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Abstract 

 Some servers are to be located at nodes of a network. Demand for services of these servers is located at each node and a subset of  the 
nodes is to be chosen to locate one server in each. Each customer selects a server with a probability dependent on distance and a 
certain amount of benefit is achieved after giving service to the customer. Customers may waive receiving service with a known 
probability. The objective is to maximize the total benefit. In this paper, the problem is formulated, three solution algorithms are 
developed and applied to some numerical examples to analyze the results. 
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1. Introduction 

Much research has been carried out on location 
problems of minimizing total travel time, physical 
distance or some other travel related ‘costs’. A common 
assumption in the addressed problems is that facilities are 
sufficiently large to meet any demand likely to be 
encountered. Optimization models for location with 
(nearly) constant demand are derived from the Location 
Set Covering Problem (Toregas et al. [26]), the p - 
median (Hakimi [15]; ReVelle and Swain [25]), and the 
Maximal Covering Location Problem (MCLP) (Church 
and ReVelle [11]). 

Real world situations very often have variable and 
random demands for their services. Although the facility 
may be able to cope with average demands, there are 
times of heavy demands when it does not cope; such a 
facility is called congested (Boffey et al. [9]). 

In congested systems, a facility will not be able to 
cope at times of very heavy demand. When this is the 
case, it may be possible for users to wait until the facility 
is free to serve them whereas in some other cases such as, 
for example maternity homes, it is not possible to wait. 
When waiting is not permitted or only limited waiting is 
allowed, then a user is lost to the fully occupied facility 
and their demand is either satisfied elsewhere or not at 
all. An obvious objective to minimize in such situations 
will thus be the total amount of demand lost (Boffey et al. 
[9]). 

 
 

 
Location of congested systems is studied with regard to 
both mobile servers and immobile servers (fixed serves).  
In the case of immobile servers, users travel to facilities 
for service but in the case of mobile servers, the servers 
travel from facilities to the users. Facilities are often 
identical; otherwise, they differ regarding the number of 
servers. The studied model in this paper is mainly 
concerned with immobile servers. (For an excellent 
account of the location problems of mobile servers, see 
Berman and Krass [4]). 

As regards immobile servers that are subject to 
congestion, it is reasonable to assume that each user's 
demand follows a time homogeneous Poisson process. 
Users' Prolonged waiting at the sites of facilities is 
undesirable and in some situations (e.g. emergency 
services) may be unacceptable. When queuing, though 
highly undesirable, is permitted, a (b,α ) service level 
constraint may be introduced (Boffey et al. [9]). 
 This takes the form 

( ) α≥≤ queueinusersbhasjfacilityP ,         (1) 

Where 0 <α < 1. If this constraint is satisfied for all 
facilities, the solution is said to be (b,α ) reliable. An 
alternative service level constraint (Marianov and Serra 
[18]) is 

( ) α≥≤ tjfacilityattimewaitingP .             (2) 

Several studies have been done on queuing systems in 
facilities. Grass and Harris [14] studied a location model *Corresponding Author E-mail: m.seifbarghy@qiau.ac.ir 
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which included the given constraint in (1) in the case of 
M/M/1 queuing system in which arrival and service 
follow time homogeneous Poisson distribution and there 
is only a single server in each facility . In another study, 
the M/M/m queuing system in which m is the number of 
servers in each facility was formulated by Marianov and 
Serra [18]. Boffey et al. [9] focused on the corresponding 
models with single- and multi-server facilities using 
M/Er/m/N queuing systems with queues limited to no 
more than N but with the objective being the total 
number of users lost to the system per unit time. Here Er 
denotes the order r Erlang distribution which specializes 
to an exponential distribution when r = 1. The M/G/1 
queuing system has also been studied by Rajagopalan and 
Yu [21]. 

All these studies ensured a desired service quality by 
including a suitable constraint in the formulation. An 
alternative way effectively achieves the same goal by 
incorporating an appropriate term in the objective. It, 
however, leads to a nonlinear mathematical program with 
integer constraints. Desrochers et al. [13] studied such a 
model in which the congestion effects are expressed in 
the objective in this way, but within an SLP-like setting 
rather than a pMP-like one. Assuming M/M/1 queuing 
systems for the servers at the facilities, the objective is to 
minimize the total weighted sum of the travel time of the 
users and queuing time. The corresponding M/M/m 
queue problem has been extended (Marianov [16]; 
Marianov et al. [17]). 

