Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 8 (4) 283-294: Winter 2012 (J. Phys. Theor. Chem. IAU Iran)
ISSN 1735-2126

NMR and NBO Calculation of Broccoli Calm: Nano Physical Parameter Study

M. Monajjemi^{1*} and M. Ahmadianarog²

Received February 2012; Accepted March 2012

ABSTRACT

Sulforaphane, an isothiocyanate found in broccoli and other cruciferous vegetables, it is an anti-oxidant and anti-cancer agent, and reduces blood pressure, and also has anti-allergic Effects.

In this article, six theoretical methods have been used for calculation of physical parameters in solforaphane and several similar compounds. We calculated physical parameters like atomic charges , energy (ΔE) , chemical shift anisotropy (δE) , asymmetry parameter (δE) , chemical shift anisotropy (δE) , dipole moment , isotropic , anisotropic , NMR determinant and distance matrix determinant, and in this work we used Gaussian 98 at NMR and natural bond orbital (NBO) calculation by using HF method with 6-31G,6-31G* and 6-31+G basis set and B3LYP , BLYP and B3PW91 methods with 6-31G basis set. The GIAO magnetic shielding for studied molecules was obtained by using Gauss view program. Chemical shift curve was drawn for all of the atoms in each molecular.

Keywords: Broccoli; Isothiocyanates; Sulforaphane; Cruciferous vegetables; Physical parameter; NMR; Natural bond orbital (NBO)

INTRODUCTION

Sulforaphane is a naturally occurring isothiocyanate found in high concentrations in the SAGA (Mariner) variety of broccoli (Brassica oleracea italica). It is an antioxidant and a potent monofunctional for inducer. which accounts its anticarcinogenic properties in animal models. Studies have documented important antibiotic activities. L-Sulforaphane is the biologically active isomer [1].

Sulforaphane has been extensively researched for its health-promoting benefits. In fact, there is *no* Sulforaphane found in Broccoli or any other Cruciferous Vegetable. The plant cell contains 2 different types of sacs that contain the two substances that

produce Sulforaphane only when mixed together [2].

When the plant is cut or chewed, the contents of the 2 sacs combine, producing a chemical reaction that leads to the production of the Sulforaphane. Sulforaphane itself is not stable for longer than about 30 minutes: therefore, the Sulforaphane must be produced just before consuming the broccoli. It is the effect of the enzyme, Myrosinase in one sac on the compound, on the Glucoraphanin in the other sac that produces the Sulforaphane [3].

Enzymes such as *Myrosinase* can only react when they are in contact with water. Because the powder is dry, there can be no reaction.

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

²Ph.D Student, Science and Research Branch, Islamic Azad University, Tehran, Iran

^{*} Corresponding author: m-monajjemi@yahoo.com

However, when the powder is added to a glass of water, the chemical reaction begins immediately and the sulforaphane is produced [3, 4].

Sulforaphane exerts anti-oxidant, antiinflammatory, anti-cancer and radio sensitizing activities.

Free radicals or reactive oxygen species are created by toxins and carcinogens as well as by the body as a byproduct of various chemical reactions, especially in mitochondria. These reactive species readily attack various tissues in the body causing disease and aging. Sulforaphane is a potent quencher of such species, acting by stimulating various enzymes and compounds neutralize these reactive species effectively [5, 6, 7].

Inflammation is now considered the hallmark of a number of diseases like diabetes, allergies, cardiovascular disease and even obesity. Sulforaphane has an anti inflammatory effect via a number of different mechanisms including the inhibition of COX 2 enzymes and NF-kappaB, a molecule associated with inflammation, and the promotion of Nrf2, a powerful molecule that inhibits inflammation. In a number of studies sulforaphane has been shown to clinically reduce inflammation and pain in osteo-arthritic patients as well as improving the repair of damaged cartilage [8].

High blood pressure has been linked to high amounts of reactive oxygen species. Animal studies have demonstrated that sulforaphane significantly reduces blood pressure and improves other cardiovascular health conditions [9].

Sulforaphane has been shown to reduce symptoms of allergies including sneezing, watery eyes, itchy and runny nose caused by a variety of allergens like different types of pollen, dust, diesel fuel etc. A recent human study showed that sulforaphane greatly increased antioxidant status of the patients and the authors suggested a potential application of sulforaphane in conditions like asthma [10].

Perhaps the most widely studied effect of sulforaphane for over 20 years is in the field of cancer research in a number of diverse species as well as variety of tissues like prostate, skin, colon, breast, uterine, ovarian, bladder, pancreas etc. No human studies are available due to the large number of subjects required, length of study (over 20-30 years) and the cost [11].

The anti-cancer effect is attributed to a number of mechanisms including the stimulation of phase II enzymes, apoptosis (cell suicide), cell cycle arrest (preventing replication), reduction of the spread of tumors (metastases) and the inhibition of blood supply to cancer cells (angiogenesis)[12,13,14].

COMPUTATION METHODS

Stage 1: Start ChemDraw and construct molecules. Save the results as a ChemDraw file

Stage 2: Reopen this file using Chem3D and perform an energy minimization. Then save the results as a gic file.

Stage 3: Reopen this file using Gaussian98 and the calculations were performed using the *Gaussian*® 98 program suite.

Gaussian is one of the most widely used quantum chemical program packages for molecular applications, and is used both in industry and in many scientific areas in academia. we have calculated the geometric parameters of the compounds in the ground state the using the Hartree-Fock (HF), Becke's three-parameter hybrid method with the Lee, Yang, and Parr correlation functional methods (B3LYP), Becke's exchange functional in combination with the Lee, Yang and Parr correlation functional methods (BLYP), Becke's three parameter exchange functional combined with gradient corrected correlation functional of Perdew and Wang's 1991 (B3PW91), and 6-31G, 6-31G* and 6-31+G basis set [15,16].

The calculation that you ask Gaussian to perform is distributed between many

processors to get the answer faster. If you want to optimize geometry, it means that you want Gaussian to adjust the bond lengths, angles, and dihedrals to find the lowest energy conformation of the molecule. The command to tell Gaussian to optimize the molecular geometry is "opt" [17].

The Gaussian program does semi-empirical and *ab initio* calculations. In *ab initio* calculations the important integrals are done directly from first principles. First principles means that the integrals are done either using closed formulas or by doing the integrals numerically. The particular *ab initio* method was accomplished best for calculating NMR properties. Finding a good geometry is called geometry optimization, so "OPT" are used as the keyword [18, 19].

The calculation will generate an output file called *filename.out*.

The output file (*filename.out*) contains a lot of information about the calculation and the results. The content depends on what type of calculation that has been performed and on what print options that was specified. The units are usually Hartree (atomic unit) for energy and Ångström for distance. There are several different pieces of data that you may need from this. The important information is the Hartree-Fock energy (ΔE), the Mulliken charges, Distance matrix (angstroms), Dipole moment (Debye) and Atomic charge. Distance matrix value is determined using Matlab program.

We used Gaussian98 in calculation of NMR chemical shift by using HF, B3LYP, BLYP, B3PW91 methods and 6-31G, 6-31G* and 6-31+G basis set. Therefore "NMR" is used as keyword. The calculation will generate an output file called *NMR.out* [20].

