
Journal of Industrial Engineering 5 (2010) 1-15

1

Mobile Robot Online Motion Planning Using Generalized Voronoi
Graphs

Ellips Masehian*, Amin Naseri
Tarbiat Modares University, Industrial Engineering Department, Tehran, Iran

Received 25 Oct., 2009; Revised 7 Nov., 2009; Accepted 20 Nov., 2009

Abstract

In this paper, a new online robot motion planner is developed for systematically exploring unknown environments by intelligent mobile
robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by
online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first and breadth-first
searches on the GVG. The planner is equipped with components such as step generation and correction, backtracking, and loop handling.
It is fast, simple, complete, and extendable to higher spaces.

Keywords: Robot Motion planning; Voronoi Diagrams; Medial Axis, Sensor-based Navigation.

———
* Corresponding author E-mail: masehian@modares.ac.ir

1. Introduction

For a robot to perform its tasks correctly and safely,
planning its actions and motions is indispensable. A perfect
robot is no longer considered just a mechanism, but a
software-supported hardware. The software must process
the robot’s knowledge of surroundings and take appropriate
measures to guarantee the robot’s collision avoidance and
goal accomplishment.

The robot’s knowledge of surroundings is either
collected locally from robot’s input devices such as sensors
and cameras, or globally accessed via an environment map.
Based on the scale of data acquisition, the robot’s approach
to planning will differ.

When no prior representation of the surrounding is
available, a map of the environment has to be built
incrementally. Thus, the mobile robot faces three
fundamental questions as “Where am I?”, “Where am I
going?” and “How can I get there?” (Leonard and Durrant-
Whyte [17]). The first question, which is on position
estimation, is commonly referred to as localization. Related
to localization is the concept of navigation. A system that
can help a robot to establish its location or by some means

Help it to find its way through its workspace correctly is
called a Navigation System.

Navigation Systems are roughly classified into two
groups: relative and absolute position measurements.

The relative position measurement approach, also
known as dead reckoning, is further divided into two
subgroups: Odometry, which uses encoders to measure
wheel rotation and/or steering orientation; and inertial
navigation, which uses gyroscopes and sometimes
accelerometers to measure rate of rotation and acceleration.
These approaches are subject to errors due to external
factors beyond the robot's control such as wheel slippage or
collisions. More importantly, dead reckoning errors
increase unless the robot employs sensor feedback in order
to recalibrate its position estimation.

The absolute position measurement approach contains a
few techniques including Guidepath, active beacons,
artificial landmark recognition, natural landmark
recognition, and model matching. Guidepath is a static path
(e.g. a wire that transmits audio or radio signals, or a
magnetic stripe) which a robot can follow. Guidepaths are
not suitable in applications where mobile robots should
move freely. Being one of the simplest forms of robot

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

2

navigation, Guidepath is used mostly for Automatic Guided
Vehicles (AGVs) (Johansson [14]).

In Active Beacons, a set of light or radio signal
transmitters (beacons) are used whose locations in the
workspace are known in advance, and at least three of them
must be “visible” (detectable) for a robot at all workspace
locations. In the artificial landmark recognition method,
objects or images with a distinctive shape are placed in the
workspace for easy recognition. The positions of the
objects are known, and if three or more objects are
detectable at a certain position, an estimation of the
position can be calculated.

In the natural landmark recognition method, the used
objects already exist in the workspace, rather than being
placed for robotic applications. Mostly they are easily
distinguishable man-made structures like curbs, wall-floor
edges, etc. In model matching, the information acquired
from the robot’s onboard sensors is compared to a map or
world model of the environment. Map-based positioning
often includes improving global maps based on new
sensory observations in a dynamic environment and
integrating local maps into the global map to cover
previously unexplored areas.

Online navigation algorithms are those which plan the
robot’s motions in unknown environments using sensory
data, and are generally categorized into two major groups:
navigation using touch sensing, and navigation using range
finding (laser/sonar sensors or camera vision).

Using one of the first methods for touch-based
navigation, Lumelsky and Stepanov [18] presented bug
algorithms for a point robot to move from a source point to
a destination point, using touch sensing in a planar terrain
populated with arbitrary shaped obstacles. Also, Cox and
Yap [10] developed algorithms to navigate a rod to a
destination position in planar polygonal terrains. A good
review of early works on online path planning is provided
in Rao et al. [23].

Recently, sensor-based motion planning has been done
for real-time applications and unknown environments as in
Brooks et al. [4] for kinodynamic constraints, and in Sam
Ge et al. [25] for dynamic constraints.

During the past decade, technological advancements in
sensor equipments caused the evolution and sophistication
of navigational techniques. The long-range sensors
obviated the need for robot-obstacle touch which is an
unfavorable case in most motion planning environments
and leads to physical damages to the robot. There are
numerous studies done about sensor-based or vision-based
navigation methods (e.g. Choset et al. [9]). Recent robotic
manipulators are equipped with a camera for accomplishing
fine motion planning tasks. An informative work dealing
with sensors and sensor-based planning methods is
Borenstein et al. [3].

1.1. Generalized Voronoi Graphs

The concept of Generalized Voronoi Graphs (GVG) or
Medial Axis (MA) first appeared in the literature in 1967
when Blum [2] introduced the notion of a skeleton
discussing Medial Axis Transform (MAT). He compared
the symmetric or medial axis transform with a grass fire
phenomenon where the fire on the borders of a grass field
broke out toward the center. The fire fronts met and
quenched in some points which formed the medial axis.
Blum showed that these points are the centers of Maximal
Inscribed Discs (MID). To mathematically express the
MID, we need to define some terms:

Definition 1. Let W stand for the workspace and C its
configuration space. Then Cfree represents the free
configuration space and Cobs denotes the C-space occupied
by obstacles. Let the set of all possible distance values
between any two elements in the Cfree be called D:

D: = {||x – y|| | x, y ∈ C}.

