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Abstract. This paper is evolved to have insight of Plankton-Nutrients interactions in the
presence of delay in the growth term of phytoplankton species .The conditions for asymptotic
stability about endemic equilibrium are derived in the absence of delay. The Nyquist criteria
is used to estimate the length of delay to preserve stability. Analytic criterion for the existence
of Hopf-bifurcation is also discussed.
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1. Introduction

Differential equations with delay in various interaction terms have already been
extensively used by many researchers to model population dynamics which also
includes plankton-nutrient interactions. Delayed models were initially proposed by
volterra [17, 18] to study the fish models. Many delayed biological models are the
monographs of Cushing[3], Gopalsamy [6] and Kuang [7]. They observed that the
delayed differential equation models exhibited more complicated dynamics than
ODE’s as time delay may transfer a stable equilibrium to unstable and induce
bifurcations. Moreover, the mathematical analysis of Plankton-Nutrient systems
has been studied by many authors [8–14]. A lot of work has also been done which
deals with physical and chemical aspects of phytoplankton growth [6]. Beretta et
al. [1] and Ruan [15] studied chemostat models to stimulate the growth of plankton
with limited nutrient supply at a constant rate and also studied the effect of delay
on the stability of the system by taking delay as bifurcation parameter. Das and
Ray[4] has studied a detritus based plankton system with delay on nutrient cycling
and showed that delay in nutrient cycling does not effect the stability of the system
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under certain conditions. In this paper we will investigate a Plankton-Nutrient
system with limited nutrient supply at a constant rate D0 with delay in the growth
term of phytoplankton species due to nutrient uptaking.
The deriving equations of the system considered are as follows:

dP

dt
= rDP (t− τ)− δ1P − β1

P

a+ P
Z (1)

dD

dt
= γ(D0 −D)− α1DP (2)

dZ

dt
= β2

P

a+ P
Z − δ2Z (3)

P (0) > 0, D(0) > 0, Z(0) > 0.

The following assumptions of the above model are made:
1. The variable P (t),Z(t) and N(t) are the population densities of the phytoplank-
ton, zooplankton and concentration of nutrient respectively at any time ′t′.
2. r is the growth rate of phytoplankton and γ the rate of replenishment of
nutrient. Here β1 and β2 are the grazing and conversion rate of the biomass by
zooplankton respectively (satisfying the condition β1 > β2).
3. D0 is the constant rate of nutrient supply,a is the half saturation constant
and α1 is uptaking rate of nutrients by the phytoplankton. Further δ1, δ2 are the
natural death rate of phytoplankton and zooplankton species respectively.

The initial conditions of the system (1 − 3) has the form P (θ) = ϕ1(θ),D(θ) =
ϕ2(θ) ,Z(θ) = ϕ3(θ), ϕ1(θ) ⩾ 0, ϕ2(θ) ⩾ 0, ϕ3(θ) ⩾ 0, θ ∈ [−τ, 0], ϕ1(0) ⩾ 0
, ϕ2(0) ⩾ 0 , ϕ3(0) ⩾ 0, where ϕ1(θ), ϕ2(θ), ϕ3(θ) ∈ C([−τ, 0], R3

+), the ba-
nach space of continuous functions mapping the interval [−τ, 0] into R3

+ where
R3

+ = {(x1, x2, x3) : xi ⩾ 0, i = 1, 2, 3}

Now from the fundamental theorem of differential equations the existence,
uniqueness and continuous dependence on initial conditions of the system (1)-(3)
are evidently satisfied. The solutions curves must be positive as the populations
has to survive[5, 6]. So in order to check the positivity we put the system of
equations in the matrix form Ẋ = F (X), where X = (P,D,Z)t ∈ R3 and

F (X) =

F1(X)
F2(X)
F3(X)

 =

P (t− τ)D − δ1P − β1
P

a+P Z

γ(D0 −D)− α1DP
β2

P
a+P Z − δ2Z

.
Let F : R3

+ → R3 be locally lipschitz and satisfy the condition Fi(X)Xi=0 ⩾
0, X ∈ R3

+, where R3
+ = [0,∞)3 a nonnegative octant in R3. Therefore by some

lemma in [19] and theorem A4 in [16], any solution of (1-3) with positive initial
conditions exist uniquely and each component of X remain in [0, k) for some k > 0
and if k < ∞ then lim sup[P +D + Z] = +∞.

