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Abstract. In this paper, we apply the Newton’s and He’s iteration formulas in order to
solve the nonlinear algebraic equations. In this case, we use the stochastic arithmetic and the
CESTAC method to validate the results. We show that the He’s iteration formula is more
reliable than the Newton’s iteration formula by using the CADNA library.
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1. Introduction

The stochastic arithmetic [6-10,17] covers a large part of the properties of exact
arithmetic, properties which are lost in the usual floating-point arithmetic. The
CADNA (control of accuracy and debugging for numerical application) library [18]
is a tool for automatic implementation of the stochastic arithmetic in any Fortran
or C programming language. By the use of CADNA library, it is possible during
the run of a program, to detect the numerical instabilities and to stop correctly
any iterative process. In short, the stochastic arithmetic serves to validate the
results provided by a computer, and to assure the user the reliability of scientific
computations.
The basic idea of the CESTAC (control et estimation stochastique des arrondis

de calculs) method [17] is to replace the usual floating-point arithmetic with a
random arithmetic. Consequently, each result appears as a random variable. Some
applications of the stochastic arithmetic have been presented in [1-4,9,11].
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In this paper, we apply the CADNA library order to find the real root of a
nonlinear equation based on the stochastic arithmetic. In this case, we consider
the well known Newton’s iteration formula [5] and the He’s iteration formula [12-
15]. In some examples. we illustrate that the He’s iteration formula is faster and
more accurate than the Newton’s iteration formula.
In section 2, a brief description of the stochastic arithmetic and the CESTAC

method are given. In section 3, the He’s iteration formula is introduced for solving
a nonlinear equation. In section 4, some numerical examples are tested by the
CADNA library and compare the results of both methods with each other and
show the effectiveness of the He’s iteration method.

2. CESTAC Method-Stochastic Arithmetic

Let F be the set of all the values representable in the computer. Thus, any value
r ∈
mathbbR is represented in the form of R ∈ F in the computer. It has been men-
tioned in [17] that in a binary floating-point arithmetic with p mantissa bits, the
rounding error stems from assignment operator is

R = r − ϵ2E−pα. (1)

In relation (1), ϵ is the sign of r and 2−pα is the lost part of the mantissa due to
round-off error and E is the binary exponent of the result. In single precision case,
p = 24 and in double precision case, p = 53. Also if the floating-point arithmetic
is as rounding to +∞ or −∞ then −1 6 α 6 1.
According to (1) , if we want to perturb the last mantissa bit of the value r, it

is sufficient that we change α in the interval [−1, 1]. In the CESTAC method if
the arithmetic is considered as rounding to +∞ or −∞ , α can be considered as
a random variable uniformly distributed on [−1, 1]. Thus R, the calculated result,
is a random variable and its precision depend s on its mean (µ) and its standard
deviation (σ).
The idea of the CESTAC method is to consider that every result R ∈ F of

a floating-point operation corresponds to two informatical results, one rounded
off from below (R−) , the second rounded off from above (R+), each of them
representing the exact arithmetical result r ∈ R , with equal validity. If a computer
program is performed N times, the distribution of the results Ri, i = 1, ..., N is
quasi-Gaussian which their mean is equal to the exact value r, that is E(R) = r
[6-8,17]. These N samples are used for estimating the values µ and σ.
In practice, the samples Ri are obtained by perturbation of the last mantissa bit

(or previous bits if necessary) of every result R, then the mean of random samples

Ri, that is R =
∑N

i=1 Ri

N , is considered as the result of an arithmetical operation.
If N = 3, it has been proved in [16] that the number of exact significant digits
common to R and to the exact value r can be estimated by,

CR,r = log10
| R |
σ

− 0.39. (2)

In relation (2), σ is the standard deviation of the samples Ri which is given by,

σ =

√∑N
i=1(Ri−R)

2

N−1 .
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In the CESTAC method if CR,r 6 0 or R = 0 then R is called an informatical
or stochastic zero. In this case, we write R = @.0 and it means the informatical
result R is insignificant.
In order to simultaneous implementation of the CESTAC method we should sub-

stitute a stochastic arithmetic in place of the floating-point arithmetic. In this way
every arithmetical operation is performed N times synchronously before running
the next operation. If N = 3, the relation (2) can be used to estimate the number
of exact significant digits of any result of any arithmetical operation. By using of
the stochastic arithmetic, sudden losses of accuracy, numerical instabilities, and the
appearance of an insignificant result (stochastic zero) are detected [17]. CADNA
library is a tool for automatic implementation of the stochastic arithmetic, i.e.
the automatic synchronous implementation of the CESTAC method. It enables a
user to run the scientific code with this new arithmetic on the computer, without
having to rewrite or even substantially modify the initial source code. This library
which was proposed by Chesneaux was created thanks to the any FORTRAN and
C programming languages. The detail information about the CADNA library and
its properties have been explained in [17,18].