The Distance Transform DT: Cfree → D assigns to every
Cfree element the minimal distance to the Cobs:

DT (x ∈ Cfree):= min {||x – y|| | y ∈ Cobs},

where ||•|| is some arbitrary metric like Euclidean distance.
The Distance Map is the set of all Cfree elements along with
their associated distance values:

DM (Cfree):= {x, DT(x) | x ∈ Cfree}.

Definition 2. Since no boundary point is closer to x than
DT(x), every element (x, DT(x)) of the distance map defines
the Locally Maximal Disc centered around x:

LMD(x) := { y | ||x – y|| < DT(x)},

describing the disc with maximal radius from among the
values in D and centered around x which is completely
contained in Cfree.

Definition 3. A Maximal Inscribed Disc (MID) is a locally
maximal disc which is not completely contained in any other
disc. The set of maximal inscribed discs in Cfree is therefore:

MID(Cfree): = { LMD(x ∈ Cfree) | ∀ y ∈ N(x),
 LMD(x) ⊄ LMD(y) },

where N(x) denotes the neighborhood of x. A MID touches
at least two boundary points of Cfree.

Definition 4. The loci of the centers of maximal inscribed
discs comprise the Medial Axis, and the transformation of an
object to its medial axis is called Medial Axis Transform.

Fig. 1 shows the Maximal Inscribed Discs and the
Medial Axis of an L-shaped environment.

In Chin et al. [5], the medial axis of a simple polygon is
calculated in linear time complexity, which is better than
the previously known O(nlogn). The authors decompose
the polygon into pseudo-normal histograms, influence

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

3

histograms and xy monotone histograms. A normal
histogram is a simple polygon whose boundary consists of
a base edge and a chain that is monotone with respect to the
base, and a pseudo-normal histogram is a normal histogram
with a missing corner. The medial axis for xy monotone
histograms is then computed and merged to obtain the
medial axis for the polygon.

Fig. 1. Medial Axis (middle line) and some Maximal Inscribed Discs for a
simple 2D L-shape. The axis is a piecewise quadratic curve representing
the local symmetry axes.

In Datta [12], a constant-time O (1) algorithm for

computing the medial axis transform of an n×n binary
image on a reconfigurable mesh size of n×n×n is presented.
The mathematical properties of the medial axis are well
studied in Choi et al. [6].

In Dardenne et al. [11] the MA for completely discrete
objects in the form of pixels or voxels is approximated
based on the Voronoi graph computed from a set of nodes
distributed across the boundary. The approximations are
robust to noise and suitable for mesh generation.

The medial axis has found applications in extracting
skeletons from 3D neuron images (Petřek1 et al. [20]),
Binary Data Compression (Pujar et al. [21]), solid modeling,
motion planning, etc. In Wilmarth et al. [26], the medial axis
transform is combined with a probabilistic roadmap planner
(PRM) where randomly generated points in configuration
space are connected by local methods (Kavraki and
Latombe, [15]). The drawback of this planner emerges in
narrow passages, where the probability of locating a random
point in those regions is quite small, leading to a failure in
connecting the two ends of the corridor. In Wilmarth et al.
[26], a method for sampling the C-space is proposed, where
randomly generated configurations, free or not, are retracted
onto the medial axis of the free space without computing the
medial axis explicitly.

1.2. Incremental Construction of Voronoi Graphs

Sensor based planning by incremental construction of
the GVG includes three phases: (1) connecting the start
point to GVG, (2) navigating through GVG roadmap, and
(3) constructing a path to the vicinity of the goal. The
properties associated with these phases are called

accessibility, connectivity and departability, respectively,
and are essential for a roadmap regarded for path planning.

There were some attempts to take advantage of the
maximum clearance property of the Voronoi diagram, and
to build the Voronoi diagram iteratively (e.g. Masehian et
al. [19]). In Rao et al. [24], some proofs for four basic
properties of Voronoi diagrams including (1) finiteness, (2)
connectivity, (3) local constructability, and (4) terrain
visibility are stated. Then they suggest an algorithm for the
navigation of a circular robot in unknown terrains by
iteratively visiting the Voronoi vertices. Rao [22] then
extended these results to generalized polygons in plane.

A well-known work dealing with incremental
construction of Hierarchical Generalized Voronoi
Diagrams belongs to Choset in Choset and Burdick [7] and
Choset et al. [9]. The importance of these studies lies in
their completeness and applicability to higher dimensions
than planar. Since the Voronoi Diagram is disconnected in
three and more dimensional spaces, some “bridge” edges
(called GVG2) are used to maintain the connectivity of the
GVG in high dimensions. The structure of Choset’s algo-
rithm depends extensively on the mechanism of the robot in
hand (as in the Nomad® 200 robot with a sonar sensors
ring), and is tailored for discrete information acquired from
sensor readings.

In incremental construction of Hierarchical Generalized
Voronoi Diagrams, the main procedure for incrementally
building the GVG edge involves mathematical
computations, that is, numerical continuation techniques as
well as a need for implementing a correction step through
Newton’s recursive correction function, a calculation
tailored to meet points considered m+1-equidistant faces.
Although this approach is precise, the usually limited
number of sensors and their incomplete perception of the
world overshadow this advantage and force the robot to
‘guess’ its next direction.