Supposing a limit of b individual users queuing in 
line, each facility acts as an M/G/1/(b +1) queue. In the 
special case that service at a facility follows a time 
homogeneous Poisson distribution then we have an 
M/M/1/ (b + 1) queue. A reasonable objective to 
minimize is the total demand that is lost through queues 
being ‘full’. This can be generalized to the case of m 
server facilities. In this regard, the case of the location of 
airline hubs modeled as M/D/m queues was studied by 
Marianov and Serra [19]. The cost of facility set up is 
taken into account  as in SLP and the service level 
constraint is of the form of (1). 
In many situations (e.g. bank branches, ATMs, 
preventative health care), quality of service, the travel 
time, and time waiting at a facility before receiving 
service would also be of importance for individual users.  
Usually the current state of the queuing system of a 
facility is unknown to the user before traveling to it and 
just some knowledge of the general condition may be 
available. Some conditions in which the congested 
location problem is formulated when there is a type of 
knowledge for the user are as follows: 

(a) When users have very little knowledge of queue 
characteristics, (b) when users have estimates of mean 
queue length for all facilities and (c) when users have 
knowledge of the current state of relevant queues.  

Moving forward from the above explanations on 
congested systems, now a more relevant and specific 
literature for the research in this paper is reviewed. 
Daskin [12] states that the Maximum Expected Covering 
Location Problem (MEXCLP) maximizes the expected 
coverage by a free server. Berman et al. [7] developed a 
heuristic algorithm to locate optimally one server on a 
congested network. Based on the one-server location 
algorithm of Berman, two heuristics for locating p 
servers on a congested network were developed (Berman 
et al. [7]; Berman et al. [8]). According to ReVelle and 
Hogan [22], the Probabilistic Location Set Covering 
Problem forces all demands to be covered with a pre-
specified reliability. Besides, the model maximizes the 
population covered with a pre-specified reliability 
(ReVelle and Hogan [24]). Batta [2] studied a model to 
investigate the effect of using expected service time 
dependent queuing disciplines on optimal location of a 
single server.    

It should be noted that server independence and 
system-wide server busy probability is a common 
assumption used in many studies such as Daskin’s [12] 
maximum expected coverage location problem 
(MEXCLP) and ReVelle and Hogan’s [23] maximum 
availability location problem (MALP). 

When dealing with the design of service networks 
such as health and EMS services, banking or distributed 
ticket selling services, the location of service centers has 
a strong influence on the congestion, and consequently 
on the quality of service. The Queuing Maximal 
Covering Location-Allocation Model with co-location of 
m servers per center can be stated as: "Locate p service 
centers, each with m servers and allocate users to them so 
to maximize covered population usually subject to a 
service quality." Marianov and Serra [18] formulated 
several maximal coverage models with one or more 
servers per service center and developed heuristics to 
solve the models for a 30-nodes service network. The 
main constraint of the models is that nobody stands on 
line for a time longer than a given time limit. An 
extension of the previous research (Marianov and Serra 
[19]) sought to cover all population and included server 
allocation to the facilities. The model suggested is a Set 
Covering formulation, which locates the least number of 
facilities and allocates the minimum number of servers 
(clerks, tellers, machines) to them in order to minimize 
queuing effects. Based on the number of servers allocated 
to each facility being constant or variable, two different 
models are proposed and some heuristics with good 
performance on a 55-node service network are developed 
and tested.  