2. Stability of Model without Delay

We will first recall a definition from [2, 7]
Definition.: The Equilibrium E∗ is called asymptotically stable if there exist a
K > 0 such that sup−τ≤θ≤0[|ϕ1(θ)− P ∗|+ |ϕ2(θ)−D∗|+ |ϕ3(θ)− Z∗|] < δ
which implies that limt→∞(P (t), D(t), Z(t)) = (P ∗, D∗, Z∗),
where(P (t), D(t), Z(t)) is the solution of the system (1 − 3) with given ini-
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tial conditions .

The boundary and planar equilibria of the system are E0 = (0, D0, 0) which

is always trivial, E1 =
(
γ(δ1−rD0)

α1δ1
, δ1r , 0

)
exists if rD0 < δ1 and an interior

equilibrium E∗ =
(

aδ2
β2−δ2

, γD0(β2−δ2)
γ(β2−δ2)+aα1δ2

, aβ2

β1
( rγD0

γ(β2−δ2)+aα1δ2
− δ1

β2−δ2
)
)

exist if

β2 > δ2 and rD0 ⩾ δ1(1 +
aα1δ2

γ(β2−δ2
) holds. Here we discuss the flow of the system

only around the interior equilibrium E∗. The characteristic equation of the system
about E∗ is given by∣∣∣∣∣∣∣

rD∗e−λτ − δ1 − aβ1Z∗

(a+P ∗)2 − λ rP ∗ − β1P ∗

a+P ∗

−α1D
∗ −γ − α1P

∗ − λ 0
aβ2Z∗

(a+P ∗)2 0 β2P ∗

a+P ∗ − δ2 − λ

∣∣∣∣∣∣∣ = 0

△(λ, τ) = λ3 +A1λ
2 +A2λ+A3 + (B1λ

2 +B2λ+B3)e
−λτ = 0, (4)

where A1 = γ + α1P
∗δ1 +

aβ1Z∗

(a+P ∗)2 + δ2 − β2P ∗

a+P ∗

A2 = (δ1 +
aβ1Z∗

a+P ∗ )(γ + α1P
∗ − β2P ∗

a+P ∗ + δ2) + (γ + α1P
∗)(δ2 − β2P ∗

a+P ∗ ) + rα1P
∗D∗ +

aβ1β2P ∗Z∗

(a+P ∗)3

A3 = rα1δ2P
∗D∗ + aβ1β2(γ+α1P ∗)P ∗Z∗

a+P ∗ + (δ1 + aβ1Z∗

a+P ∗ )(γ + α1P
∗)(δ2 − β2P ∗

a+P ∗ ) −
rα1β2P ∗2D∗

a+P ∗ .

B1 = −rD∗, B2 = rD∗( β2P ∗

a+P ∗ − δ2)− rD∗(γ + α1P
∗)

B3 = rD∗(γ + α1P
∗)( β2P ∗

a+P ∗ − δ2)

For τ = 0, the transcendental equation (4) reduces to following form

△(λ, 0) = λ3 +A1λ
2 +A2λ+A3 + (B1λ

2 +B2λ+B3) = 0. (5)

where, A1 +B1 = γ + β2−δ2
β2

+ aα1δ2
β2−δ2

+ [ rγ D0(β2−δ2)
γ(β2−δ2)+aα1δ2

− δ1] > 0

A2 +B2 = (a− 1)[ rγD0(β2−δ2)
γ(β2−δ2)+aα1δ2

− δ1][γ + aα1δ2
β2−δ2

] > 0,

A3 +B3 =
a2δ2β2

β2−δ2
[ rγ D0(β2−δ2)
γ(β2−δ2)+aα1δ2

− δ1](γ + aα1δ2
β2−δ2

) > 0.