The meet points (i.e. Voronoi vertices) are perceived by
a comparative analysis of different sensor readings; that is,
by watching for an abrupt change in the direction of the
(negated) gradients to the m closest obstacles (Choset et al.
[8]). A meet point is attributed as an m+1-equidistant point
in ℜm space (e.g. 3 in planar cases) and calculations on this
non-generic assumption are established. However, this is
not the case with many situations where more than m+1
Voronoi edges conjoin at a single meet point, or there are
inaccuracies in defining the borders of obstacles.

This approach renders numerous problems like dead
reckoning error, localization error, sharp corners problem,
weak meet points and problems due to hyper-symmetrical
environments which are addressed in Choset et al. [8].

In the present paper, we propose a new motion planner
which systematically and intelligently searches the
workspace by incrementally building the Medial Axis or
the Generalized Voronoi Graph of the free workspace. The
paper is organized in this way: the following section
describes the algorithm’s components in detail, and section

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

4

3 provides all steps of the algorithm. Section 4 illustrates
some simulations and deals with important issues such as
completeness and time complexity. Also, a Potential Fields
variant of the algorithm is proposed. Finally, section 5
presents the conclusion.

2. Algorithm Components

The online motion planner developed in this paper takes
advantage of a number of basic geometric components,
which together with a few control matrices allow the robot
to perform motion planning tasks. These components are:

1. Distance checking component,
2. Departure component,
3. Projection component,
4. Correction component,
5. Backtracking component,
6. Loop handling component.

A high-level explanation of the online motion planner,
which describes how the above components are integrated
and incorporated in a single model, is presented below:

The algorithm begins with positioning the robot on the
Start point and collecting information about its distance
from surrounding obstacles. If the Goal point is in the
robot's line of sight, then the robot’s current location is
connected to the Goal via a straight line, and the planning
task terminates accordingly. Otherwise, depending on the
robot’s location (which can be either on MA edge, MA
vertex, or not on MA at all), its next action is planned as
follows:

If the robot is not on the MA, then it must correct its
position by moving directly toward the MA. Afterwards, it
must repeat the distance checking step.

If it is already on the MA, the robot should take a step
along the MA in a promising direction. Nevertheless, this
projection could ‘derail’ the robot from the MA (as in the
previous case); so a correction step might be necessary to
maintain the robot on maximum clearance from obstacles.
This step guarantees that no collision will occur through the
course of planning.

If during the navigation, the robot comes too close to an
obstacle, it does a backtracking behavior, and traces back
the trajectory points until a vertex (meet point) is reached.
In that case, the robot starts exploring another edge
stemmed from that vertex. It should be noted that all edge-
traversing tasks (except for the backtracking operation) are
accomplished through gradual construction of the MA via
successive projection-correction steps.

Before we present the details of each component, a
mathematical notation is introduced to establish a
framework for the algorithm:

Let P(x) = {ρ1, ρ2, …, ρr} be the set of radial visibility
(or sonar) rays emanated from the robot at location x. Each
ρi has a magnitude |ρi|, and an angle θi.

Let PM(x) = {ρm
1, ρm

2, …, ρm
s} be the set of rays having

minimum distances from different convex obstacles sorted
in an ascending order. So the first element, ρm

1, is the radius
of the Maximal Inscribed Disc, MID(x) (see Fig. 5).
Obviously, PM(x) ⊂ P(x). Note that PM(x) is not just a set of
relatively small elements of P(x); the fact that the minimum
distances from different convex obstacles are calculated
determines the elements of PM(x) to be local minimums in
the rays histogram.

The following subsections explain the components of
the algorithm in more detail.

2.1. Distance Checking Component

This component provides information about the robot’s
environment. Consider Fig. 2 for instance, which illustrates
a point robot among obstacles. It emits sonar or laser rays
to measure its distance from the surrounding obstacles.
Here the number of sensors r is 360, i.e. one sensor per
degree. In real experiments this number is usually less, e.g.
18 or 36 sensors. The rays represent the set P(x).

Fig. 2. Sonar rays emanated from a point robot amid obstacles.

To calculate the minimum distances from all visible
obstacles, the robot must perform a simple arithmetic
manipulation on magnitudes and angles of the rays. Fig. 3
depicts a polar histogram of ray magnitudes.

Fig. 4 is the Cartesian plot of the ray magnitudes. The
local minimums in this histogram represent the rays with
shortest distances from distinct obstacles. Fig. 5 shows
these rays, which are elements of the set PM(x) = {ρm

1, ρm
2,

ρm
3, ρm

4}. ρm
1 is the minimal ray and is the radius of the

Maximal Inscribed Disc.

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

5

Depending on the distances from obstacles, three cases,
depicted in Fig. 6, can express the robot’s position relative
to the Medial Axis:

Case 1: ρm
1 << ρm

2, …, ρm
s :

This condition indicates that the robot is very close to
one obstacle and is likely to collide with it (Fig. 6(a)).
Therefore, this is an unstable and unfavorable case, and
must be corrected and resolved to Case 2 or 3. To make this
premise more pragmatic and verifiable, it can be rephrased
as |ρm

1 − ρm
2| > ε, where ε is a small tolerance value.

Case 2: ρm
1 = ρm

2 << ρm
3, …, ρm

s :

This case implies that the robot is located on the Medial
Axis and maintains the maximum clearance from two
obstacles (Fig. 6(b)). In the real world applications, the
exact equality of ρm

1 = ρm
2 may not be attained, and so it

can be relaxed to |ρm
1 − ρm

2| ≤ ε.

Fig. 3. Radial rays magnitudes plotted in polar coordinates.

Fig. 4. Ray magnitudes plotted in Cartesian coordinates in which the local
minima correspond to shortest distances from visible obstacle edges.