More recently, Berman and Drezner [3] introduced a 
multiple server location problem in a stochastic 
environment. Specifically, in their study, demand for 
service generated at nodes of the network was the 
random variable and the time to service calls was 
stochastic. Multiple servers were allowed to be located 
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on any potential location (assumed the set of nodes).The 
objective was to minimize the sum of travel time and 
average waiting time for all servers in this system.  
Berman and Drezner [3] is a generalization of two recent 
papers. In the studies by Wang et al. [27] and Berman 
and Krass [5], at most one server can be located at any 
potential location and thus the system is modeled as an 
M/M/1 queue rather then an M/M/k queue. A similar 
model with additional constraints on demand that is lost 
because of insufficient coverage or congestion was 
studied by Berman et al. [6]. Its objective function is to 
minimize the number of facilities. Besides, Aboolian et 
al. [1] introduced the multiple server center location 
problem. In the problem, p servers are to be located at 
nodes of a network. Demand for services of these servers 
is located at each node and a subset of nodes is to be 
chosen to locate one or more servers in each. Each 
customer selects the closest server. The objective is to 
minimize the maximum time spent by any customer, 
including travel time and waiting time at the server sites. 
In fact, in Aboolian 's study, the problem was formulated 
and a heuristic was developed to solve it. The studies by 
Aboolian et al. [1]  and Berman and Drezner [3] have 
some similarities. In both, the facilities are fixed, there 
are demands for service, service times are stochastic, and 
one or more servers is allowed to be located at any 
potential location. However, in Aboolian's study, the 
objective is to minimize the maximum travel time plus 
the average waiting time spent at the service facility for 
all customers. Applications for such a model include the 
locations of post offices, banks’ branches, and medical 
facilities where the number of medical care personnel 
must be determined at each location (Aboolian et al. [1]).  
In this paper, a network of several nodes is considered. 
Each node which could be considered as a customer has a 
demand for service. The demand follows a time 
homogeneous Poisson process.  Some servers are to be 
located at the nodes of the network which means a subset 
of per node is to be chosen to locate one server in each. 
The service distribution is also Poisson and a maximum 
probability is considered for each server occupancy.  
Each customer selects the closest server and a certain 
amount of benefit is achieved after giving service to the 
customer. Customers may waive receiving service with a 
set probability. The objective is to maximize the total 
benefit.  

The rest of the paper is ogranizied in this way: 
notation and problem formulation is given in section 2, 
and in section 3, solution algorithms including genetic 
algorithm, simulated annealing and heuristic algorithm 
are presented. Section 4 includes the reults of solving 
some numerical problems based on the designed 
algorithms, and section 5 is on the results and further 
research. 

2. Notation and problem formulation 

The notation is as follows: 
n : Number of the  network nodes (customers) 
M : Number of service centers 

iϕ : Demand rate for ith node (i=1,2,3,…,n) 
μ : Service rate of the service centers 

ijd : Distance between nodes i and j 

ijp : The recourse probability of the ith node demand to 
service center at the node j  
α : Probability of joining the queue line when the 
service center is occupied 
β : Minimum probability of idleness at a service center 
in the long term 

jρ : The occupancy probability (occupancy coeficcient) 
of the service center at the jth node  

ijB : obtained benefit rate in service center at node j from 
recoursing demand at node i  

jy  is the model decision variable and is1 if a server is 
located at node j and is 0 otherwise. 
The system under study is a network where arcs are the 
possible paths between nodes and nodes are demand 
centers (or customers) which could also be candidate 
locations for locating servers. Most ‘‘central planning’’ 
location models assume that if there is a facility at a 
particular node, all demands originating at that node are 
served by the same facility(server). According to the logit 
function (McFadden [20]) and assuming that customers 
travel to each facility with a probability that depends on 
the distance between the customer and facility, ijp  is 
computed is  

1,2,...,nji,
ey

ey
p n

1j

d
j

d
j

ij
ij

ij

=∀=

∑
=

−

−

Pij is necessarily zero if there is no open facility at node j. 
Demand rate at the jth service center can be stated as (4) 
since it is the sum of all demand percentages of the nodes 
which recourse to service center at the node j.    

∑
=

=∀
n

1i
iij n1,2,3,...,j.p ϕ

 Since each service center acts as an M/M/1 queuing 

system and β is the minimum probability of idleness, 

constraint (5) ensures that the occupancy probability of 

each service center is not greater than 1-β. 
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Furthermore, refering to the definition of Bij,  the total 
benefit achieved at service centers would be equal to 

j
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j
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∑∑
= =

ϕ  if no demand is lost. There is a lost 

demand at server j with probability (1-α ) when the 
server is occupied (with probability jρ ). Based on this, 
the total benefit achieved at the server centers is as in 
Equation (6). 
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The optimization model to locate servers can be stated as 
follows: 
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3. Solution algorithms 

The set covering and maximal covering problems are 
known NP-hard combinatorial optimization problems. 
Here, the model can be reduced to maximal covering and 
therefore it is NP-hard. Three heuristic algorithms are 
developed to solve the problem. Two of them , i.e. 
GA(Genetic Algorithm) and SA(Simulated Annealing) 
are meta heuristic. 