The output file (NMR.out) contains a lot of information about NMR chemical shift calculation and parameters such as σ Isotropic (ppm) and σ Anisotropic (ppm) that listed in the "GIAO Magnetic shielding tensor (ppm)", and σ determinant was calculated by using Matlab program. Molecular orbital

calculations can be used to get good estimates for chemical shifts. In this exercise, we calculated chemical shifts for each atom, then draw diagrams that shown chemical shifts for each atom by using Excel program. parameters such as δ , η and $\Delta \sigma$ were calculated by using σ Isotropic (ppm), σ Anisotropic (ppm) and Eigenvalues(σ_{11} , σ_{22} , σ_{33}) [21,22].

A perfect NBO analysis was obtained in Gaussian program when POP=NBO are used as the keyword. NBO analysis was performed by using HF method with 6-31G, 6-31G* and 6-31+G basis set and B3LYP, BLYP and B3PW91 methods with 6-31G basis set and the output was obtained for each molecule. The main list of NBOs, displays the form and occupancy of the complete set of NBOs that span the input AO space and for each orbital gives the type of orbital and the occupancy. We have extracted just BD for 2center bond and BD* for 2-center antibond from NBO output.

RESULTS AND DISCUSSION

In this work ,we calculated parameters like atomic charges, energy (ΔE), chemical shift anisotropy (δ), asymmetry parameter (η), chemical shift anisotropy $(\Delta\sigma)$, dipole moment, isotropic, anisotropic, **NMR** determinant and distance matrix determinant and natural bond orbital(NBO), and GIAO magnetic shielding for solforaphane and several similar compounds by using HF method with 6-31G,6-31G* and 6-31+G basis set and B3LYP, BLYP and B3PW91 methods with 6-31G basis set. HF method with 6-31+G basis set didn't answer for molecular1,2,3,and B3LYP method with 6-31G basis set wasn't performed for molecular3. The atoms that mentioned parameters calculated for them, are related to (-C - SO -) and (-NCS) groups. These parameters are reported in Table (1-5).

The optimized structure of molecules that studied in this work, have been shown in Fig.1.

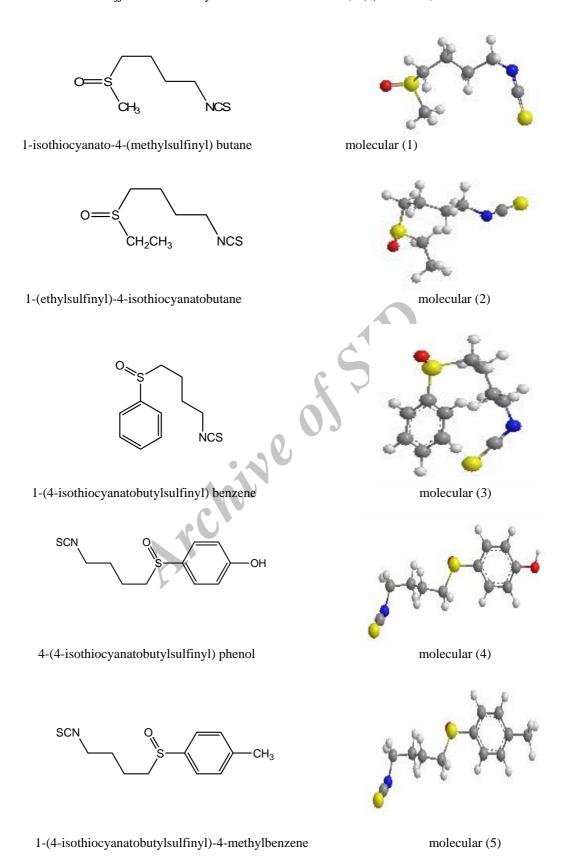


Fig. 1. Optimized structure of studied molecular.

At present, in this section, we considered these parameters.

As shown in table 1, in HF/6-31G and HF/6-31G* levels for all of the studied molecular, C and O atoms in (- C - SO - C) group and N and S atoms in (- NCS) group have negative atomic charge value, but in B3LYP, BLYP and B3PW91 methods C and O atoms in (- C - SO - C) group and N and C atoms in (- NCS) group have negative atomic charge value, and in all of the used methods S atom in (- C - SO - C) group has the most atomic charge value.

As pointed in table 1, in HF/6-31G level for all of the molecules and in HF/6-31+G for molecular 4 and 5, chemical shift anisotropy (δ) and ($\Delta \sigma$) value for S atom in (-C - SO -) group is negative but other studied atoms is positive and δ_O in (-C - SO -) group is the most positive value, while in HF/6-31G* for molecular 2, δ_0 in (-C - SO -) group is negative but in other molecules is positive, also in all of the molecules, $\delta_{\rm C}$ in (-NCS) group is the greatest value. B3LYP and B3PW91 methods for all of the molecules, δ_0 in (-C - SO -) group is negative but in BLYP method δ_0 in (- C - SO -) group in molecular 2,4 and 5 is negative, also in B3LYP, BLYP and B3PW91 methods, δ_S in (- NCS) group for all of the molecules is the most positive value.

As reported in table 1, in HF/6-31G level for all of the molecules except molecular 1, η_C in (- C-SO-) group is the greatest value, but in molecular1, η_S in (- C-SO-) group is the greatest, while in HF/6-31G*, η_C in (- NCS) group has the greatest value, and in HF/6-31+G level ηC in (- C-SO-) group is the most amount, and in B3LYP and B3PW91 methods, η_S in (- C-SO-) group has the most value. But in BLYP

method η_O in (- C – SO -) group is the greatest value.

Dipole moment that reported in Table 1, dipole moment for molecular 1, in BLYP method, is the greatest than other used methods, but in other molecules, dipole moment in HF/6-31G level is the greatest.

 ΔE (kcal/mol) that reported in Table 1, for all molecules in HF/6-31G level is zero. Also in all of the molecules except molecular3, in B3LYP method, ΔE has the most value, but in molecular3, ΔE related to BLYP method, is the greatest.

As shown in table 2, in all of the methods for all of the molecules, σ_{iso} for S atom in (-NC5) group is the greatest value, and in HF/6-31G and HF/6-31+G and BLYP methods for all of the molecules, and in B3LYP and B3PW91 methods for molecular1, σ_{iso} for O atom in (- C – SO -) group is negative. In other hands, in HF/6-31G* σ_{iso} for all of the atoms in all of the molecules is positive.

As defined in table 2, the entire anisotropy amount is positive. In HF/6-31G and HF/6-31+G, for all of the molecules, σ_{aniso} for O atom in (- C – SO -) group is the most value, while HF/6-31G*, σ_{aniso} related to C atom in (- NCS) group is the most, and in B3LYP, BLYP and B3PW91 methods, σ_{aniso} related to S atom in (- NCS) group is the most. As reported in table 2, in all of the methods for all of the molecules, NMR determinant relative to (S) atoms is the greatest value.

The other parameter that reported in table 2 is distance matrix determinant for molecules. Molecules 1, 4, 5 in all of the methods, has positive distance matrix, but distance matrix for molecules 2, 3, in all of the methods is negative. In the entire molecular, calculated distance matrix determinant in BLYP method is the largest than other methods.