Fig. 5. Shortest distances from different convex obstacles. The minimal
ray represents the radius of the Maximal Inscribed Disc (MID).

Case 3: ρm
1 = ρm

2 = ρm
3 << ρm

4, …, ρm
s :

This case indicates that the robot is located on a Medial
Axis vertex (i.e. meet point) as in Fig. 6(c). Again we can
define a tolerance value for real-world applications as
|ρm

1 − ρm
2| ≤ ε and |ρm

1 − ρm
3| ≤ ε.

The above conditions determine the location of the robot
in relation to the Medial Axis roadmap and the surrounding
obstacles, based on which the next step to be taken by the
robot is determined.

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

6

(a)

(b)

(c)

Fig. 6. The robot performing a distance check: Medial Axis, Maximal
Inscribed Disc, and shortest rays are shown. (a) Case 1: ρm

1 << ρm
2, …, ρm

5.
(b) Case 2: ρm

1 = ρm
2 << ρm

3, …, ρm
5. (c) Case 3: ρm

1 = ρm
2 = ρm

3 << ρm
4, ρm

5.

Setting the tolerance value ε properly is of great

importance since determining the occurred cases depends on
it directly. Generally, the smaller is the ε, the more precise
would be the robot’s motions. This means that the robot’s
path matches with the actual Medial Axis more precisely, but
at the cost of more computations due to smaller step size and
thus a slower motion (Fig. 7(a)). Contrarily, a large ε would
result in generation of a ‘thicker’ and roughly-approximated
medial axis; that is, a large set of points would be falsely
considered as Medial Axis points although the computation
cost is lower (Fig. 7(b)).

(a)

(b)

Fig. 7. Moving in a passageway with (a) small tolerance value ε, and (b)
large tolerance value ε. Note the loss of precision and noncompliance of
the robot’s motion to the real Medial Axis in (b), which theoretically lies
exactly in the middle of the channel.

2.2. Departure Component

This component is activated when after performing a
visibility check, the robot finds out that the Goal point lies
inside its visibility envelope. In that case, the robot’s
current position is connected to the Goal point via a straight
line, as in Fig. 8. New trajectory points are then created by
an interpolation of the connecting line using a step size of
λ. The component’s name, i.e. departure is adopted from
the fact that the robot generally departs from the Medial
Axis to reach the Goal.

2.3. Projection Component

The projection component is the propelling element of
the motion planning algorithm. Each time activated, this
routine expands the robot’s trajectory by a small step. The
size and direction of this step is governed by a vector
projected from the current point.

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

7

Fig. 8. Once the goal is visible to the robot, the Departure component is
activated and the robot’s position is connected to the goal point via a
straight line. The circles show the Maximal Inscribed Discs centered at
points on the Medial Axis.

This component is activated when it is verified that the

robot is placed on the Medial Axis. Depending on that the
robot is on a MA edge or vertex, two methods are utilized:

(i) If the robot is located on a Medial Axis edge (e.g. on
the point x in Fig. 9), it has exactly two obstacles
nearest to it.
 Recalling the mathematical notation presented
earlier in this section, suppose that the rays
corresponding to the shortest distances from different
obstacles are {ρm

1, ρm
2} which intersect with the

obstacle borders in points j1 and j2. Then the minimum
vectors {ρ̃m1, ρ̃m2} are vectors having their start point on
x ∈ MA and endpoints {j1, j2} on obstacle borders,
respectively (Fig. 9).

 We define two projection vectors as follows:

1 2 1 2
1 2

1 2

, (),m m m mρ ρ ρ ρ

λ

= + = − +

= =

v v

v v

% % % %% %

% %

in which λ is a scalar indicating the magnitude of the
vectors. The size of λ must be selected in a way that it
neither decelerates the robot’s navigation improperly
nor causes missing a meet point.

These two projection vectors point to opposite
directions. However, the more promising direction is of
course the one which will make a forward move, rather
than a backward one. The robot then takes a step along
the promising direction, with a size of λ.

(ii) If the robot is located on a Medial Axis vertex (e.g. on
point x in Fig. 10), then it has more than two obstacles
nearest to it. By using the notation of the previous case,
we define the projection vectors as follows:

1 2 2 3 3 1

1 2 3

1 2 3

, , ,

 = .
m m m m m mρ ρ ρ ρ ρ ρ

λ

= + = + = +

= =

v v v

v v v

% % % % % %% % %

% % %

Fig. 9. The projection component provides the robot’s movements by
computing the most promising vector. Here the robot is on the edge of the
Medial Axis.

This concept can straightforwardly be generalized to

vertices conjoining more than three edges. Among these
projection vectors, a vector which does not produce a
backward movement, is along a previously unexplored
edge, and has an endpoint nearer to the Goal point is
considered as ‘more promising’. If the location of the Goal
is unknown, the vector is selected randomly from among
unexplored, non-backward vectors. The robot then moves
in the direction of the selected vector with a step size of λ.

The step taken by the robot in the projection component
may lead the robot away from the Medial Axis. For
example, in Fig. 10, if the robot decides to move along v3̃,
it will be off the roadmap. The online motion planner
responds to this situation by employing the Correction
Component.

Figures 11(a) and 11(b) show the Projection Step during
some simulations.

Fig. 10. The projection vectors are the sums of minimum vectors. Here
the robot is on the vertex of the Medial Axis, and the most promising
vector is the nearest to the goal.

3v%
3
mρ%

1
mρ%

1v%

2
mρ%

x

j2

j1

j3

2v%

1
mρ%

2v%
1v%

2
mρ%

x

j1

j2

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

8

(a)

(b)

Fig. 11. Simulations of the projection step: (a) the robot is on the edge of
the Medial Axis, and (b) the robot is on the vertex of the Medial Axis.