Now by using Routh-Hurwitz Criteria we know that all the roots of equation (5)
have negative real parts i.e. the interior equilibrium E∗ is locally asymptotically
stable provided that the condition (A1 +B1)(A2 +B2)− (A3 +B3) > 0 holds.
Theorem 1: The sufficient conditions such that the endemic equilibrium E∗

exist and the system (1 − 3) will remain asymptotically stable around E∗ are
rγD0(β2−δ2)

γ(β2−δ2)+aα1δ2
⩾ δ1 , a > 1 and (δ1 + aδ)(β2 − δ2)

2 ⩾ a2δ2β2
2 and the populations

will also persistent.

3. Estimation of the Length of Delay to Preserve Stability

We consider the system (1−3) and the space of all real valued continuous functions

defined on [−τ,∞) , satisfying the given initial conditions on [−τ, 0].
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We linearize the given system about E(P ∗, D∗, Z∗) by using perturbations

x = P − P ∗, y = D −D∗, z = Z − Z∗

dx

dt
= a′x+ b′y + c′z + d′x(t− τ) (6)

dy

dt
= a′′x+ b′′y (7)

dz

dt
= a′′′x (8)

where a′ = −(δ1 + (β2−δ2)δ
β2

) , b′ = arδ2
β2−δ2

, c′ = −β1δ2
β2

, d′ = rγD0(β2−δ2)
γ(β2−δ2)+aα1δ2

,

a′′ = − γD0α1(β2−δ2)
γ(β2−δ2)+aα1δ2

, b′′ = (−γ − aα1δ2
β2−δ2

), a′′′ = (β2−δ2)δ
β1

, δ = rγD0(β2−δ2)
γ(β2−δ2)+aα1δ2

Taking laplace transform of the system (6− 8), we get

(s− a′ − d′e−sτ )x̄ = b′ȳ + c′z̄ + d′e−sτk1(s) + x(0)

(s− b′′)ȳ = a′′x̄+ y(0)

sz̄ = a′′′x̄+ z(0)

where

k1(s) =

∫ 0

−τ
e−stx(t)dt

and x̄, ȳ,z̄ are the laplace transform of x(t),y(t) and z(t) respectively.

Now following along the lines of [5]and using Nyquist criteria,it can be shown that

the condition for local asymptotic stability of E∗ is given by

ImH(iη0) > 0, (9)

ReH(iη0) = 0, (10)

where H(ϕ) = ϕ3 + A1ϕ
2 + A2ϕ + A3 + (B1ϕ

2 + B2ϕ + B3)e
−ϕτ and η0 is the

smallest positive root of(10).

In our case (9) and (10) give
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A3 −A1η
2
0 = B1η

2
0 cos η0τ −B3 cos η0τ −B2η0 sin η0τ, (11)

A2η0 − η30 > −B1η
2
0 sin η0τ +B3 sin η0τ −B2η0cosη0τ (12)

Sufficient conditions are given by if (11) and (12) are satisfied simultaneously.

We shall now from the above sufficient conditions give an estimate on the length

of delay.Our aim is to find an upper bound η+ on η0 independent of τ and then

to estimate τ so that (12) hold for all values of η ,0 ⩽ η ⩽ η+ and in particular at

η = η0. Now from (11),we have

A1η
2
0 = A3 +B3 cos η0τ +B2η0 sin η0τ −B1η

2
0 cos η0τ (13)

Maximizing A3+B3 cos η0τ +B2η0 sin η0τ −B1η
2
0 cos η0τ subject to | sin(η0τ)| ⩽ 1

, | cos(η0τ)| ⩽ 1 , we get

A1η
2
0 ⩽ A3 + |B3|+ |B2|η0 + |B1|η20 (14)

and if

η+ =
|B2|+

√
B2

2 + 4(A1 − |B1|)(A3 + |B3|)
2(A1 − |B1|)

(15)

we then have η0 ⩽ η+.