Table 1. Values of parameters like atomic charges, ΔE (kcal/mol), chemical shift (δ), asymmetry parameter (η), and chemical shift anisotropy ($\Delta \sigma$), dipole moment for active site of studied molecules obtained using different methods

					r		
w 1		Name	Molecular 1	Molecular 2	Molecular 3	Molecular 4	Molecular 5
Basis	set	Atoms	000 000 000 000 000 000 000 000 000 00	0(1) 8(19) 8(3) 8(3) 8(3) 8(3)	00000000000000000000000000000000000000	68898 68998 6998 6998	688888 688888
		atomic charges	0.00 0.00 0.00 0.00	0.89 0.89 0.09 0.09	0.99 0.99 0.00 0.00	0.10 0.10 0.77 0.77	0.00 0.00 0.00 0.00
		ΔE(kcal/mol)	•	,	,		,
	6	•	34.12 -141.53 218.56 288.56 290.01 489.44	34.56 -1.55.855 721.96 7217.47 790.56 390.71	98.37 -145.04 220.41 218.01 291.34 399.64	90.33 -122.59 -119.76 -218.73 -252.46 -390.89	94.34 -1.72.18 219.86 28.61 381.51
;	6-31G	3	0.16 0.05 0.000 0.000 0.40	0.00 0.00 0.00 0.00 0.00	0.51 0.51 0.00 0.00 0.00 0.00	860000	000000000000000000000000000000000000000
		Δσ	51.18 -212.000 327.39 327.84 435.02 734.16	51.94 -233.78 332.93 326.21 438.84 590.56	147.56 -217.56 -330.61 337.01 438.66 599.46	135.49 135.00 135.00 436.00 436.00 536.34	14151 -18477 32979 32791 43816 57227
		Dipole moment	3.50	8.28	8.48	6.42	6.74
		atomic charges	.0.71 .0.46 .0.29 .0.79	-0.54 0.98 -0.45 0.29 -0.22	.0.29 1.00 .0.46 0.29 .0.21	-0.32 1.00 -0.45 0.30 -0.22	.030 .045 .022
		ΔE(kcal/mol)	-167.43	-175.60	-203.02	-227.27	-216.02
; Ę	6-3	•	31.73 209.86 191.10 211.64 201.70 189.23	26.73 168.52 193.87 20.059 20.276 -169.25	108.65 191.84 192.07 211.37 202.48 157.10	93.88 154.98 191.38 201.183 202.19	10011 158,60 191.35 211.76 202,08 162,65
5	6-31G*	=	0.55 0.21 0.06 6.4-4 9.0-4	0.81 0.22 0.06 0.002 0.004	0.05 0.05 0.00 0.00 0.00 0.00 0.00	000000000000000000000000000000000000000	015 015 015 015
		Δσ	47,60 514,79 286,66 517,47 302,56 283,85	1009 152.78 29.08 29.08 10.09 10.09 10.09	16297 387.76 388.10 517.05 308.72 338.72	140.81 132.47 187.07 197.75 196.29	150.16 237.89 387.03 217.64 303.11 343.97
		Dipole moment	314	6.86	3.40	5.66	5.58
		atomic charges				0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
		ΔE(kcal/mol)		-		-13.03	-11.38
;	6-31+G	•				91.67 -116.59 -221.25 -217.36 -223.87 -397.08	55.18 -116.23 221.41 217.40 283.77 392.12
5	₽	3				222228	68888
		a Þ				9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11 11 11 11 11 11 11 11 11 11 11 11 11
\perp		Dipole moment	-	-	-	6.27	6.60
		atomic charges	004 004 004	0.76 0.76 0.02 0.02		000 000 000 000 000 000 000 000 000 00	0.02 0.02 0.02 0.02 0.03
		ΔE(kcal/mol)	-2354.82	-2535.17		-3367.08	-3316.53
Ę		•	46.04 246.38 206.69 208.65 -108.65	44.11 185.8791 208.97 207.96 267.78 -103.10		77.17 115.56 206.59 208.60 228.60 114.86	80.49 139.02 200.00 200.00 113.00
dina		=	012 004 001 002	0.00 0.00 9 0.00 0.00 0.00 0.00		0.57 0.05 0.02 0.02	8000004
		Δσ	80.08 389.87 312.67 439.34 -163.29	66.16 278.82 313.45 311.94 431.88 -154.65		115.75 235.28 330.48 312.90 430.39	120.73 228.53 310.60 311.89 430.52
		Dipole moment	328	6.69	÷	6.07	6.02
		atomic charges	.000 .000 .003 .005 .007	.0.42 0.68 -0.05 -0.05	-0.24 0.72 -0.31 -0.05	.0.24 0.73 -0.31 -0.05	-0.24 0.73 -0.31 -0.05
		ΔE(kcal/mol)	-22:00:49	-2410.57	-2983.19	-3209.97	-3145.34
, 날	6	∞	50.96 292.61 209.03 307.91 307.81	48.33 226.47 209.00 307.85 36.95	80.54 229.34 209.13 207.75 307.97 76.47	7297 210.99 207.48 208.38 308.47 -71.85	76.06 212.87 207.90 208.96 -70.03
7112	6-31G	3	0.00 0.00 0.00 0.00 0.00	0.66 0.001 0.004 0.80	0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.00 pp. 0.00 pp. 0.00 0.00 pp. 0.00 pp. 0.	2604000	000000000000000000000000000000000000000
		Δσ	76,44 438,92 313,55 311,87 46,71 149,02	72.53 354.71 313.49 311.78 461.82 -130.42	120 82 343 96 313.70 311.62 461.96 114.71	109.46 315.89 311.22 312.57 48.21 -107.78	114.10 319.31 311.25 312.54 4.58.19 -105.05
		Dipole moment	7.55	5.88	830	5.46	524
		atomic charges	0.80 0.80 0.00 0.00 0.00 0.00	880 800 800 800 800 800	88 80 80 80 80 80 80	200 200 200 200 200 200 200	600 800 800 800 800 800
		ΔE(kcal/mol)	-2205.37	-2377.21	-2941.71	-3154.01	-3112.95
191		∞	44.40 242.60 202.30 204.91 271.32 -101.90	423 18678 206,64 204,12 272,33 -9795	84.56 199.55 204.93 204.97 270.97 -92.70	76.88 135.06 200.61 200.14 271.82 -102.09	8021 1807 2005 2006 27180
DOT 47.71		=	0.00 0.00 0.00 0.00 0.00	8.38.88.83	9 6 00 3 00 00 00 00 00 00 00 00 00 00 00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000
		Δσ	58251- 88.904 98.006 98.006 06.006 66.99	63.52 220.17 208.46 306.17 408.49 -146.92	126.84 227.22 207.40 306.56 408.40 -139.05	115.00 224.00 305.41 307.71 407.71	120.31 227.10 305.25 307.99 407.40 -149.78
	1	Dipole moment	330	6.72	791	6.11	6.00

Table 2. Values of parameters like isotropic (σ_{iso}) , anisotropic (σ_{aniso}) shielding, NMR determinant and distance matrix determinan for active site of studied **molecules** obtained using different methods