2.4. Correction Component

This component guarantees that the robot remains on the
Medial Axis roadmap as long as it has not reached the Goal.
As mentioned earlier, the projection component may produce
steps which despite having been taken along promising
directions lead the robot off the main roadmap. This
component may also be activated at the very beginning if the
robot is not located on the Medial Axis initially.

The mechanism of the correction step is again based on
vectors. Suppose that the robot has taken a step in Fig. 12,
calculated in the projection component. After performing a
distance checking, the robot realizes that it is off-the-
roadmap (i.e. Case 1). The correction component is then
invoked to correct this situation and transfer the robot to a
more stable status (i.e. either Case 2 or Case 3).

Fig. 12. The Correction step (downward arrow) adjusts the robot’s off-the-
roadmap status and relocates it on the Medial Axis.

The correction step is taken along a vector with the
direction of −ρm̃

1. In order to calculate the vector’s size,
suppose that the robot is located on a point near an obstacle
border as x in Fig. 13. The required step size λc for situating
the robot on the Medial Axis is computed as follows:

2 1 2 1
2

2 2
m m m m

c m

ρ ρ ρ ρ
λ ρ

+ −
= − =

% % % %
% .

Fig. 13. The size of the correction step λc is calculated such that the robot’s
position will transferred to lie on the Medial Axis roadmap.

For general cases, where the obstacle walls are not
parallel, this step size also provides a good approximation
for the deviation error. The correction vector is shown in
Fig. 12 as a downward arrow. Another instance of the
Correction step in a simulation is illustrated in Fig. 14.

If after this correction the robot still does not lie on the
roadmap, the Case 1 is not resolved yet. Consequently,
correction must be repeated until the situation is transferred
to Case 2 or 3.

cλ
14243

1
mρ%2

mρ% x

2
mρ%

j2

j1
1
mρ%

Moving direction

Projection step
M

oving direction

Projection step

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

9

Fig. 14. A correction step activated during a simulation.

2.5. Backtracking Component

This component is triggered when the robot reaches an
obstacle boundary or a dead-end area. In order to prevent the
robot from colliding with obstacles, we define the safety
radius rs as the least permissible distance to obstacles
boundaries. If during edge exploration, the condition ρm

1 ≤ rs
is satisfied, the robot collides with an obstacle. As a result,
the Backtracking component is activated to trace back the
non-promising edge by selecting a new edge emanated from
the last visited vertex, and extending that edge. A sample
demonstration of the process is depicted in Fig. 15.

The Backtracking step does not apply projection-
correction steps for excluding ‘wrong’ points of trajectory;
rather, it simply removes those points from the existing
trajectory points list. A simulation of the Backtracking
movement is illustrated in Fig. 16.

2.6. Loop Handling Component

Although the projection vectors introduced in Section
2.3 stipulate that the robot must avoid traveling along
already explored edges, it is possible that during the course
of navigation the robot encounters a previously-visited
vertex of the roadmap. The robot becomes aware of such an
event by means of integrating its prior information on that
point with the Odometry information and the elements of
the shortest rays’ matrix, PM(x), through sensor readings.
Accordingly, the robot can infer that a loop exists in its
trajectory.

(a)

(b)

(c)

(d)

Fig. 15. The Backtracking component traces back the collision-leading
edges of the traversed trajectory. (a) The point c leads to a dead-end area,
so the robot traces back the edge cb until it reaches the vertex b. (b)
Another edge originated from vertex b is explored until point d, which is
near to the obstacle boundary. (c) The edge db is backtracked, and since
all edges of the vertex b are explored, the robot moves back to the last
vertex reached before b (i.e. vertex a) by removing the edge ba. (d) A new
edge ae is extended from the vertex a.

Recall that the robot employs a depth-first search
method to explore the Medial Axis roadmap. The
backtracking component also traces back the trajectory in a
reverse depth-first manner. Therefore, in order to make the
robot to investigate ‘unexplored’ areas of the workspace, as
well as to resolve the generated loop, it is rational to adopt
a breadth-first strategy upon reaching a previously-visited
vertex.

a

e

a
b

a
b

d

a
b

c

Correction

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

10

(a)

(b)

Fig. 16. Simulation of the Backtracking behavior. (a) The robot moves to
the left from its start position. (b) After encountering a dead-end,
backtracking to the right helps the robot to exit from the corridor.

To apply the breadth-first search approach, the robot

tries to move along an unexplored edge of the revisited
vertex. This action guides the robot towards previously
unexplored areas of the environment. If the current vertex
does not have such edges, the robot will move towards the
neighboring vertex it visited last time after the current
vertex (i.e. according to its last itinerary). This operation is
repeated for the new vertex (or vertices) until the robot
moves along an edge outside the loop.

The reason for naming this procedure as ‘breadth-first
search’ is that the robot tries to expand all potential edges
emanated from a revisited vertex (node) but not to probe
deeply into successors of the node.

As soon as a breadth-first movement is completed, the
search strategy shifts to the depth-first approach, mainly to
maintain the algorithm’s convergence toward the Goal
point. Fig. 17 illustrates a simulation of this component.

The Loop handling component guarantees a thorough
coverage of the Medial Axis roadmap and prevents the
robot from rambling along endless loops.