3. He’s Iteration Method

Consider the nonlinear equation

f(x) = 0. (3)

The well-known Newton’s iteration formula for solving (3) is [5],

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, .... (4)

The iteration formula (4) is widely used in numerical calculations. But, this method
has some disadvantages [5]:
1) It is sensitive to initial guess x0,
2) In the case f ′(xn) ≈ 0, it may become an invalid method. To overcome these

shortcomings, many modifications of the Newton’s iteration method were proposed.
Among these methods the He’s iteration method is more effective [12-15]. This
method is based on the general Lagrange’s multiplier which is used to re-derive the
above formulation. If xn is an approximate root of Eq. (3) then, f(xn) ̸= 0. Now,
we write a correction equation in the form,

xn+1 = xn + λf(xn), (5)

where, λ is a general Lagrange multiplier [15], which can be identified optimally

by setting dxn+1

dxn
= 0. Therefore, we can identify the multiplier as follows:

λ =
−1

f ′(xn)
. (6)

By substituting the identified multiplier in (5), we obtain the well-known Newton’s
iteration formula. The above idea was first proposed by Inokuti [16], and was further
developed to the well-known variational iteration method by He [12-15]. Now, we
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rewrite the correction equation (5) in an alternative way [15] as follows,

xn+1 = xn + λf(xn)e
αxn , (7)

where, α is a free parameter. By setting dxn+1

dxn
= 0, we have

1 + αλeαxnf(xn) + λeαxnf ′(xn) = 0. (8)

From (8), we can identify the multiplier in the form of,

λ = − 1

eαxn(f ′(xn) + αf(xn))
. (9)

Therefore, we obtain the following iteration formula:

xn+1 = xn − f(xn)

f ′(xn) + αf(xn)
. (10)

The free parameter α can be used as a control parameter to adjust convergence in
each step if necessary. The relation (10) is called the He’s iteration formula which
is very effective when f ′(xn) is small.

4. Numerical Examples

In this section, four examples are evaluated to illustrate the effectiveness of the He’s
iteration method mentioned in (10) by using the CADNA library. The programs
have been provided with C++. The computed values have obtained by using the
Newton’s iteration method and He’s iteration method in the stochastic arithmetic.
The termination criterion in both methods is |xn − xn+1| = @.0. It means that
when the difference between two sequential results of the sequence is equal to the
informatical zero then the computations must be stop. In this case, the continuation
of execution is useless and n is the optimal step and xn is the optimal approximation
of the exact root.

Example 4.1 In this example, the root of the equation sinx = 0, with x0 = 1.6 and
α = −1 is computed. The exact root is x = π. In this case f ′(x0) is a small value.
The results are shown in tables 1 and 2 in single precision. The tables show that the
He’s iteration method is more accurate than the Newton’s iteration method. In this
case, the approximate root of the equation is 0.3141592E + 01 with optimal step
n = 5 using the He’s iteration method. But, the obtained result in the Newton’s
method is not reliable in this step.

Table 1. Newton’s iteration method in the stochastic arithmetic

for example 4.1

n xn |xn − xn+1| |xn − x|

1 0.35832E+02 0.34232E+02 0.32690407E+02
2 0.3255E+02 0.328E+01 0.29408407E+02
3 0.304E+02 0.24E+01 0.27258407E+02
4 0.320E+02 0.15E+01 0.28858407+E02
5 0.313E+02 0.6E+00 0.28158407E+02
6 0.314160E+02=@.0 @.0 0.28274407E+02
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Table 2. He’s iteration method in the stochastic arithmetic for

example 4.1

n xn |xn − xn+1| |xn − x|

1 0.2571617E+01 0.9716171E+00 0.5699756E+00
2 0.2962208E+01 0.390590E+00 0.1793846E+00
3 0.3115707E+01 0.1534991E+00 0.0258856E+00
4 0.3140945E+01 0.25237E-01 0.6E-6
5 0.3141592E+01 0.646E-03 @.0
6 0.3141592E+01 @.0 @.0

Example 4.2 In this example, the numerical solution of the equation x10 − 1 = 0
with x0 = 0.5 and α = −1 is considered. The exact solution is x = 1. The results
are shown in tables 3 and 4 in single precision. Tables 3 and 4 illustrate that the
He’s iteration method is more faster than the Newton’s iteration method. In this
case, the optimal step is n = 43 for the Newton’s method, but the optimal step is
n = 14 for the He’s iteration method.