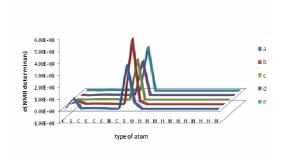
Bas	Name	Molecular 1	Molecular 2	Molecular 3	Molecular 4	Molecular 5
Basis set	Atoms	088989 88989 88989	0(1) 0(1) 0(3) 0(3) 0(1) 0(3) 0(1)	0(1) 8(9) 8(7) 8(1) 8(1)	01998979 8000 8000 8000 8000	699999 899999
	σ Isotropic(ppm)	175.05 461.49 155.51 58.32 745.82 -195.84	164.79 462.05 151.99 59.25 745.14 -64.17	67.43 445.65 153.62 58.84 745.68 -80.87	75.60 434.92 151.09 58.59 746.23 -86.77	70.38 433.18 151.06 58.70 746.59 -77.33
6-31G	σ Anisotropy (ppm)	51.18 173.43 327.39 327.84 435.02 734.16	51.84 128.59 332.93 32.621 438.84 590.56	147.56 163.81 330.61 327.01 436.86 599.46	135.49 119.87 329.64 328.10 438.69 586.34	141.51 120.38 329.79 327.91 438.16 572.27
42	Determinan(NMR)	5.22E+06 9.01E+07 7.94E+05 7.18E+05 3.74E+08 5.37E+07	4,30E+06 8,93E+07 6,19E+05 6,77E+05 3,72E+08 2,11E+07	- 2.4.2E+05 8.04E+07 6.96E+05 6.96E+05 3.73E+08 2.39E+07	-1.14E+05 7.71E+07 6.20E+05 7.13E+05 3.74E+08 2.25E+07	-1.81E+05 7.60E+07 6.18E+05 7.09E+05 3.75E+08 2.02E+07
	Distance matrix	3.8532e+007	-2.6807e+008	-8.8008e+009	1.5368e+010	6.6443e+010
	σ Isotropic(ppm)	166.16 325.90 178.52 66.60 832.72 334.72	159.94 337.82 175.89 67.10 833.04 372.74	62.50 312.76 177.91 67.15 833.00 334.69	73.47 316.27 175.52 66.71 834.56 354.88	65.75 316.27 175.50 66.70 834.56 356.64
6-31G*	σ Anisotropy(ppm)	47.60 314.79 286.66 317.47 302.56 283.85	40.09 252.78 290.81 316.48 304.13 245.48	162.97 287.76 288.10 317.05 303.72 235.66	140.81 232.47 287.07 317.75 303.29 246.28	150.16 237.89 287.03 317.64 303.11 243.97
*	Determinan(NMR)	4.46E+06 2.62E+07 2.54E+06 4.28E+05 5.54E+08 2.84E+07	3.99E+06 3.25E+07 2.30E+06 4.09E+05 5.55E+08 4.22E+07	-1 37E+05 243E+07 247E+06 4.13E+05 5.55E+08 3.11E+07	-208E+04 2.706+07 2.336+06 4.276+05 5.586+08 3.706+07	-9 94E+04 2.68E+07 2.33E+06 4.26E+05 5.58E+08 3.77E+07
	Distance matrix	2.9587e+007	-2.1757e+008	-3.8247e+009	1.2455e+010	5.5554e+010
	σ Isotropic(ppm)				74.63 440.33 148.61 60.10 755.17 -105.85	69.43 438.51 148.49 60.14 755.36 -101.41
6-31+G	σ Anisotropy (ppm)				137.50 113.91 331.85 326.04 425.81 595.62	142.77 112.96 332.12 326.10 425.65 588.18
ଦ	Determinan(NMR)				-1.34E+05 8.06E+07 5.24E+05 653E+05 3.91E+08 2.55E+07	-1.95E+05 7.96E+07 5.18E+05 6.58E+05 3.91E+08 2.44E+07
	Distance matrix	-	-		1.5836e+010	6.8672e+010
	σ Isotropic(ppm)	147.55 203.20 158.72 69.09 724.73 -37.33	135.21 211.56 155.70 69.18 725.17 32.74		53.95 208.78 155.98 70.02 730.07 9.96	48.75 207.33 155.92 70.04 730.05 11.83
	σ Anisotropy(ppm)	69.06 369.87 308.54 312.67 429.24 99.24	06.16 278.82 313.45 311.94 431.68 103.15		115.75 235.28 310.48 312.90 430.39 155.11	120.73 238.53 310.60 312.89 430.52 152.76
	Determinan(NMR)	3.00E+06 2.27E+05 1.14E+06 3.41E+05 3.42E+08 -5.21E+04	2.26E+06 2.74E+06 9.61E+05 3.33E+08 3.47E+08 2.79E+05		-2.55E+04 4.47E+06 9.91E+05 3.26E+05 3.50E+08 -2.49E+05	-4.86E+04 4.23E+06 9.87E+05 3.25E+06 3.50E+08 -258E+05
-	Distance matrix	4.4765e+007	-2.9234e+008	-	1.9076e+010	8.3310e+010
	σ Isotropic(ppm)	138.33 144.31 149.31 67.39 692.23 41.59	122.94 112.21 148.79 67.00 691.11	33.93 148.70 149.46 67.68 692.93 -26.50	44.12 116.94 149.41 68.27 698.14 -25.64	38.64 115.57 149.40 68.29 698.18 -23.59
6-31G	σ Anisotropy (ppm)	76.44 438.92 313.55 311.87 461.71 149.02	72.53 354.71 313.49 311.78 461.82 117.62	120.82 343.86 313.70 311.62 461.96 114.71	109.46 315.89 311.22 312.57 458.21 94.84	114.10 319.31 311.25 312.54 458.19 93.84
42	Determinan(NMR)	2.41E+06 -1.34E+06 7.57E+05 3.59E+05 2.90E+08 4.10E+05	1.63£+06 -1.57£+06 7.42£+05 3.64£+05 2.88£+08 2.71£+05	-9.67E+03 -6.50E+04 7.57E+05 3.52E+05 2.91E+08 1.78E+05	-1,45E+04 -1,40E+06 7,77E+05 3,49E+08 2,99E+08 6,70E+04	-1.98E+04 -1.45E+06 7.71E+05 3.48E+05 2.99E+08 6.43E+04
	Distance matrix	5.6723e+007	-3.4432e+008	-1.1790e+010	2.3015e+010	1.0102e+011
	σ Isotropic(ppm)	152.68 234.21 162.75 73.09 740.02 -3.56	141.17 242.43 160.19 74.09 742.28 65.66	50.45 251.80 160.92 73.89 741.73 59.48	59.39 237.44 159.86 73.75 745.21 43.48	53.98 236.33 159.52 73.39 744.68 46.36
	σ Anisotropy (ppm)	66.59 363.90 303.45 307.36 406.98 112.01	63.52 280.17 308.46 306.17 408.49 77.20	126.84 287.32 307.40 306.56 408.40 103.74	1115.03 224.09 305.41 307.71 407.74 125.04	120.31 237.10 305.25 307.59 407.40 122.06
	Determinan(NMR)	3.35E+06 3.39E+06 1.39E+06 2.38E+05 3.69E+08 -1.97E+05	2.61E+06 6.61E+06 1.20E+06 2.17E+08 3.73E+08 -7.49E+04	-5.52E+04 9.26E+06 1.25E+06 2.22E+05 3.72E+08 -2.90E+05	-8.06E+03 8.22E+06 1.22E+06 2.30E+08 3.78E+08	-3.91E+04 7.98E+06 1.21E+06 2.34E+05 3.77E+08 -4.27E+05
	Distance matrix	4.3626e+007	-2.8415e+008	-1.0161e+010	1.7749e+010	7.6094e+010

Table 3a, 3b have been shown share of orbitals contribute in bonds (BD for 2-center bond and BD* for 2-center antibond).