3.1. Genetic Algorithm 

Genetic Algorithm (GA) is a class of evolutionary 
algorithms and is based on a population of solutions. GA 

is a generic optimization method which can be applied to 
any problem if the feasible solutions of  the problem can 
be represented as strings of binary or real numbers which 
are called chromosomes. Each chromosome has a fitness 
value that corresponds to the objective function value of 
the associated solution. Initially, there is a population of 
chromosomes that are randomly generated. Then, a 
number of chromosomes are selected as parents for 
mating in order to produce new chromosomes (solutions) 
that are called offsprings. The mating of parents is 
performed through applying the GA operators such as 
crossover and mutation. The selection of parents and 
producing offsprings are repeated until the stopping rule 
(for example, a certain number of iterations) is satisfied.  
Before giving a general outline of the proposed genetic 
algorithm, some additional notations are defined as 
follows: 
Population_size: Size of the population of solutions 
which is constant during the algorithm performance. 
Max_iteration: Number of generations which should be 
produced until the algorithm stops. 

cp : Crossover rate (which is the probability of selecting 
a chromosome in each generation for crossovering) 

mp : Mutation rate (which is the probability of selecting 
a gen or bit inside a chromosome for mutating) 
Fitness_function: Fitness value or the objective function 
value   
 
The general outline of the proposed GA is like this: 
Step 0: Initialize population_size, max_iteration, cp  and 

mp . 
Step 1: Randomly generate the initial population. 
Step 2: Repeat until the max_iteration is reached:  
   Step 2.1: Perform the reproduction operator according 
to the roulette wheel rule and make a newer population.     
   Step 2.2: Select the parent chromosomes from the 
population with probability cp .                      
   Step 2.3: cross over: 
          a. Determine the pairs of parents among the parent 
chromosomes. 
          b. Apply the crossover operator to produce two 
offsprings for each pair.  
          c. Replace the offsprings in the population instead 
of the parents.  
    Step 2.4: Apply the mutation operator on the 
population with probability mp . 
    Step 2.5: Save the best value in bv(best value). 
Step 3: Print the bv solution. 
In the proposed GA algorithm, each chromosome is 
represented by an n-dimensional vector like 

1 2[ , ,..., ]nA y y y=  whose j th entry stands for the j th 
node in the network. The value of the ith entry is the 
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number of servers at node j. 1jy =  means that a server 

is located at node j and 0jy =  means that no server is 
located at node j. 
While randomly making the initial solutions 
(chromosomes) and also during the algorithm running, 
constraint (8) must be satisfied which means the number 
of servers at the nodes does not have to be greater than 
M.  
Two-point crossover operator, that is, generating two 
random numbers for each chromosome to split it into 
three parts and then combining the parts of two parent 
chromosomes together is used and simple mutation 
operator (replacing bit 0 with 1 and vice versa with the 
probability mp  for each gen) is applied. 

3.2. Simulated Annealing 

Simulated Annealing (SA) is a random-search technique 
which simulates the way in which a metal cools and 
freezes into a minimum energy crystalline structure (the 
annealing process) in optimizing combinatorial 
optimization problems. 
SA was first developed in 1983 to deal with highly 
nonlinear problems. SA approaches the global maximum 
like a bouncing ball which bounces over mountains from 
valley to valley. It begins at a high "temperature" which 
enables the ball to make very high bounces. As the 
temperature declines, the ball cannot bounce much high 
and settles to become trapped in relatively small ranges 
of valleys. A generating distribution generates possible 
valleys or states which are explored. An acceptance 
distribution is also defined which depends on the 
difference between the function value of the present 
generated valley to be explored and the last saved lowest 
valley. The acceptance distribution decides 
probabilistically whether to stay in a new lower valley or 
to bounce out of it. All the generating and acceptance 
distributions depend on the temperature .It has been 
proved that by carefully controlling the rate of cooling 
the temperature, SA can find the global optimum. 
However, this requires infinite time. Fast annealing and 
Very Fast Simulated Reannealing (VFSR) or Adaptive 
Simulated Annealing (ASA) are each in turn 
exponentially faster and overcome this problem. 
Before giving a general outline of the proposed SA, some 
additional notations are defined as follows: 
Max_iteration: Number of generations which should be 
produced until the algorithm is stoped. 
In_loop_iteration: Maximum number of  iterations at 
each temperature 
tα : Rate of cooling 

inT : Initial temperature 

fT : Final temperature 

Fitness_function: Fitness value or the objective function   
The general outline of the proposed SA is as follows: 
Step1: Randomly generate the initial population of an 
arbitrary size and calculate the best  fitness value 

