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ABSTRACT 

According to the Bronsted definition, any compound which has a hydrogen atom is an acid, since it 
may be lost as a proton. A thermodynamical cycle is proposed to calculate absolute pKa values for 
Bronsted acids in aqueous solution. The equilibrium of dissociation of a Bronsted acid depends on 
the interaction of the acid and its conjugate base with solvent molecules. There fore the pKa value 
depends on the solvent medium. The polarizable continuum model (PCM) was used to describe the 
solvent, and absolute pKa values were computed for different compounds: HCOOH, CH3COOH, 
C6H5COOH, FCH2COOH and CH3CH2COOH. The model of furnishes pKa values was in good 
agreement with the experimental results for some classes of compounds. The quantum Mechanics 
(QM) calculations were carried out with the GAUSSIAN 98 program based on HF/6-31+G** level.  
 
Keywords: pKa; Acid dissociation constants; Free energy; Gas phase; Solution; Thermodynamic 
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INTRODUCTION
1

 Acid dissociation constants, also known as 
pKa values, are essential for understanding 
many fundamental reactions in chemistry 
and biochemistry. Oftentimes pKa values can 
be measured quite easily experimentally; 
however, many times chemists are interested 
in the pKa values of molecules that have not 
been synthesized or for which experiments 
are not straightforward. For instance, amino 
acids, a part of a polypeptide chain, have 
pKa values that vary based on their local 
environment, which are difficult to 
determine. Therefore, the ability to 
computationally calculate these pKa values 
accurately is important for scientific 
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advancements in biochemistry and other 
fields.  
  Methods other than thermodynamic cycles 
are often used to calculate acid dissociation 
constants. Previous publications implement 
the theoretical relationship between pKa and 
structural property [1], bond valence methods 
and bond lengths [2], pKa correlations with 
highest occupied molecular orbital (HOMO) 
energies and frontier molecular orbitals [3], 
and artificial neural networks [4] to predict 
pKa values. In addition much work has been 
done using physical properties as quantitative 
structure-activity relationship (QSAR) 
descriptors, and regression equations with 
such descriptors to yield accurate pKa values 
for specific classes of molecules [5-16].  
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  Therefore, in this work we will focus on the 
use of various thermodynamic cycles in the 
calculation of acid dissociation constants. 
The gas-phase free energy calculation is the 
lowest source of error in pKa calculations. 
With today’s computers and focusing on 
small molecules, CCSD (T) calculations 
extrapolated to the complete basis set limit 
can give gas-phase free energies as accurate 
as the experiment. The problem, however, is 
producing accurate results without using 
such computationally expensive levels of 
theory [17]. Combinations of different 
methods, such as model chemistries, density 
functional theories (DFTs), and ab initio 
theories, and different basis sets have been 
used in an attempt to achieve an accurate but 
less computationally demanding method. 
The largest source of error in pKa 
calculations is the change in free energy of 
solvation calculation for the reaction, which 
is based on the type of solvation model used 
and the specific level of theory [18-21]. The 
basic problem is that experimental free 
energies of solvation for ions have error bars 
of roughly 2—5 kcal/mol, and so models 
that have been developed to reproduce 
experimental values have the same inherent 
uncertainty. It is not possible to improve a 
particular solvation model by simply 
increasing the basis set, as one can when 
calculating ab initio quantum mechanical 
gasphase values. 
  Explicit solvation methods include the 
addition of solvent molecules directly in the 
calculation. This method is advantageous 
because specific solute—solvent interactions 
are taken into account. These multiple 
interactions, however, make it more difficult 
to find a global minimum for the complex 
[22, 23]. The number of necessary solvent 
molecules included in the reaction also 
comes into question, leading to the problem 
of balancing accuracy with computational 
expense. In addition, conformational effects 
can be daunting; it is difficult to know how 
many different ion—water configurations 

are necessary to get a conformationally 
averaged result. 
 