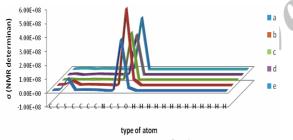
Table 3a. Relative natural bond orbital (NBO) for several active bond in studied moleculars by **a**) HF method with 6-31G, 6-31G* and 6-31+G basis set **b**) B3LYP, BLYP and B3PW91 methods with 6-31G

Table 3b.

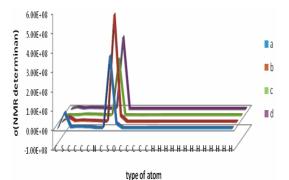
	BD 0.7248 sp ^{3,25} + 0.6889 sp ^{4,4} 0.6116 sp ^{3,19} + 0.7912 sp ^{3,5} 0.6880 sp ^{4,47} + 0.7257 sp ^{3,6} 0.6244 sp ^{3,22} + 0.7811 sp ^{2,5} 0.7669 sp ^{1,51} + 0.6418 sp ^{1,17} 0.7388 sp ^{1,17} + 0.6739 sp ^{4,6} 0.7219 sp ^{3,68} + 0.6920 sp ^{4,69} 0.7219 sp ^{3,68} + 0.7826 sp ^{4,69} 0.6898 sp ^{4,69} + 0.7240 sp ^{5,69} 0.6893 sp ^{4,69} + 0.7240 sp ^{5,69} 0.6237 sp ^{3,23} + 0.7816 sp ^{5,79} 0.7382 sp ^{1,51} + 0.6417 sp ^{1,79} 0.7382 sp ^{1,51} + 0.6746 sp ^{4,79}		B3LYP BD* BD* BD* BD BD* BD* BD 0.7248 sp ^{3.63} + 0.6889 sp ^{3.63} + 0.7912 sp ^{3.73} - 0.7248 sp ^{3.63} - 0.7233 sp ^{3.64} + 0.6905 sp ^{3.63} - 0.6116 sp ^{3.73} - 0.6693 sp ^{3.73} - 0.6093 sp ^{3.73} + 0.7241 sp ^{3.63} - 0.6244 sp ^{3.73} - 0.6880 sp ^{3.63} - 0.6887 sp ^{3.63} - 0.6897 sp ^{4.64} + 0.7241 sp ^{3.63} - 0.6244 sp ^{3.63} - 0.7672 sp ^{1.50} + 0.6414 sp ^{3.63} - 0.7669 sp ^{1.71} - 0.7388 sp ^{1.71} - 0.7388 sp ^{3.73} - 0.7375 sp ^{3.74} + 0.6753 sp ^{3.73} - 0.7388 sp ^{3.74} - 0.6920 sp ^{3.74} - 0.6920 sp ^{3.75} - 0.7219 sp ^{3.75} - 0.7206 sp ^{3.74} + 0.7931 sp ^{3.74} - 0.6934 sp ^{3.75} - 0.6898 sp ^{3.75} - 0.6898 sp ^{3.75} - 0.7669 sp ^{3.75} - 0.7669 sp ^{3.75} - 0.7669 sp ^{3.75} - 0.7613 sp ^{3.75} - 0.7613 sp ^{3.75} - 0.7613 sp ^{3.75} - 0.7610 sp ^{3.75} - 0.7610 sp ^{3.75} - 0.7610 sp ^{3.75} - 0.7611 sp	BD BJKP BD* BD* 0.7248 sp ^{3,63} + 0.6889 sp ^{4,49} 0.6889 sp ^{3,43} - 0.7248 sp ^{4,49} 0.7223 sp ^{3,41} + 0.6905 sp ^{4,49} 0.6889 sp ^{3,43} - 0.7248 sp ^{4,49} 0.7233 sp ^{3,41} + 0.6905 sp ^{4,49} 0.7248 sp ^{3,44} + 0.7257 sp ^{3,43} 0.7912 sp ^{3,13} - 0.6116 sp ^{3,13} 0.6093 sp ^{3,24} + 0.7930 sp ^{3,23} 0.6923 sp ^{3,24} + 0.7241 sp ^{3,23} 0.6093 sp ^{3,24} + 0.7241 sp ^{3,23} 0.6244 sp ^{3,24} + 0.7241 sp ^{3,23} 0.6248 sp ^{1,17} + 0.6418 sp ^{1,17} 0.6418 sp ^{1,17} - 0.6244 sp ^{3,23} 0.6277 sp ^{3,31} + 0.6414 sp ^{1,15} 0.7328 sp ^{1,17} - 0.7388 sp ^{4,27} 0.7375 sp ^{1,16} + 0.6723 sp ^{4,27} 0.7328 sp ^{1,17} - 0.7388 sp ^{4,27} 0.7329 sp ^{3,23} - 0.6241 sp ^{3,23} 0.7375 sp ^{1,16} + 0.6733 sp ^{4,27} 0.6898 sp ^{3,24} + 0.7935 sp ^{3,23} 0.6920 sp ^{3,25} - 0.7219 sp ^{3,25} 0.7206 sp ^{3,27} + 0.6934 sp ^{4,12} 0.7206 sp ^{3,27} + 0.7951 sp ^{3,25} 0.6398 sp ^{4,47} + 0.7240 sp ^{3,25} 0.7935 sp ^{3,15} - 0.6888 sp ^{3,25} 0.6055 sp ^{3,24} + 0.7951 sp ^{3,25} 0.7240 sp ^{3,25} - 0.6237 sp ^{3,25} 0.6055 sp ^{3,24} + 0.7951 sp ^{3,25} 0.6237 sp ^{3,24} + 0.7816 sp ^{3,25} 0.7816 sp ^{3,25} - 0.6237 sp ^{3,25} 0.6270 sp ^{3,27} + 0.7791 sp ^{2,20} 0.7670 sp ^{3,21} + 0.6417 sp ^{3,25} 0.6417 sp ^{3,25} - 0.7670 sp ^{3,25} 0.6273 s	Basis set	Method	Name Bond	C1-S2	1 S2 - O10	ular S2 – C3	lecu C6-N7	Mo N7-C8	C8-S9	C1 – S3	S3 - O11	ulai S3 – C4	C7 – N8	Mo N8 - C9	C9-S10	 C1 = 32					Molecular 3 \$2 - 010 \$2 - 02 \$2 - 02 \$2 - 03 \$											