Now from (12), we can write

η20 ⩽ A2 +B1η0 sin η0τ +B2 cos η0τ −B3
sin η0τ

η0
(16)

As E∗ is locally asymptotically stable for τ = 0, thus for sufficiently small τ > 0,

inequality(14) will continue to hold.

Substituting (13) in (16) and rearranging we get,

(B3−A1B2−B1η
2
0)[cosη0τ−1]+[(B2−A1B1)η0+

A1B3

η0
] sin η0τ < (A1A2−A3−B3+A1B2+B2

1η0)

(17)

To find the upper bound of (17), we have

(B3−A1B2−B1η
2
0)[cos η0τ−1] = 2(B3−A1B2−B1η

2
0) sin

2 η0τ
2 ⩽ |B3−A1B2−B1η2

+|η2
+τ2

2
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and [(B2 −A1B1)η0 +
A1B3

η0
] sin η0τ ⩽ [|(B2 −A1B1)|η2+ +A1|B3|]τ ,

Thus (12) must be satisfied if we have K1τ
2 +K2τ < K3, where K1 = 1

2 |B3 −
A1B2−B1η

2
+|, K2 = |B2−A1B1|η2++A1|B3| and K3 = A1A2−A3−B3+A1B2+

B2
1η+.

Hence,if τ+ = 1
2K1

(−K2 +
√

K2
2 + 4K1K3),then stability is preserved for 0 ⩽ τ ⩽

τ+.

Thus we are now in a position to state the following lemma.

lemma1:If there exists a τ in 0 ⩽ τ ⩽ τ+ such that K1τ
2 +K2τ < K3,then τ+

is the maximum value of τ i.e. length of delay for which E∗ is asymptotically stable.

4. Stability Analysis and Bifurcation Results

Let us take τ ̸= 0, λ = u+ iv in (4) and separating the real and imaginary parts,we

get

u3 − 3uv2 +A1u
2 −A1v

2 +A2u+A3 + (B1u
2 −B1v

2 +B2u+B3)e
−uτ cos vτ+

(2B1uv +B2v)e
−uτ sin vτ = 0

(18)

and

−v3+3u2v+2A1uv+A2v−(B1u
2−B1v

2+B2u+B3)e
−uτ sin vτ+(2B1uv+B2v)e

−uτ cos vτ = 0

(19)

Let us take λ and hence u and v as a function of τ and we are interested to know

the change of stability around E∗ at some particular value of τ = τ̂ for which u = 0

and v ̸= 0 .

Therefore from equation (18) and (19) ,we have

A1v̂2 −A3 = (B3 −B1v̂2)cosv̂τ̂ +B2v̂sinv̂τ̂

v̂3 −A2v̂ = B2v̂ cos v̂τ̂ − (B3 −B1v̂2) sin v̂τ̂ (20)

Eliminating τ̂ from (20),we get an equation in v̂ as

v̂6 + (A2
1 − 2A2 −B2

1)v̂
4 + (A2

2 −B2
2 − 2A1A3 + 2B1B3)v̂2 +A2

3 −B2
3 = 0. (21)

and the value τ̂ of the form
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τ̂n =
1

v̂
arccos

(A1v̂2 −A3)(B3 −B1v̂2) + (v̂2 −A2v̂)B2v̂

(B3 −B1v̂2)2 + (B2v̂)2
+

2nΠ

v̂
, n = 0, 1, 2, 3, ....