(a)

(b)

(c)

Fig. 17. Simulation of the Loop Handling behavior: (a) The robot has just
passed a meet point and turns to the right. (b) After realizing that the right
corridor is dead-end, the robot backtracks and after passing the meet point,
selects the leftward edge to traverse. (c) The left corridor also proved to be
dead-end, and so the robot backtracks toward the first meet point it
encountered (at the bottom) and continues with an untraversed edge. The
robot’s movement is similar to a reverse depth-first search.

3. Algorithm Steps

The main steps of the online motion planning algorithm
are now presented based on the notation introduced earlier:

STEP 1. Locate the robot on the Start point, s. Initialize
the trajectory points set as:

Traj ← {s}.
Also set T = ∅, TV = ∅, and DE = ∅. These sets are

updated later.

STEP 2. Perform the Distance Checking component
according to Section 2.1 to determine the sets P(x) and
PM(x) (x denotes the current location of the robot). If the

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

11

Goal point is visible (i.e. is in the robot’s line of sight),
then go to Step 8. Otherwise, continue with the next step.

STEP 3. Compare the values of the elements of
PM(x) = {ρm

1, ρm
2, …, ρm

s}:

3.1 If ρm
1 << ρm

2, …, ρm
s (i.e. Case 1 holds), the

robot is off the Medial Axis roadmap. This situation
must be corrected by taking Step 7.

3.2 If ρm
1 = ρm

2 << ρm
3, …, ρm

s (i.e. Case 2 holds),
the robot is located on the Medial Axis edge.

If ρm
1 ≤ rs (the safety radius), go to Step 4.

Unless, update the trajectory matrix by appending
the robot’s current position (x) by

Traj ← Traj ∪ {x}.

And continue the navigation along the roadmap
according to Step 6.

3.3 If ρm
1 = ρm

2 = ρm
3 << ρm

4, …, ρm
s (i.e. Case 3

holds), the robot is located on a Medial Axis vertex
(meet point).

If the current meet point is recorded in the matrix
T as a previously visited point, a loop has been
detected in the course of navigation. So go to step 5.

If not, append the robot’s current position (x) to
the set of trajectory points already traversed by the
robot, Traj:

Traj ← Traj ∪ {x}.

And update the following matrices:

T ← T ∪ {(x , |J(x)|)}, J(x) = {MID(x) ∩ OB}.

J(x) is the set of points on Obstacle Boundary
(OB) which are also located on the Maximal
Inscribed Disc centered on x. In other words, J(x)
is the set of endpoints of the rays ρm

1, ρm
2, …, ρm

s
(See Figures 9 and 10). T is the set of ordered pairs
of meet points and the number of elements in their
respective J(x). The symbol | • | shows the
cardinality of the set. For instance, T = {(x1, 3),
(x2, 3), (x3, 4)}. The next point to move towards is
determined in Step 6.

STEP 4. Backtracking step: This step removes the
trajectory points extended toward a dead-end or
obstacle boundary (e.g. a corner). It is performed also
when there are no extendable edges from a vertex. From
the last point of the matrix Traj eliminate all points
preceding it until the last visited vertex is reached. Add
all the eliminated points to the Dead Ends matrix, DE.
In fact, New(Traj) = Old(Traj) \ DE. Mark the removed
edge so that it will not be explored again. Then go to
Step 3.3.

STEP 5. Loop Handling step: This step imposes a change
in search strategy from depth-first to breadth-first
search. Append the revisited meet point to the matrix of

revisited meet points, TV, and try to explore new edges
emanated from it. If it is not possible, move to the very
vertex you visited last time after the current meet point,
and select a new edge to explore. Go to Step 6 for
extending this new edge.

STEP 6. Projection step: Select a vector and take a step in
its direction with considering the forbidden directions
determined by the facts that the robot’s next move:

 - should not be backward (except in the
Backtracking step),

 - should not be along an already explored edge
(except in the Loop Handling step), and

 - should be in the most promising direction.
 If the robot is placed on a Medial Axis edge, follow

the procedure in Section 2.2(i). But, if it is on a vertex,
perform the instructions in Section 2.2(ii), and then go
to the next step.

STEP 7. Correction step: This step is taken when it is
identified that the robot does not lie on the roadmap.
Perform the correction according to Section 2.4, and then
update the matrix T ← T ∪ {(y, |J(y)|)}. Go to Step 2.

STEP 8. Departure step: This step connects the current
point to the visible Goal point. Through a linear
interpolation, decompose the connecting straight line
into several intervals (by interpolation) and append the
endpoints of those pieces to the Trajectory. Upon
reaching the Goal, report the Traj as the solution path,
and terminate the algorithm.
Fig. 18 shows the flowchart of the online motion

planner.

4. Experimentation and Discussion

Fig. 19 illustrates some simulations of the developed
online motion planner. Fig. 19(a) clearly indicates the
algorithm’s completeness, and shows that it explores every
corridor of the workspace. Fig. 19(b) shows the
effectiveness of the loop handling component as it helps the
robot to move out of the circular corridor, and Fig. 19(c)
depicts the process of finding a start-to-goal path in 24.3
seconds. All simulations were programmed and run in
Matlab software.

Below, some discussions on the algorithm’s properties
including its completeness and complexity are provided.

4.1. Completeness

An interesting property of our online planning method is
its completeness, that is, it has the ability to find the path to
goal if it is reachable, or report that no such a path exists.

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

12

Fig. 18. Flowchart of the online motion planner

Since the method utilizes a retraction roadmap of the

environment (Medial Axis) which is connected (as proved in
(Rao et al. [24]), any path that contains the MA roadmap and
links to start and goal points is also connected. Therefore, the
robot will reach the goal if it lies in Cfree. This guarantees that
the algorithm is exact (Goldberg, [13]).