BD*	BLYP BD* BD* BD* BD* BD* BD* BD* BD	BD* BD* BD* BD BD BD BD BD BD B	B31 B10 0.7246 sp ^{3,47} + 0.6891 sp ^{4,48} 0.6132 sp ^{3,19} + 0.7899 sp ^{3,75} 0.6878 sp ^{4,48} + 0.7259 sp ^{3,66} 0.6250 sp ^{3,33} + 0.7806 sp ^{2,44} 0.7667 sp ^{1,52} + 0.6420 sp ^{1,5} 0.7375 sp ^{1,18} + 0.6753 sp ^{4,35} 0.7220 sp ^{3,71} + 0.6919 sp ^{4,40} 0.73897 sp ^{4,104} + 0.7241 sp ^{3,76} 0.6243 sp ^{3,24} + 0.7812 sp ^{2,44} 0.7668 sp ^{1,52} + 0.6419 sp ^{1,5} 0.7369 sp ^{1,18} + 0.7560 sp ^{4,43}			B3PW91	BD*	0.6891 sp ^{3.47} - 0.7246 sp ^{4.46}	0.7899 sp ^{3.19} - 0.6132 sp ^{3.75}	0.7259 sp ^{4.43} - 0.6878 sp ^{3.66}	0.7806 sp ³³³ - 0.6250 sp ²⁴⁴	0.6420 sp ^{1.52} - 0.7667 sp ^{1.16}	0.6753 sp ^{1.18} - 0.7375 sp ⁴³⁵	0.6919 sp ³⁷¹ - 0.7220 sp ⁴⁰⁰	0.7922 sp ^{3.15} - 0.6103 sp ^{3.65}	0.7241 sp ^{4.04} - 0.6897 sp ^{3.70}	0.7812 sp ^{3.34} - 0.6243 sp ^{2.44}	0.6419 sp ^{1.52} - 0.7668 sp ^{1.16}	0.6760 sp ^{1.18} - 0.7369 sp ⁴³⁴	0.6799 sp ^{2,99} - 0.7333 sp ⁴	0.6799 sp ^{2.59} - 0.7333 sp ⁴ 0.7908 sp ^{3.21} - 0.6121 sp ³	0.6799 sp ^{2,99} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,29} - 0.6897 sp ³	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,29} - 0.6897 sp ³ 0.7809 sp ^{3,23} - 0.6247 sp ²	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,59} - 0.6897 sp ³ 0.7809 sp ^{2,33} - 0.6247 sp ³ 0.6420 sp ^{1,25} - 0.7667 sp ¹	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,11} - 0.6121 sp ³ 0.7241 sp ^{4,39} - 0.6897 sp ³ 0.7809 sp ^{3,33} - 0.6247 sp ³ 0.6420 sp ^{1,23} - 0.7667 sp ¹ 0.6746 sp ^{1,16} - 0.7382 sp ⁴	0.6799 sp ^{2.59} - 0.7333 sp ^{3.} 0.7908 sp ^{3.21} - 0.6121 sp ^{3.} 0.7241 sp ^{4.39} - 0.6897 sp ^{3.} 0.7809 sp ^{3.23} - 0.6247 sp ^{3.} 0.6420 sp ^{1.25} - 0.7667 sp ^{1.} 0.6746 sp ^{1.16} - 0.7382 sp ^{4.} 0.6816 sp ^{3.59} - 0.7317 sp ^{4.}	0.6799 sp ²⁵⁹ - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,29} - 0.6897 sp ³ 0.7809 sp ^{3,23} - 0.6247 sp ² 0.6420 sp ^{1,23} - 0.7667 sp ¹ 0.6746 sp ^{1,16} - 0.7382 sp ⁴ 0.6816 sp ^{2,59} - 0.7317 sp ⁴ 0.7919 sp ^{3,33} - 0.6107 sp ³	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7908 sp ^{3,21} - 0.6897 sp ³ 0.7241 sp ^{4,39} - 0.6897 sp ³ 0.7809 sp ^{3,33} - 0.6247 sp ³ 0.6420 sp ^{1,52} - 0.7667 sp ¹ 0.6746 sp ^{1,62} - 0.7382 sp ⁴ 0.6816 sp ^{3,59} - 0.7317 sp ⁴ 0.7919 sp ^{3,33} - 0.6107 sp ³ 0.77222 sp ^{4,25} - 0.6917 sp ³	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,25} - 0.6897 sp ³ 0.7809 sp ^{3,25} - 0.6247 sp ³ 0.6420 sp ^{1,25} - 0.7667 sp ¹ 0.6440 sp ^{1,25} - 0.7382 sp ⁴ 0.6746 sp ^{1,16} - 0.7382 sp ⁴ 0.6816 sp ^{2,59} - 0.7317 sp ⁴ 0.77222 sp ^{4,25} - 0.6107 sp ³ 0.77222 sp ^{4,25} - 0.6917 sp ³ 0.7829 sp ^{3,35} - 0.6221 sp ²	0.6799 sp ^{3.99} - 0.7333 sp ^{4.} 0.7908 sp ^{3.21} - 0.6121 sp ³ 0.7241 sp ^{4.39} - 0.6897 sp ³ 0.7241 sp ^{4.39} - 0.6247 sp ³ 0.7809 sp ^{3.33} - 0.6247 sp ³ 0.6420 sp ^{1.23} - 0.7667 sp ⁴ 0.6746 sp ^{1.16} - 0.7382 sp ⁴ 0.6816 sp ^{5.97} - 0.7317 sp ⁴ 0.7919 sp ^{3.39} - 0.6107 sp ³ 0.7222 sp ^{4.29} - 0.6917 sp ³ 0.7829 sp ^{3.33} - 0.6221 sp ³ 0.6413 sp ^{1.39} - 0.7673 sp ^{4.39}	0.6799 sp ^{3.99} - 0.7333 sp ⁴ 0.7908 sp ^{3.21} - 0.6121 sp ³ 0.7241 sp ^{4.39} - 0.6897 sp ³ 0.7849 sp ^{3.23} - 0.6247 sp ² 0.6420 sp ^{1.23} - 0.7667 sp ¹ 0.6420 sp ^{1.23} - 0.7667 sp ¹ 0.6746 sp ^{1.16} - 0.7382 sp ⁴ 0.6816 sp ^{3.97} - 0.7317 sp ⁴ 0.7212 sp ^{4.23} - 0.6917 sp ³ 0.7829 sp ^{3.23} - 0.6221 sp ³ 0.7829 sp ^{3.23} - 0.6221 sp ³ 0.6413 sp ^{1.26} - 0.7673 sp ¹ 0.6413 sp ^{1.26} - 0.7673 sp ³	0.6799 sp ^{3.29} - 0.7333 sp ^{3.