(22)

This implies that as τ bifurcates from τ = 0, infinitely many branches of u(τ)

appears, of which one crosses u(τ) = 0 at each τn.To establish Hopf bifurcation at

τ = τn, we need to show that du(τ̂n)
dτ ̸= 0.From (18) and (19), differentiating with

respect to τ and setting u = 0 ,v = v̂ and τ = τ̂ ,we have

P du(τ̂)
dτ +Qdv(τ̂)

dτ = R,

−Q
du(τ̂)

dτ
+ P

dv(τ̂)

dτ
= S, (23)

where P = A2 − 3v̂2 + 2B1v̂ sin v̂τ̂ + (B1v̂2 −B3)τ̂ cos v̂τ̂ +B2 cos v̂τ̂ −B2v̂τ sin v̂τ̂

Q = −2A1v̂ +B2 sin v̂τ̂ + (B1v̂2 −B3)τ sin v̂τ̂ − 2B1v̂ cos v̂τ̂ +B2v̂τ cos v̂τ̂

R = −(B1v̂2 −B3)v̂ sin v̂τ̂ −B2v̂2 cos v̂τ̂ ,

S = B2v̂2sinv̂τ̂ − (B1v̂2 −B3)v̂ cos v̂τ̂ .

Now solving (23),we have

(
du(τ̂)

dτ
)τ=τ̂ =

RP −QS

P 2 +Q2
(24)

where du(τ̂)
dτ has the same sign as that of RP −QS.

Now

RP −QS = v̂2(3v̂4+2(A2
1−2A2−B2

1)v̂
2+(A2

2−B2
2 −2A1A3+2B1B3)) > 0 (25)

Suppose we let ϕ(z) = z3+(A2
1−2A2−B2

1)z
2+(A2

2−B2
2−2A1A3+2B1B3)z+A2

3−B2
3 ,

which is the left side of (21) with z = v̂2 and ϕ(v̂2) = 0.

Then from (24) and (25) , we have du(τ̂)
dτ = v̂2

P 2+Q2

dϕ
dz (v̂

2).

Hence if v̂ = v̂0 is the first positive root of (21) then du
dτ > 0 at τ = τ̂ and the

smallest τ̂ at which stability occur about E∗ is given by (22).

i.e. τ̂0 =
1
v̂0

arccos (A1v̂2
0−A3)(B3−B1v̂2

0)+(v̂2
0−A2v̂0)B2v̂0

(B3−B1v̂2
0)

2+(B2v̂0)2
.

www.SID.ir


Arc
hive

 of
 S

ID

www.SID.ir

8 A. K. Sharma and A. Sharma/ IJM2C, 03 - 01 (2013) 1-9.

Theorem2: Let v̂ = v̂0 be the first positive root of Equation (21), then a Hopf

bifurcation occurs and the interior equilibrium E∗ becomes unstable as τ passes

through.

Figure 1. Numerical solution of the system at τ = 7 shows increasing oscillations which disappear in 2(a)
and 2(b) with same set of parameters.

Figure 2. Figure 3(a) and3(b) gives numerical solutions calculated at τ = 64 ,which again showing the
convergent nature of the trajectories around E∗ with same set of values of parameters

5. Conclusion

In this paper, we first obtained the conditions for local stability of the system

about the interior equilibrium i.e.E∗ in the absence of delay and it had been shown

through numerical simulation in figure 1 for suitable set of parameters. Further it

was established that the delay in the system did not disturb its stability so long it

had been satisfying the stability conditions given in lemma-3 for how so ever long

the value of delay may be taken and can be verified through numerical simulation

in figure 2 , 3 and 4 where the population exhibit small amplitude oscillations

around their steady-state value and disappeared after certain time.The length of

delay for preserving the stability of the system is also estimated.The critical value

of the delay i.e. τ=τ̂0 has also been calculated for the existence of small amplitude

oscillations by considering delay as a bifurcation parameter.
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Figure 3. 3D graph shows small amplitude oscillations of Phytoplankton,Nutrient and Zooplankton in
figure 4(a),4(b) and 4(c), which disappear after certain time.
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