In order to provide the condition for completeness, the
following question is to be answered: “will the algorithm
show that a path to the goal does not exist if it is the case?”
To answer, recall the Step 5 of the algorithm in Section 3
where a matrix TV keeps the record of revisited meet points.
If this matrix includes all meet points before the goal is
reached, the robot can infer that there is no valid path

toward the goal since no unexplored meet point remains
and the workspace is searched completely. If this happens,
the algorithm will terminate and report that there is no path
from start to goal.

4.2. Localization

The robot’s localization is done by a combination of infor-
mation of odometry (wheel accelerometers, etc.) and sensor
readings information about the Maximal Inscribed Discs.
Since all the visited meet points and the number of unexplored
edges emanating from them are stored in the matrix T, the
meet point locations are constantly being compared and
matched with previous data. Therefore, the localization errors
are dynamically corrected and do not accumulate.

4.3. Extension to Higher Dimensions

The online planner can be generalized to higher spaces
by taking advantage of the properties of GVG roadmap in
higher dimensional spaces, and extending the MID to
higher spaces which turn into Maximal Inscribed Balls
(MIBs).

4.4. Time Complexity

The time complexity of the planner is directly related to
the number of edges it should traverse and is equal to O(n),
n being the number of obstacle vertices (Aurenhammer and
Klein [1]). The time required to navigate an edge is
proportional to the length of the edge and is independent of
the number of vertices. Considering that the algorithm is
complete and in the worst case would traverse all the
Voronoi graph’s edges twice (one for traversing a new edge
and one for backtracking it), the planner’s overall time
complexity is in O(n).

The space required to store control matrices (e.g. T) is
related to the number of vertices which is in O(n).

4.5. A Potential Fields Variation

When knowledge of the location of Goal point is
available at the outset, the proposed motion planner can be
made more efficient by integrating the Potential Fields
approach into it.

Yes

Yes

START

Distance
Check
Step

Is Goal
visible?

Departure
Step

STOP

Case 1 Case 2 or 3

Correction
Step

Update
Traj, T, DE

Projection
Step ρm

1 ≤ rs

Backtracking
Step

No

No

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

13

Fig. 19. Some simulations of the new motion planner.

(a) (b)

(c)

Archive of SID

www.SID.ir

Elips Masehian et al. / Mobile Robot Online Motion Planning Using Generalised Voronoi Graphs

14

The Potential Fields concept was first introduced by
Oussama Khatib [16], and has shown a good performance
especially for higher dimensions. A robot in the Potential
Fields method is represented in the configuration space as a
particle q (with a positive charge) under the influence of an
artificial potential field U whose local variations reflect the
‘structure’ of the free space. The total potential function
(Fig. 20(c)) can be defined over the free space as the sum
of an attractive (negative) potential (as in equation (1) and
Fig. 20(a)) which pulls the robot toward the goal
configuration, and repulsive (positive) potentials (as in
equation (2) and Fig. 20(b)) which push the robot away
from the obstacles.

The attractive potential applied to the goal point is
generally in the form of a paraboloid (as in (1)) and
facilitates the departure phase.

21
2() ()att goalU q qξ ρ= (1)

2

0

0

0

1 1 1
if () ,

() 2 ()

0 if ()

rep

q
U q q

q

η ρ ρ
ρ ρ

ρ ρ

− ≤
=

>

⎧ ⎛ ⎞
⎪ ⎜ ⎟⎨ ⎝ ⎠
⎪
⎩

 (2)

() () ()att repU q U q U q= + (3)

(a) (b)

(c)

Fig. 20. Potential Fields. (a) The goal potential has a unique minimum at
the goal point. (b) The obstacle potential has a high value inside obstacles.
(c) A path to the goal can be found from the start point by moving in the
direction of the negative gradient of the combined total potential field.

The proposed new algorithm can be integrated with the
potential Fields concept readily, that is, the principal steps
for this variation remain similar to the one described in
Section 3 except for the following modifications:

In the Projection component, among the alternative
vectors, the one with the least potential is selected as the
next and promising edge to be explored. When a new
vertex is reached, its potential value is compared with the

potential value of its preceding vertex. If a higher (worse)
potential is recorded, instead of further exploration of the
new vertex (i.e. a depth-first approach), the robot
backtracks the last traversed edge and investigates a new
edge associated with the preceding low-potential vertex
(i.e. a breadth-first approach).

This variation has the advantage that the repulsive
potential of obstacles discourages the robot to move
towards the vicinity of their boundary, and in turn leads it
toward the goal point.

5. Conclusions

In this paper, a new online robot motion planner for sys-
tematically exploring unknown environments in real-time
applications based on the Generalized Voronoi Graph (or
Medial Axis) of the environment is proposed. The
algorithm takes advantage of sensory data to find an
obstacle-free start-to-goal path. It does so by utilizing a
combination of depth-first and breadth-first searches.

The planner is equipped with several components such
as step generation and correction, backtracking, and loop
handling. It is fast, simple, complete, and extendable to
higher spaces. Besides, a variation to the online planner
which incorporates the Potential Fields approach in the
principal algorithm is discussed. This method has some
advantages when the Goal position is known beforehand.

Acknowledgements

The authors wish to thank Mr. Behrooz Bakhtiari for his
efforts to program the method in Matlab software.

References

[1] F. Aurenhammer, R. Klein, Voronoi diagrams, in Handbook of
Computational Geometry, J. Sack, & G. Urrutia, (Eds.), Elsevier,
pp. 201-290, 2000.

[2] H. Blum, A Transformation for Extracting New Descriptors of
Shape, In W. Waltendunn, (Eds.), Models for the Perception of
Speech and Visual Form, MIT Press, 1967.