0(( _ ) )fitness function ;Solution 

= 0(( _ ) )fitness function  
Step 2: Parameter initialization; 
Step2.1: Set the annealing parameters; initial temperature 

inT , final temperature fT , maximum number of 
iterations (Max_iteration), maximum number of 
iterations at each loop (In_loop_iteration) and rate of 
cooling tα  
Step2.2:  Initialize the iteration counter; iter=0; 
Step 3: Annealing Schedule; 
Step3.1:  Inner loop initialization; il=0; 
Step3.2: At every temperature achieve equilibrium. 
Execute inner loop until the condition in 3.2.5  is met; 
Step3.2.1: il=il+1; 
Step3.2.2: Generate a neighborhood solution (which 
satisfies the constraints). Calculate the fitness value 
( _ )ilfitness function  
         Step3.2.3:є 
= 1( _ ) ( _ )il ilfitness function fitness function −−   
         Step3.2.4: IF ( є ≥0) or ( Random(0,1) ≤e(-є/Tel) ) 
                         THEN accept the new solution, Solution 
= ( _ )ilfitness function  
                          ELSE reject the new solution; Solution 
= 1( _ )ilfitness function −  
           Step3.2.5: IF (il ≥ in_loop_iteration) 
                            THEN terminate inner loop and GOTO 
Step 3.3 
                            ELSE continue inner loop and GOTO 
Step 3.2 
Step3.3: iteriter TtT .1 α=+  

Step3.4: IF ( fiter TT ≤+1 ) 

                 THEN  1iterT + =max_iteration                                      
                 ELSE   iter = iter +1; 
 Step3.5: IF (iter ≥ max_iteration) 
                  THEN terminate inner loop and GOTO Step 4 
                  ELSE continue inner loop and GOTO Step 3.1 
Step4:Terminate the best solution, Solution and stop. 

3.3. Heuristic Algorithm 

This heuristic algorithm begins with an initial solution 
with n (Number of nodes) bits which M (number of 
servers to be located) of them are 1 and the rest are 0. 
The initial solution is designed so that the servers are 
located at the nodes with higher demands. This would lie 
the total covered demand and the corresponding total 
benefit (the objective function value) in a high position 
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and likely closer to optimum. Based on the initial 
solution, a set of M(n-M) more solutions is generated 
from relocating each server (shifting 1 values in the 
initial solution to the locations with zero values). Since 
the initial solution has M bits with 1 values and each of 
them could be shifted to (n-M) locations, M(n-M) 
possible solutions are developed. The objective function 
values for the solutions are computed and the maximum 
value is selected. If the maximum value is greater than or 
equal to the initial solution’s objective function value, the 
algorithm continues, otherwise stops.    

4. Numerical examples and the results 

Numerical examples are designed for the case of n =30 
and n =60 nodes. Bij 

is assumed to be 1 for each customer 
i at each node j, α  equals to0.7 or 0.9 and  β equals 
to0.05 or 0.15 and the values are constant for all the 
examples. 
For the case of  n =30, demand rates of the nodes ( iϕ ’s) 

and distances between the nodes ( ijd ’s) are randomly 
generated from [50, 100] and [2,10] respectively, service 
rate (μ ) is 400 or 500 and the  number of service centers 
(M) to be located is assumed to be 10 or 15. Randomly 
generated demand rates are 100, 56, 64, 87, 68, 97, 67, 
60, 98, 89, 78, 87, 69, 96,  72, 69, 50, 99, 98, 97, 85, 84, 
83, 82, 81, 71, 72, 73, 74, 75 respectively for the nodes. 

The GA parameters, Max_iteration, Population_size, cp  

and mp are assumed 1000, 60 or 80, 0.6 or 0.8 and 0.01 
or 0.001 respectively. 
The SA parameters including Max_iteration, 
In_loop_iteration, tα , inT and fT  are supposed to be 
4000, 40, 0.9 or 0.95,  0.0000001 and 80 or 100. 
Considering the GA parameters for the case of  n =30, 
there is seven parameters of α , β,μ , M, Population_size, 

cp  and mp with two-level values and accordingly it is 
possible to design 27 numerical problems. Tuning the GA 
parameters, the partial factorial designs with 2k-2 have 
been used. Each numerical problem is run three times, 
therefore 3×25=96 experiments are designed and run and 
the fitness functions are obtained. Regarding the fitness 
function as the response variable and the seven 
parameters as the independent variables and using 
Minitab 14 statistical package, the Regression equation is 
obtained and optimized for each numerical problem and 
also the optimized values of the GA parameters are 
obtained.     
The same method is used for tuning the parameters of the 
proposed SA algorithm.  
Table 1 gives the results of running the proposed genetic 
algorithm for three times with considering just four 
problems from the total of 32 problems.