COMPUTATIONAL DETAILS 
 An acid dissociation constant, Ka is a 
quantitative measure of the strength of an 
acid in solution. It is the equilibrium 
constant for a chemical reaction known as 
dissociation in the context of acid-base 
reactions. The equilibrium can be written 
symbolically as:  

+− +⎯→← gg
K

g HAAH                                  (1) 

 where HA is a generic acid that dissociates 
by splitting into A−, known as the conjugate 
base of the acid, and the hydrogen ion or 
proton, H+, which, in the case of aqueous 
solutions, exists as a solvated hydronium 
ion. The dissociation constant is usually 
written as a quotient of the equilibrium 
concentrations (in mol/L), denoted by [HA], 
[A−] and [H+]: 

[ ] [ ]
[ ]HA

HAKa

+−

=                                          (2) 

  Due to the many orders of magnitude 
spanned by Ka values, a logarithmic measure 
of the acid dissociation constant is more 
commonly used in practice. The logarithmic 
constant, pKa, which is equal to −log10 Ka, is 
sometimes also (but incorrectly) referred to 
as an acid dissociation constant: 

aa KpK 10log−=                                          (3) 

  Equilibrium constant is related to the 
standard Gibbs energy change (∆G°

g) for the 
reaction, so for an acid dissociation constant: 
  
    
Or    ∆G°

g = 2.303RT log pKa
gas 

 

gas
agg pKRTGorKRTG log303.2log303.2 00 =∆−=∆
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  The equivalent process in aqueous solution 
may be written as: 

+−′ +⎯→←+ aqaq
K

aqaq OHAOHAH 32             

with  

[ ] [ ]
[ ] [ ]aqaq

aqaq

OHAH
OHA

K
2

3
+−

=′                              (4) 

  Since all of the H3O+ species in this model 
come from H+ solvated by one water 

molecule [ ] [ ])( 3
++ = aqaq HOH , K is related to K′ 

by the equation  

[ ]aqOH
KK
2

=′                                             (5) 

  Thus, the relationship between the Gibbs 
standard free energy changes (∆G°) and pKa 
in aqueous solution, becomes: 

[ ]⎟⎟⎠
⎞

⎜
⎜
⎝

⎛
−=∆

aqOH
KRTG
2

0 log303.2                (6) 

 If R and T are taken equal 1.98 cal/mol.K 
and 298.15 K respectively: 

36.236.1)/(0 +=∆ apKmolkcalG            (7) 

   To make use of eq (7), it is necessary to 
calculate a thermodynamical quantity, the 
Gibbs standard free energy changes (∆G°). 
But since ∆G° is a state property. It is 
completely determined by the initial and 
final states of the system and is independent 
of the path connecting them. In another 
words, it is almost always possible to 
propose a set of thermodynamical 
intermediate steps for the whole process, as 
long as the final and initial states are the 
same as the process being decomposed. 

  One of the many possible alternatives is the 
following Born-Haber thermodynamical 
cycle (TC), shown in Fig 1. From Fig 1, ∆G°   
is given by: 

)()()()( 3
0

2
0 +− ∆+∆+∆+∆+∆−=∆ OHGAGGOHGAHGG solvsolvvacvapsolv 

                                                      (8) 

where the ∆G°
vac is the standard Gibbs free 

energy change for the process in a vacuum, 
∆Gvap (H2O) is the Gibbs free energy change 
related to the vaporization process and ∆Gsolv 
are the solvation energy quantities where 
computed from equation: 

gsolvsolv GGG −=∆                                      (9) 

RESULTS AND DISCUSSION 
The geometry of HCOOH, CH3COOH, 
C6H5COOH, FCH2COOH and 
CH3CH2COOH have been optimized at HF 
method with 6-31+G** basis set. The 
quantum Mechanics (QM) calculations were 
carried out with the GAUSSIAN 98 program 
[24]. Table 1 shows optimized energies of 
different carboxylic acids and its conjugate 
base in various phases.  
  The Gibbs free energy change of solvation 
and vaporization process, zero point energy 
and relaxation energy of different carboxylic 
acids and its conjugate base have been 
reported in Table 2, and Table 3 shows 
∆E°

vac,0°k , ∆ZPE°
vac,0°k , ∆G°

vac , ∆Erelax(tot) , 
∆G°

tot values. Where ∆E°
vac,0°k is the 

variation in the internal energy at T = 0 K, 
∆ZPE°

vac,0°k is the difference between the 
total zero point energy correction for the 
products and that of the reactants and ∆G°

vac 
is the standard Gibbs free energy change for 
the process in a vacuum. When we include 
the zero point energy (ZPE) and statistical 
mechanics contributions to the Gibbs free 
energy, we obtain accurate free energies for 
successive deprotonations of carboxylic acid 
in aqueous solutions. 
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  Theoretical and experimental pKa values 
have been reported in Table 4. The pKa 
values     calculated     using     Eq (7).     For  
 

halogenated acid the deviations can be 
attributed to neglecting the molecular 
motion contributions term. 