[3] J. Borenstein, H. R. Everett, and L. Feng, Where am I? Sensors and
Methods for Mobile Robot Positioning, University of Michigan,
1996.

[4] A. Brooks, T. Kaupp, and A. Makarenko, Randomised MPC-based
motion-planning for mobile robot obstacle avoidance Source.
Proceedings of the 2009 IEEE International Conference on
Robotics and Automation, Kobe, Japan, 397-402, 2009.

[5] F. Chin, J. Snoeyink, and C. Wang, Finding the Medial Axis of a
Simple Polygon in Linear Time. Proceedings of the 6th Annual
International Symposium on Algorithms and Computation (ISAAC
‘95), Lecture Notes in Computer Science 1004, 382-391, 1995.

Archive of SID

www.SID.ir

Journal of Industrial Engineering 5 (2010) 1-15

15

[6] H. Choi, S. Choi, and H. Moon, Mathematical Theory of Medial
Axis Transform. Pacific Journal of Mathematics, 181(1), 57-88,
1997.

[7] H. Choset, J. Burdick, Sensor-Based Exploration: The Hierarchical
Generalized Voronoi Graph. International Journal of Robotics
Research, 19(2), 96-125, 2000.

[8] H. Choset, I. Konukseven, and A. Rizzi, Sensor Based Planning: A
Control Law for Generating the Generalized Voronoi Graph.
Proceedings of the 8th International Conference on Advanced
Robotics (ICAR), 333-338, 1997.

[9] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, Sensor-
Based Exploration: Incremental Construction of the Hierarchical
Generalized Voronoi Graph. International Journal of Robotics
Research, 19(2), 126-148, 2000.

[10] J. Cox, C. K. Yap, On-line motion planning: Moving a planar arm
by probing an unknown environment. Technical report, Courant
Institute of Mathematical Sciences, New York University, New
York, July 1988.

[11] J. Dardenne, S. Valette, N. Siauve, and R. Prost, Medial Axis
Approximation with Constrained Centroidal Voronoi Diagrams On
Discrete Data. Proceedings of the 26th Computer Graphics
International Conference (CGI 2008), Istanbul, Turkey, June 2008.

[12] A. Datta, Constant-Time Algorithm for Medial Axis Transform on
the Reconfigurable Mesh. Proceedings of the 13th International.
Parallel Processing Symposium and the 10th Symposium on Parallel
and Distributed Processing, Puerto Rico, IEEE Computer Society,
431-435, 1999.

[13] K. Goldberg, Completeness in Robot Motion Planning”, in
Algorithmic Foundations of Robotics, K. Goldberg, D. Halperin, J-
C. Latombe, and R. Willson (Eds.), A. K. Peters Pub., pp. 419-429,
1995.

[14] R. Johansson, Intelligent Motion Planning for a Multi-Robot
System. MS Thesis, School of Computer Science and Engineering,
Royal Institute of Technology, Stockholm, Sweden, 2000.

[15] L. E. Kavraki, J-C. Latombe, “Probabilistic Roadmaps for Robot
Path Planning”, in Practical Motion Planning in Robotics: Current
Approaches and Future Challenges, K. Gupta and A.P. del Pobil,
(Eds.), John Wiley, West Sussex, England, pp. 33-53, 1998.

[16] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots. International Journal of Robotics Research, 5(1),
90-98, 1986.

[17] J. Leonard, H. F. Durrant-Whyte, Application of Multi-Target
Tracking to Sonar-Based Mobile Robot Navigation. Proceedings of
the IEEE 29th International Conference on Decision and Control,
Hawaii, USA, 3118-3123, 1990.

[18] V. J. Lumelsky, A. A. Stepanov, Dynamic path planning for a
mobile automaton with limited information on the environment.
IEEE Transactions on Automatic Control, 31(11), 1058-1063, 1986.

[19] E. Masehian, M. R. Amin-Naseri, and S. Esmaeilzadeh Khadem,
Online Motion Planning Using Incremental Construction of Medial
Axis. Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Taiwan, 2928-2933, 2003.

[20] M. Petřek1, P. Košinová, J. Koča1, and M. Otyepka, MOLE: A
Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and
Tunnels. Structure, 15(11), 1357-1363, 2007.

[21] J. H. Pujar, P. S. Gurjal, Binary Data Compression Using Medial
Axis Transform Algorithm. Proceedings of International Conference

on Recent Trends in Business Administration and Information
Processing, Kerala, India, March 2010.

[22] N. S. V. Rao, Robot navigation in unknown generalized polygonal
terrains using vision sensors. IEEE Transactions on Systems, Man
and Cybernetics, 25(6), 947-962, 1995.

[23] N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyenagar, Robot
Navigation in Unknown Terrains: Introductory Survey of Non-
Heuristic Algorithms. Oak Ridge National Laboratory Technical
Report, ORNL/TM-12410, July 1993.

[24] N. S. V. Rao, N. Stolzfus, and S. S. Iyengar, A ‘Retraction’ method
for Learned Navigation in Unknown Terrains for a Circular Robot.
IEEE Transaction on Robotics and Automation, 7(5), 699-707,
1991.

[25] S. Sam Ge, X. C. Laia, and A. Al Mamuna, Sensor-based path
planning for nonholonomic mobile robots subject to dynamic
constraints. Robotics and Autonomous Systems, 55(7), 513-526,
2007.

[26] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, MAPRM: A
Probabilistic Roadmap Planner with Sampling on the Medial Axis of
the Free Space. Proceedings of the IEEE International Conference on
Robotics and Automation, 2, 1024-1031, 1999.

Archive of SID

www.SID.ir