Table 1  
results from three times running the proposed genetic algorithm considering 4 sample numerical  problems 

 
NO 

 
α  

 
Β 

 
μ  

 
M 

 
Population_size 

 
Pc 

 
Pm 

GA 

Fitnessfunction 

Value 

 
1 

 
0.7 

 
0.15 

 
500 

 
15 

 
60 

 
0.8 

 
0.010 

1428.42 

1427.22 

1429.30 

 
2 

 
0.9 

 
0.15 

 
400 

 
15 

 
60 

 
0.8 

 
0.010 

1516.50 

1517.07 

1526.04 

 
3 

 
0.7 

 
0.05 

 
400 

 
15 

 
60 

 
0.6 

 
0.010 

1380.55 

1392.29 

1385.35 

 
4 

 
0.7 

 
0.05 

 
500 

 
10 

 
80 

 
0.8 

 
0.010 

1562.88 

1556.48 

1555.49 

 
Considering the parameters α, β, μ , M, Population_size, 

cp and mp  as the independent variables and replacing 

them with 7654321 ,,,,,, nnnnnnn  respectively, the 

fitness function value as a Regresion equation is as in 
(12). 
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(12)nn270.12nnn34.76nnn54.27n
nn7122.40nnn27566.80nnn213.516nn0.6nn1197.72nn43.36n

n188.24nn63303.30nnn27484.4000n161.2780nn0.0398nn21.7123n
n8.2242nn0.0020nn203.2720nn87.5031nn3875.6000nn4028.3600n

n0.1465nn0n112650.000n23.1700nn72504.00003775.2400n19.4181n
24.4552nn95380.5000n14750.600011248.3000)n,n,n,n,n,n,f(n

652763632

761621321457565

427262524373

635323417161

512131765

3217654321

−++
++++−+

−+−+−−
−−−−−−
−−−++−

+++−=

 

 
Table 2 presents the fitness function values for the 32 
numerical problems after determining the optimal values 
of the algorithm parameters. The algorithm is run by 
4000 iterations for each problem. Figures 1 and 2 
illustrate the increasing trends of the fitness function 
against the iteration for problems 14 and 28. The 
improvement percentage in average fitness function value 
is about 6.33 from the first generation to the last one. 
Table 3 shows the fitness function values for the 32 
numerical problems after determining the optimal values 
of the SA algorithm parameters. 

 
Fig. 1. Fitness function variations for problem 14 

 

Fig. 2. Fitness function variations for problem 28 
 

Table 4 gives the optimal values of the objective function 
obtained from running the 3 algorithms for 16 problems 
out of the 32 previous problems).    
For the case of  n =60, demand rates of the nodes ( iϕ ’s) 

and distances between the nodes ( ijd ’s) are randomly 
generated from [70, 100] and [1,25] respectively, service 
rate (μ ) is 900 or 1200 and the  number of service 
centers (M) to be located is assumed to be 30 or 40.  
The GA parameters, Max_iteration, Population_size, 

cp and mp  are assumed to be 4000, 80, 0.8 and 0.01 
respectively. 
The SA parameters including Max_iteration, 
In_loop_iteration, tα , inT and fT  are supposed to be 
4000, 40, 0.9 or 0.95,  0.0000001 and 80 or 100. 
Table 5 indicates the optimal values of the objective 
function obtained from running the 3 algorithms for 16 
problems.    
The softwares used in the study included MATLAB 
release 2008a  package for running the algorithms, 
Minitab 14 for designing the experiments and for 
regression analysis, and Lingo 8.0 for optimizing. A 
computer with 2.00 GHz CPU and 3.00 GB RAM  was 
used. 
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Table 2  
Fitness function values after tuning the GA parameters 