} 0.7908 sp ^{3.21} - 0.6121 sp ^{3.} 0.7241 sp ^{4.39} - 0.6897 sp ^{3.} 0.7241 sp ^{4.39} - 0.6247 sp ^{3.} 0.7809 sp ^{3.33} - 0.6247 sp ^{3.} 0.6420 sp ^{1.23} - 0.7667 sp ^{1.} 0.6416 sp ^{1.29} - 0.7317 sp ^{4.} 0.6816 sp ^{3.29} - 0.7317 sp ^{4.} 0.7919 sp ^{3.39} - 0.6107 sp ^{3.} 0.7922 sp ^{4.25} - 0.6917 sp ^{3.} 0.7829 sp ^{3.25} - 0.6221 sp ^{3.25} 0.7839 sp ^{3.25} - 0.6221 sp ^{3.25} 0.6413 sp ^{1.26} - 0.7673 sp ^{1.4} 0.6413 sp ^{1.26} - 0.7673 sp ^{3.4} 0.6323 sp ^{3.29} - 0.7311 sp ^{4.49}	0.6799 sp ^{2,59} - 0.7333 sp ⁴ 0.7908 sp ^{3,21} - 0.6121 sp ³ 0.7241 sp ^{4,59} - 0.6897 sp ³ 0.7241 sp ^{4,59} - 0.6897 sp ³ 0.7809 sp ^{3,33} - 0.6247 sp ³ 0.6420 sp ^{1,32} - 0.7667 sp ¹¹ 0.6746 sp ^{1,16} - 0.7382 sp ⁴ 0.6816 sp ^{2,59} - 0.7317 sp ³ 0.7919 sp ^{3,59} - 0.6107 sp ³ 0.7222 sp ^{4,28} - 0.6917 sp ³ 0.7829 sp ^{3,53} - 0.6221 sp ³ 0.6413 sp ^{1,58} - 0.7673 sp ¹ 0.6413 sp ^{1,58} - 0.7673 sp ³ 0.6823 sp ^{2,59} - 0.7311 sp ⁴ 0.6823 sp ^{2,59} - 0.7311 sp ⁴ 0.7921 sp ^{3,31} - 0.6104 sp ³	0.6799 sp ^{2,59} - 0.7333 sp ^{3,4} 0.7908 sp ^{3,21} - 0.6121 sp ^{3,7} 0.7241 sp ^{4,32} - 0.6897 sp ^{3,7} 0.7241 sp ^{4,32} - 0.6247 sp ^{3,4} 0.7809 sp ^{3,33} - 0.6247 sp ^{3,4} 0.6420 sp ^{1,23} - 0.7667 sp ^{1,1} 0.6418 sp ^{3,79} - 0.7317 sp ^{4,3} 0.6816 sp ^{3,79} - 0.7317 sp ^{3,79} 0.7919 sp ^{3,32} - 0.6107 sp ^{3,79} 0.7222 sp ^{4,22} - 0.6917 sp ^{3,79} 0.7829 sp ^{3,33} - 0.6221 sp ^{3,23} 0.6413 sp ^{1,25} - 0.7673 sp ^{3,79} 0.6728 sp ^{3,33} - 0.6104 sp ^{3,59} 0.7228 sp ^{4,31} - 0.6104 sp ^{3,59} 0.7228 sp ^{4,31} - 0.6911 sp ^{3,79}	0.6799 sp ^{2,59} - 0.7333 sp ^{4,4} 0.7908 sp ^{3,21} - 0.6121 sp ^{3,7} 0.7241 sp ^{4,30} - 0.6897 sp ^{3,7} 0.7809 sp ^{3,33} - 0.6247 sp ^{3,7} 0.6420 sp ^{1,25} - 0.7667 sp ^{1,1} 0.6426 sp ^{1,16} - 0.7382 sp ^{4,3} 0.6816 sp ^{3,97} - 0.7317 sp ^{3,7} 0.6816 sp ^{3,97} - 0.6107 sp ^{3,7} 0.7919 sp ^{3,33} - 0.6107 sp ^{3,7} 0.7922 sp ^{4,25} - 0.6107 sp ^{3,7} 0.7222 sp ^{4,25} - 0.6107 sp ^{3,7} 0.7222 sp ^{4,25} - 0.7317 sp ^{3,7} 0.7829 sp ^{3,33} - 0.6221 sp ^{2,3} 0.6413 sp ^{1,36} - 0.7379 sp ^{4,3} 0.6823 sp ^{2,39} - 0.7311 sp ^{3,4} 0.67921 sp ^{3,41} - 0.6104 sp ^{3,5} 0.7921 sp ^{3,41} - 0.6104 sp ^{3,5} 0.7923 sp ^{4,31} - 0.6104 sp ^{3,5} 0.7828 sp ^{4,31} - 0.6220 sp ^{3,5}	0.6799 sp ^{2,50} - 0.7333 sp ^{4,44} 0.6799 sp ^{2,50} - 0.6121 sp ^{3,73} 0.7908 sp ^{2,51} - 0.6247 sp ^{2,63} 0.7809 sp ^{3,53} - 0.6247 sp ^{2,63} 0.6420 sp ^{1,16} - 0.7382 sp ^{4,54} 0.6516 sp ^{2,50} - 0.6107 sp ^{3,70} 0.7919 sp ^{3,50} - 0.6107 sp ^{3,70} 0.7919 sp ^{3,50} - 0.6221 sp ^{2,50} 0.7922 sp ^{4,52} - 0.6221 sp ^{2,50} 0.7829 sp ^{3,50} - 0.6737 sp ^{1,16} 0.6413 sp ^{1,60} - 0.7379 sp ^{4,54} 0.6823 sp ^{2,50} - 0.7311 sp ^{4,50} 0.7921 sp ^{3,51} - 0.6104 sp ^{3,60} 0.7922 sp ^{4,52} - 0.6911 sp ^{3,70} 0.7828 sp ^{4,51} - 0.6911 sp ^{3,70} 0.7831 sp ^{3,51} - 0.6220 sp ^{2,56} 0.6413 sp ^{1,50} - 0.7373 sp ^{1,67}