Table 3. Newton’s iteration method in the stochastic arith-

metic for example 4.2

n xn |xn − xn+1| |xn − x|

1 0.516499 E+02 0.511499 E+02 0.506499E+02
2 0.464849 E+02 0.516499E+01 0.454849E+02
3 0.418364 E+02 0.464849 E+01 0.408364E+02
..
.

..

.
..
.

..

.
31 0.218955 E+01 0.243246 E+00 0.118955E+01
32 0.197068 E+01 0.218868 E+00 0.987068E+00
.
..

.

..
.
..

.

..
41 0.1000024 E+01 0.2292 E-02 0.24E-05
42 0.100000 E+01 0.23 E-04 @.0
43 0.1000000 E+01 @.0 @.0

Table 4. He’s iteration method in the stochastic arithmetic for ex-

ample 4.2

n xn |xn − xn+1| |xn − x|

1 0.517910 E +00 0.101791 E +01 0.48209E+00
2 0.1489135 E +01 0.9712247 E +00 0.1489135E+00
..
.

..

.
..
.

..

.
8 0.100671 E + 01 0.20439 E - 01 0.671E-02
..
.

..

.
..
.

..

.
12 0.1000005 E +01 0.30 E -04 0.5E-06
13 0.1000001 E +01 0.4 E -05 @.0
14 0.100000 E +01 @.0 @.0

Example 4.3 In this example, we approximate the root of the equation xsinx +
cosx = 0 with x0 = 1.0 and α = −1. The results are shown in tables 5 and 6 in
single precision. Tables 5 and 6 show that the He’s iteration method determines an
accurate solution but the Newton’s iteration method is not an appropriate method
to find the root of the equation. As we observe, the optimal step in the He’s iteration
method is n = 4 with approximate root 0.2798386E + 01. But, the result of the
Newton’s method is not correct.

Example 4.4 In this example, the numerical solution of the nonlinear equation
esinx − x = 0 with x0 = 1.0 and α = −1 is considered. The results are shown in
tables 7 and 8 in single precision. One can see the faster convergence of the He’s
iteration method.
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Table 5. Newton’s iteration method in the stochastic arith-

metic for example 4.3

n xn |xn − xn+1| |xn − x|

1 -0.155740E+01 0.255740+E01 0.43558E+01
2 0.7377E+02 0.7532E+02 0.709716E+02
3 0.56E+01 0.1E+02 0.28016E+01
4 0.56E+02 @ .0 —-

Table 6. He’s iteration method in the stochastic arithmetic

for example 4.3

n xn |xn − xn+1| |xn − x|

1 0.2642092E+01 0.164209E+01 0.156308E+00
2 0.2785316E+01 0.14322E+00 0.013084+00
3 0.2798278E+01 0.1296E-01 0.122E-03
4 0.2798386E+01 0.10E-03 0.14E-04
5 0.2798385E+01 @.0 @.0

Table 7. Newton’s iteration method in the stochastic arith-

metic for example 4.4

n xn |xn − xn+1| |xn − x|

1 -0.420867E+01 0.520867E+01 0.642777E+01
2 -0.11470E+01 0.30616E+01 0.33661E+01
3 0.70852E+00 0.1855584E+01 0.48942E+00
4 -0.19440E+01 0.26525E+01 0.41631E+00
..
.

..

.
..
.

..

.
18 0.2199422E+01 0.577091E-01 0.016678E+00
19 0.2219192E+01 0.2977E-03 0.92E-04
20 0.2219107E+01 0.850 E-06 0.7E-05
21 0.2219107E+01 @.0 @.0

Table 8. He’s iteration method in the stochastic arith-

metic for example 4.4

n xn |xn − xn+1| |xn − x|

1 0.213760E+01 0.123760E+01 0.534E-02
2 0.2218827E+01 0.1877E-01 0.273E-03
3 0.22191E+01 0.280E-03 @.0
4 0.2219107E+01 @.0 @.0

5. Conclusion

In this work, we observed that the He’s iteration formula can be faster and more
accurate method in comparison with the Newton’s iteration method to solve a non-
linear equation. In this case, we applied the stochastic arithmetic and the CESTAC
method to show the accuracy of the results. For this purpose, we use the CADNA
library to validate the results. We concluded that the He’s iteration formula is
a reliable method for finding the roots of a nonlinear equation, but the Newton’s
method maybe an invalid method. So, if we choose an appropriate value for the pa-
rameter α in the He’s iteration formula, we can ensure that the obtained sequence is
convergent and we achieve to the solution of the equation rapidly. Also, in the He’s
iteration method the optimal number of iteration is less than the Newton’s iteration
method with an accurate value for the root of a nonlinear equation. Throughout
this paper, we write E = ε(h) as shorthand for the inequality | E |6 chδ that c
and δ are positive constants.
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