NO α  β  μ  M Population_size GA Fitness function Value 

1 0.7 0.15 500 15 60 0.8 0.01 1431.34 

2 0.9 0.15 400 15 60 0.8 0.01 1531.58 

3 0.7 0.05 400 15 80 0.8 0.001 1387.97 

4 0.7 0.05 500 10 80 0.8 0.001 1566.35 

5 0.9 0.15 500 15 60 0.8 0.01 1533.93 

6 0.7 0.05 500 15 80 0.8 0.001 1427.90 

7 0.7 0.15 400 15 80 0.6 0.001 1391.48 

8 0.9 0.15 500 15 60 0.8 0.01 1544.28 

9 0.9 08.15 400 15 60 0.8 0.01 1520.58 

10 0.9 0.05 500 10 80 0.6 0.001 1754.47 

11 0.9 0.05 500 15 80 0.6 0.001 1538.43 

12 0.7 0.05 500 10 80 0.8 0.001 1530.45 

13 0.9 0.05 400 15 80 0.8 0.001 1522.37 

14 0.9 0.05 500 15 80 0.6 0.001 1545.19 

15 0.7 0.15 400 15 80 0.6 0.001 1647.39 

16 0.9 0.15 500 10 60 0.8 0.01 1749.17 

17 0.9 0.05 400 15 80 0.8 0.001 1521.19 

18 0.7 0.05 400 10 80 0.8 0.001 1496.49 

19 0.7 0.15 500 15 60 0.8 0.01 1430.71 

20 0.7 0.05 400 10 80 0.8 0.001 1499.30 

21 0.9 0.15 400 10 60 0.8 0.01 1728.66 

22 0.7 0.05 400 10 80 0.8 0.001 1497.40 

23 0.7 0.05 400 15 80 0.8 0.001 1387.18 

24 0.9 0.05 500 10 80 0.6 0.001 1750.47 

25 0.9 0.15 400 10 60 0.8 0.01 1725.55 

26 0.9 0.15 400 10 60 0.8 0.01 1725.55 

27 0.9 0.15 500 10 60 0.8 0.01 1753.91 

28 0.9 0.15 500 10 60 0.8 0.01 1745.20 

29 0.7 0.15 500 10 60 0.8 0.01 1573.89 

30 0.7 0.05 400 15 80 0.8 0.001 1400.71 

31 0.9 0.05 500 10 80 0.6 0.001 1741.52 

32 0.7 0.15 500 10 60 0.8 0.01 1562.81 
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Table 3 
Fitness function values after tuning the SA parameters 

NO α  β  μ  M Population_size tα  SA Fitness function Value 

1 0.7 0.15 400 10 80 0.9 100 1358.66 

2 0.7 0.05 500 10 60 0.95 100 1505.26 

3 0.7 0.05 400 10 60 0.95 100 1379.06 

4 0.7 0.05 500 10 60 0.95 100 1412.33 

5 0.9 0.05 500 15 60 0.95 100 1413.21 

6 0.9 0.15 400 10 80 0.90 100 1543.55 

7 0.9 0.15 400 15 80 0.90 100 1364.50 

8 0.9 0.15 500 10 80 0.90 100 1634.36 

9 0.9 0.05 500 10 60 0.95 100 1680.24 

10 0.9 0.15 500 10 80 0.90 100 1573.72 

11 0.7 0.15 400 15 80 0.9 100 1268.44 

12 0.9 0.15 500 15 80 0.9 100 1410.11 

13 0.9 0.05 500 10 60 0.95 100 1619.67 

14 0.7 0.05 400 15 60 0.95 100 1275.97 

15 0.9 0.05 400 10 60 0.95 100 1606.56 

16 0.7 0.15 500 15 80 0.9 100 1301.45 

17 0.7 0.15 500 10 80 0.9 100 1485.28 

18 0.7 0.15 400 10 80 0.90 100 1406.27 

19 0.9 0.05 400 10 60 0.95 100 1644.78 

20 0.7 0.05 500 15 60 0.95 100 1281.73 

21 0.7 0.05 500 15 60 0.95 100 1299.81 

22 0.9 0.05 400 15 60 0.95 100 1436.54 

23 0.9 0.15 500 15 80 0.9 100 1455.39 

24 0.9 0.05 400 15 60 0.95 100 1445.85 

25 0.9 0.05 500 15 60 0.95 100 1445.24 

26 0.7 0.05 400 15 60 0.95 100 1220.13 

27 0.7 0.15 400 10 80 0.90 100 1432.20 

28 0.9 0.15 400 10 80 0.90 100 1607.94 

29 0.7 0.05 400 10 60 0.95 100 1407.69 

30 0.7 0.15 500 15 80 0.9 100 1327.78 

31 0.9 0.15 400 15 80 0.9 100 1426.90 
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32 0.7 0.15 400 15 80 0.9 100 1282.78 