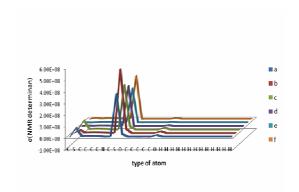

Finally Table 4 shows GIAO magnetic shielding for some of the atoms. As shown in table 4, in HF/6-31G and HF/6-31+G and BLYP methods for all of the molecules, and in B3LYP and B3PW91 methods for

molecular1, oxygen atom in (-C - SO -) group has negative magnetic shielding value, and in all of the methods for all of the atoms in all of the molecular, degeneracy value is equal to one.


Table 4. Relative GIAO Magnetic shielding for active site of studied molecules obtained using different methods

M	ethod			HF				B3LYP		BLYP		B3PW91	
Ba	sis set	6-31G		6-31G*		6-31+G				6-31G			
Name	atoms	Shielding (ppm)	Degeneracy	Shielding (ppm)	Degeneracy	Shielding (ppm)	Degeneracy	Shielding (ppm)	Degeneracy	Shielding (ppm)	Degeneracy	Shielding (ppm)	Degeneracy
Molecular 1	C(1) S(2) N(7) C(8) S(9) O(10)	175.19 461.46 155.51 58.34 745.96 -195.84	1 1 1 1 1 1	166.02 325.62 178.52 66.61 832.58 334.72	1 1 1 1 1 1	- - - -		147.64 202.70 158.72 69.17 724.50 -37.33	1 1 1 1 1	138.20 144.49 149.31 67.28 691.91 -41.59	1 1 1 1 1	152.76 233.71 162.75 73.21 740.67 -3.56	1 1 1 1 1 1
Molecular 2	C(1) S(3) N(8) C(9) S(10) O(11)	164.79 462.14 152.00 59.42 745.28 -64.17	1 1 1 1 1	159.94 337.75 175.89 67.24 832.58 372.74	1 1 1 1 1	37		135.21 212.14 155.70 69.12 725.84 32.74	1 1 1 1 1	122.94 112.14 148.79 67.01 690.56 -10.70	1 1 1 1 1	141.17 241.80 160.19 74.16 742.02 65.66	1 1 1 1 1 1
Molecular 3	C(1) S(2) N(7) C(8) S(9) O(10)	67.33 445.62 153.63 58.70 746.07 -80.87	1 1 1 1 1	62.52 312.14 177.91 67.24 832.58 334.69	1 1 1 1 1 1	- - - - -	- - - -	-		34.02 148.54 149.46 67.68 693.26 -26.50	1 1 1 1 1 1	50.38 251.24 160.92 73.90 742.02 59.48	1 1 1 1 1
Molecular 4	C(1) S(2) N(7) C(8) S(9) O(10)	75.69 434.61 151.09 58.70 746.07 -86.63	1 1 1 1 1	73.47 316.18 175.52 66.71 833.93 354.88	1 1 1 1 1 1	74.62 440.45 148.61 60.13 755.06 -105.96	1 1 1 1 1 1	53.80 209.44 155.98 70.02 729.89 9.89	1 1 1 1 1	44.22 117.53 149.41 68.13 698.65 -25.84	1 1 1 1 1	59.51 237.75 159.86 73.74 744.72 43.64	1 1 1 1 1
Molecular 5	C(1) S(2) N(7) C(8) S(9) O(10)	70.38 433.03 151.06 58.70 746.85 -77.33	1 1 1 1 1	65.75 316.18 175.50 66.70 833.93 356.64	1 1 1 1 1	69.43 438.65 148.49 60.13 755.06 -101.41	1 1 1 1 1	48.81 206.74 155.92 70.04 729.89 11.83	1 1 1 1 1 1	38.70 116.18 149.40 68.28 698.65 -23.59	1 1 1 1 1 1	53.84 236.40 159.52 73.40 744.72 46.36	1 1 1 1 1 1


Diagrams of chemical shifts for each molecule have been shown In Figures 2-6. As reported in this Figures, in all of the methods and in all of the molecules, S atom related to (- NCS) group has maximal chemical shifts. Also we have found that in all of the molecules, chemical shift for mentioned atom, in HF/6-31g* level is the largest than other used methods in this work.


Fig. 2. The graphs of chemical shifts for molecular 1. (a) HF/6-31g, (b) HF/6-31g*, (c) B3LYP/6-31g, (d) BLYP/6-31g, (e) B3PW91/6-31g.

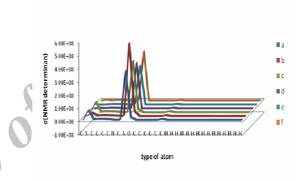

Fig. 3. The graphs of chemical shifts for molecular 2.(a) HF/6-31g , (b) HF/6-31g* , (c) B3LYP/6-31g, (d) BLYP/6-31g , (e) B3PW91/6-31g.

Fig. 4. The graphs of chemical shifts for molecular 3. (a) HF/6-31g, (b) HF/6-31g*, (c) BLYP/6-31g, (d) B3PW91/6-31g.

Fig. 5. The graphs of chemical shifts for molecular 4.(a) HF/6-31g , (b) HF/6-31g* , (c) HF/6-31+g , (d) B3LYP/6-31g , (e) BLYP/6-31g , (f) B3PW91/6-31g.

Fig. 6. The graphs of chemical shifts for molecular 5.(a) HF/6-31g , (b) HF/6-31g* , (c) HF/6-31+g , (d) B3LYP/6-31g , (e) BLYP/6-31g , (f) B3PW91/6-31G.

Finally Table 4 shows GIAO magnetic shielding for some of the atoms. As shown in table 4, in HF/6-31G and HF/6-31+G and BLYP methods for all of the molecules, and in B3LYP and B3PW91 methods for molecular1, oxygen atom in (-C-SO-) group has negative magnetic shielding value, and in all of the methods for all of the atoms in all of the molecular, degeneracy value is equal to one.

REFERENCES

- [1] Y. Zhang, Proc. Natl. Acad. Sci., 91 (1994) 3147.
- [2] E. Giovannucci, E. B. Rimm, Y. Liu, M. J. Stampfer, W. C. Willett, K. Yoshizawa, A. Ascherio, J. S. Morris, C. K. Baskett and J. Chen, Cancer Epidemiol Biomarkers Prev, (12) 2003, 1403.
- [3] Y. Zhang, Proc. Natl. Acad. Sci. 89 (1992) 2399.
- [4] J. W. Chiao, F. L. Chung, R. Kancherla, T. Ahmed, A. Mittelman and D. D. Conaway, Int J Oncol. 20 (2002) 631.
- [5] L. Gamet-Payrastre, P. Li, S. Lumeau, G. Cassar, M. A. Dupont, S. Chevolleau, N. Gase, J. Tulliez and F. Terce, Cancer Res. 60 (2000) 1426.
- [6] J. W. Fahey, X. Haristoy, P. M. Dolan, T. W Kensler, I. Scholtus, K. Stephenson, P. Talalay and A. Lozniewski, Proceedings of the National Academy of Sciences of the United States of America. 99 (2002) 7610.
- [7] S A Ritz, Am J Physiol Lung Cell Mol Physiol. 292 (2007) 33.
- [8] R. H. Dashwood, J Nutr. 136 (2006) 2681S.
- [9] J. M. Han, P J Pharmacol Exp Ther. 321 (2007) 249.
- [10] Z. Healy, Proc Nat. Acad. Sci. 102 (2005) 10410.

- [11] L. Wu, 101 (2004) 7094.
- [12] A. H. Conney, Cancer Res. 63 (2003) 7005.
- [13] S. J. T. Jckson and K. W. Singletary, J Nutr. 134 (2004) 2229.
- [14] S. Choi and S. V. Singh, Cancer Res. 65 (2005) 2035.
- [15] C. Adamo and V. Barone, J. Chem. Phys. 108 (1998) 664.
- [16] K. Burke, J. P. Perdew and Y. Wang. Electronic Density Functional Theory: Recent Progress and New Directions: New York, 1998.
- [17] J. P. Predew and Y. Wang, Phys. Rev. B. 45 (1992) 13244.
- [18] M. Monajjemi, B. Honaparvar, B. Khalili Hadad, A. R. Ilkhani and F. Mollaamin, African Journal of Pharmacy and Pharmacology. 4 (2010) 521.
- [19] M. Monajjemi, S. Afsharnezhad, M. R. Jaafari, T. Abdolahi, A. Nikosade and H. Monajemi, Russian Journal of Physical Chemistry A, 81 (2007) 1956.
- [20] M. Monajjemi, Sajadi, M.A.S. Sayadia, Main group metal chemistry, 28 (2005)
- [21] M. Monajjemi, R. Sayyadia, G. Ghasemi, Kh. Lalateh, A. Nouria and F. Naderi main group metal chemistry, 28 (2005) 247.
- [22] M. Monajjemi, E. Rajaeian, F. Mollamin, F. Naderi and S. Saki, 46 (2008) 299.