englewood Cliffs, NJ: Prentice-Hall Inc.; 2001. 

[27] M. Pranzo, Batch scheduling in a two-machine flow shop with 
limited buffer and sequence independent setup times and removal 
times. European Journal of Operations Research 153:581–92, 
2004. 

[28] C. Rajendran, D. Chaudhuri, Scheduling in n-job, m-stage flow 
shop with parallel processors to minimize makespan. 
International Journal of Production Economics 27, 137–143, 
1992. 

[29] R. J. Ross, Taguchi techniques for quality engineering. McGraw-
Hill, New York, 1989. 

[30] R. Ruiz, C. Maroto, J. Alcaraz, Two new robust genetic 
algorithms for the flowshop scheduling problem. Omega 34:461–
476, doi:10.1016/j.omega.2004.12, 2006. 

[31] R. Ruiz Garcıa and C. Maroto. A genetic algorithm for hybrid 
flow shops with sequence dependent setup times and machine 
eligibility. European Journal of Operational Research, 169:781–
800, 2006. 

[32] R. Ruiz, C. Maroto, A genetic algorithm for hybrid flow shops 
with sequence dependent setup times and machine eligibility. 
European Journal of Operation Research 169:781–800, 
doi:10.1016/j.ejor.2004.06.038, 2006. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Mostafa Zandieh et al./ An Effective Hybrid Genetic Algorithm for Hybrid Flow shops with Sequence… 

58 

 

[33] R. Ruiz, T. Stützle, An Iterated Greedy heuristic for the sequence 
dependent setup times flowshop problem with makespan and 
weighted tardiness objectives. European Journal of Operation 
Research 187(3):1143–1159, doi:10.1016/j.ejor.2006.07.029, 
2008. 

[34] M. S. Salvador, A solution to a special case of flow shop 
scheduling problems, in Symposium of the Theory of   
Scheduling and Applications, S.E. Elmaghraby (ed.), New York: 
Springer. 1973. 

[35] T. Sawik, A scheduling algorithm for flexible flow lines with 
limited intermediate buffers. Journal of Manufacturing Systems; 
9:127–38, 1993. 

[36] T. Sawik, Scheduling flexible flow lines with no-process buffers. 
International Journal of Production Research; 33:1359–70, 1995. 

[37] T. Sawik, Mixed integer programming for scheduling surface 
mount technology lines. International Journal of Production 
Research; 39(1):3219–35, 2001. 

[38] T. Sawik, An exact approach for batch scheduling in flexible 
flow line with limited buffers, Mathematical and Computer 
Modelling 36: 461-471, 2002. 

[39] A. Shaukat, Brah, Scheduling in a Flow Shop with Multiple 
Processors. PhD thesis, University of Houston, 1988. 

[40] F. Sivrikaya Serifoglu, G. Ulusoy. Multiprocessor task 
scheduling in multistage hybrid flow shops: A genetic algorithm 
approach. Journal of the Operational Research Society, 55:504–
512, 2004. 

[41] R. Tavakkoli-Moghaddam, N. Safaei, B. Karimi, Scheduling of 
flexible flow lines with blocking by genetic algorithms. In: 
Proceeding of the 35th international conference on computers 
and industrial engineering. Turkey, Istanbul; p. 1911–6, 2005. 

[42] S. A. Torabi, S. M. T. Fatemi Ghomi, B. Karimi, A hybrid 
genetic algorithm for the finite horizon economic lot and delivery 
scheduling in supply chains. European Journal of Operational 
Research; 173:173–89, 2006. 

[43] J. A. Vazquez Rodr´ıguez, A. Salhi. Performance of single stage 
representation genetic algorithms in scheduling flexible flow 
shops. In Congress on Evolutionary Computation (CEC2005), 
pages 1364–1371. IEEE Press, 2005. 

[44] J. M. S. Valente, Heuristics for the single machine scheduling 
problem with early and quadratic tardy penalties. Eur J Ind Eng 1 
(4):431–448, doi:10.1504/EJIE.2007.015391, 2007. 

[45] H. Wang. Flexible flow shop scheduling: Optimum, heuristics 
and artificial intelligence solutions. Expert Systems, 22:78–85, 
2005. 

[46] B. Wardono, Y. Fathi. A tabu search algorithm for the multi-
stage parallel machines problem with limited buffer capacities. 
European Journal of Operational Research, 155:380–401, 2004. 

[47] M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini, An 
immune algorithm approach to hybrid flow shops scheduling 
with sequence-dependent setup times. Appl Math Comput 
180:111– 127, doi:10.1016/j.amc.2005.11.136, 2006. 

[48] M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini, An 
immune algorithm approach to hybrid flow shops scheduling 
with sequence-dependent setup times. Appl Math Comput 
180:111– 127, doi:10.1016/j.amc.2005.11.136, 2006. 

 

 

www.SID.ir