 
Table 4  
optimal values of the objective function obtained from running the algorithms for the case of n=30 

NO α  β  μ  M GA fitness function SA fitness function Heuristic objective value 

1 0.7 0.15 500 15 1431.34 1327.78 1445.67 

2 0.9 0.15 400 15 1531.58 1327.78 1540.08 

3 0.7 0.05 400 15 1400.71 1275.97 1405.50 

4 0.7 0.05 500 10 1566.35 1505.26 1556.50 

5 0.9 0.15 500 15 1544.28 1455.39 1553.8٣ 

6 0.7 0.05 500 15 1427.90 1299.81 1445.67 

7 0.7 0.15 400 15 1391.48 1299.81 1405.50 

8 0.9 0.05 500 10 1754.47 1680.24 1763.48 

9 0.9 0.05 500 15 1545.19 1445.24 1553.83 

10 0.9 0.05 400 15 1522.37 1445.85 1540.08 

11 0.9 0.15 500 10 1753.91 1634.36 1763.48 

12 0.7 0.05 400 10 1499.30 1407.69 1489.47 

13 0.9 0.15 400 10 1728.66 1607.94 1739.26 

14 0.7 0.15 500 10 1573.89 1485.28 1556.50 

15 0.7 0.15 400 10 1494.87 1485.28 1489.47 

16 0.9 0.05 400 10 1730.75 1644.78 1739.26 
 
Table 5  
optimal values of the objective function obtained from running the algorithms for the case of n=60 

NO α  β  μ  M GA fitness function SA fitness function Heuristic objective value 

1 0.7 0.15 1200 40 3422.92 3032.54 3570.81 

2 0.9 0.15 900 40 3541.56 3206.93 3680.64 

3 0.7 0.05 900 40 3537.23 3014.53 3505.54 

4 0.7 0.05 1200 30 3738.76 3599.39 3893.41 

5 0.9 0.15 1200 40 3528.75 3200.42 3702.61 

6 0.7 0.05 1200 40 3445.88 3113.55 3570.81 

7 0.7 0.15 900 40 3371.97 3210.42 3505.54 

8 0.9 0.05 1200 30 3906.34 3588.49 4077.90 

9 0.9 0.05 1200 40 3529.15 3168.59 3702.61 

10 0.9 0.05 900 40 3545.18 3143.97 3680.64 

11 0.9 0.15 1200 30 3916.63 3662.15 4077.90 

12 0.7 0.05 900 30 3662.44 3189.05 3800.81 

13 0.9 0.15 900 30 3892.48 3358.82 4047.73 

14 0.7 0.15 1200 30 3751.61 3472.62 3893.41 

15 0.7 0.15 900 30 3618.94 3203.27 3800.81 

16 0.9 0.05 900 30 3891.89 3547.29 4047.73 
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5. Conclusions and further research 
 
In this research, a network of several nodes is considered. 
Each node could be considered as a customer with a 
certain demand rate. The demand follows a time 
homogeneous Poisson process.  Some servers are to be 
located at nodes of the network. The service distribution 
is also Poisson and a maximum probability is considered 
for each server occupancy.  Each customer selects the 
closest server and a certain amount of benefit is achieved 
after giving service to the customer. Customers may 
waive receiving service with a set probability. The 
objective is to maximize the total benefit. Three heuristic 
algorithms with two of them being meta heuristic are 
developed and applied on several numerical problems in 
the case of a network with 30 and 60 nodes . The results 
show that the heuristic algorithm gives closer to optimum 
solutions rather than the two meta heuristic algorithms. In 
the case of n=30 nodes and considering the results of 
Table 4, the heuristic algorithm is   0.4 %  and 7 % 
stronger than GA and SA respectively while in the case 
of n=60 nodes and considering the results of Table 5 , the 
heuristic algorithm is 11 % and 43 % stronger than GA 
and SA respectively. These findings indicate that the 
heuristic algorithm becomes stronger as the number of 
network nodes increases. 
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