 Fig. 1. A thermodynamical cycle is proposed to calculate absolute pKa values for Bronsted acids in aqueous 
solution 

 
     

Table 1. Optimized energies of different carboxylic acids and its conjugate base in various phases  
 

Compound 

Energy (Hartree) 

Solution phase 

298.15 K 

Relaxation phase 

298.15 K 

Gas phase 

0 K 

HCOOH -188.7862851 -188.7679701 -188.7645659 

HCOO- -188.3301261 -188.208823 -188.2063702 

CH3COOH -227.8388949 -277.817207 -277.8144551 

CH3COO- -227.3749908 -227.2530036 -227.2509675 

FCH2COOH -326.684734 -326.667705 -326.6680603 
FCH2COO- -326.2285742 -326.1145405 -326.1112758 

C6H5COOH -418.365042 -418.352182 -418.340602 

C6H5COO- -417.896487 -417.787871 -417.7902435 

CH3C6H4COOH -457.4058572 -457.3930009 -457.381404 

CH3C6H4COO- -456.9355268 -456.826398 -456.8288335 

H2O -76.0454876  -76.303687 

H3O+ -76.4826265 -76.3078511 -76.3099865 
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Table 2. The energy change of different carboxylic acids and its conjugate base  
 

Compound 
Energy (kcal/mol) 

ZPE (kcal/mol) 
0 K solvG∆  relaxE∆  vapG∆  

HCOOH 21.2098211 11.4927737 -2.136167  

HCOO- 12.802448819 -76.1188476 -1.539155  

CH3COOH 39.21746122 13.609363 -4.86439  

CH3COO- 30.8897826 -76.5481268 -1.277672  

FCH2COOH 34.9780070 10.68585 0.222954  

FCH2COO- 26.575027 -71.557230 -2.0486302  

C6H5COOH 77.71032 8.06977 -3.4465  

C6H5COO- 68.73279 -68.15819 1.48876  

CH3C6H4COOH 96.726365 8.06745 -4.139617  

CH3C6H4COO- 87.860479 -68.47935 1.528299  

H2O 13.594365808   9.487253 

H3O+ 22.0525663585 -109.67297 1.339732  

 
Table 3. The standard energy change of different carboxylic acids and its conjugate base  

 

Compound 

Energy (kcal/mol) 

0
, 0kovac

E∆  
0

, 0kovac
ZPE∆

 

0
vacG∆  )(totrelaxE∆  0

totG∆  

HCOOH 174.80532 0.046665 174.85198 -2.33559 10.0402 

CH3COOH 178.1309335 0.11983232 178.2507658 -4.8023 15.1263 

FCH2COOH 173.92473 0.0506986 173.9754287 -0.48594 12.91833 

C6H5COOH 169.8925 -0.476695 169.415805 -0.618 9.1416 

CH3C6H4COOH 171.2804 -0.37429 170.906 1.339732 10.308475 

 
Table 4. Theoretical and experimental pKa values  

 

Compound 
Energy (kcal/mol) pKa values 

∆G0+∆Erelax Theoretical experimental 

HCOOH 7.70461 3.92 3.77 

CH3COOH 10.32404 5.85 4.76 

FCH2COOH 12.432385 7.406 2.66 

C6H5COOH 8.5235 4.53 4.82 

CH3C6H4COOH 9.036888 4.9 4.36 

 
CONCLUSION 
In this work HF level of theory at 6-31+G** 
basis set have been used to calculated pKa 

values. The model proposed in this work to 
calculate the Gibbs energies and pKa values, 

Page 5

www.SID.ir



Arc
hive

 of
 S

ID

M. Khaleghian et al. /J. Phys. Theor. Chem. IAU Iran, 9(1): 1-6, Spring 2012 
 

 6

seems to be capable of predicting solute-
solvent interactions. So the model proposed 
of calculations is likely to be useful in the 
prediction of pKa values of other acids in 
aqueous solution. The model of furnishes pKa 
values was in good agreement with the 
experimental results for some classes of 
compounds. But for halogenated acid the 

deviations can be attributed to neglecting the 
molecular motion contributions term. 
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