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Abstract. Integrating various suppliers to satisfy market demand is of great importance
for effective supply chain management. In this paper, we consider the ODE-PDE model of
supply chain and apply a classical explicit fourth-order Runge-Kutta scheme for the related
ODE model of suppliers. Also, the convergence of the proposed method is proved. Finally
a numerical example is studied to demonstrate the accuracy of the proposed method with
different choices of time and space meshes.
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1. Introduction

A supply chain is a network, which consists of all stages (e.g. order processing,
purchasing, inventory control, manufacturing, and distribution) involved in
producing and delivering a final product or service. The entire chain connects
customers, retailers, distributors, manufacturins and/or suppliers, beginning with
the creation of raw material or component parts by suppliers and ending with
consumption of the product by customers. Supply chain management (SCM) is
related to the coordination of materials, products and information flows among
suppliers, manufacturers, distributors, retailers and customers (Simchi-Levi,
Kaminsky, & Simchi-Levi,2000). Meanwhile, supply chain management (SCM)
has been of a great importance in competitive strategy to enhance organizational
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productivity and profitability. Researchers have paid much attention to issuse
concerning supply chain due to demand of market [11]. It is obvious that increase
of company competition among supply chains highlights the importance of
using a proper system for evaluating its performance to recognize competition
improvement opportunity. Recently, numerical analysis is of great importance for
effective supply chain management.

For instance, [8] and [4] ODE-PDE approaches can be used to existence sup-
ply chains. They describe a scheme based on upwind and explicit Euler method [4].

The ODE-PDE model for supply chain first proposed in [5], beside the conser-
vation laws formulation proposed in [4] by difference method Euler, in order to
increase the accuracy of the results in this work, we used classical explicit fourth-
order Runge-Kutta method and provide convergence of the method with Lipschitz
condition.
This study is fundamental in order to reduce some unwished phenomena (bottle-
necks, dead times, and so on). The outline of the paper is as follows: In section
2, we present the ODE-PDE model. Then section 3 describes the convergence and
the results of discussions are presented in section 4.

2. Successive Processors

In this section, the supply chain network model introduced and investigated in [5]
and extend the existence results obtained therein.

First, we consider n supply chains with j suppliers, where every supplier j is only
linked with the previous supplier j − 1. See also Figure 1.

Figure 1. Supply chain network model

2.1 The Model

In this section, we present an ODE-PDE model for supply chains first proposed in
[5]. A supply chain is a directed graph consisting of arcs, ζ = 1, · · · , N and vertices
ν = 1, · · · , N − 1. Each arc j ∈ ζ, parameterized by an interval [aj , bj ], models
a supplier. Each vertex is connected to one incoming arc and one outgoing arc,
and we assume that arcs are consecutively labeled; i.e., arc j is connected to arc
j + 1 and aj = bj−1. such a model includes time-dependent queues describing the
transition of parts among suppliers. Moreover a simulation algorithm using Go-
dunov scheme with boundary conditions at junctions was implemented and tested.
A mathematical model describing supply chains where every supplier consists of a
processor characterized by its processing time Tj > 0, its maximal processing rate
µj > 0 and ρj(x, t) densites of parts in the supplier j at point x and time t. For
computing the time evolution of every part the modelling of queues is essential.
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By assuming FIFO (=First In First Out) policy two cases of queue states can be
distinguished: either the queue is empty or non-empty. If the queue is empty, part
x is directly given into the processor j and is produced with time qj(t). Otherwise
the queue is non-empty, so part (x, t) has to wait its time of waiting is the inverse

of the processing rate. The rate Lj

Tj
represents the processing velocity. Now, the

dynamics of each processor on an arc j by a conservation law,

∂tρj(x, t) + ∂xfj(ρj(x, t)) = 0 ∀x ∈ [aj , bj ], t > 0, (1)

where the flux function fj(ρj(x, t)) is given by

fj : [0,∞) → [0, µj ] , fj(ρj(x, t)) = min{µj ,
Lj

Tj
ρj(x, t)}

Each queue buffer occupancy is a time-dependent function t → qj(t) [4].
We have

d
dtqj(t) = fj−1(ρj−1(bj−1, t))− fj(ρj(aj , t)) (2)

where fj−1(ρj−1(bj−1, t)) is defined by the evolution on supplier j − 1, while the
flux on the outgoing arc j is defined [4] as

fj(ρj(aj , t)) =

{
min{fj−1(ρj−1(bj−1, t)), µj}, qj = 0,
µj , qj > 0.

(3)

This allows for the following interpretation: If the outgoing buffer is empty, we
process as many parts as possible, but at most µj . Notice that the flux fj(j(aj , t))
depends on the capacity of the queue: If the queue buffer is empty, the inflow to
supplier j is equal to the outflow from supplier j − 1.

Finally, the complete system of equations is

∂tρ(x, t) + ∂xmin{µj ,
Lj

Tj
ρj(x, t)} = 0 , ∀x ∈ [aj , bj ], T > 0, j ∈ ζ, (4)

ρj(0, x) = ρj,0(x) ⩾ 0, ∀x ∈ [aj , bj ], (5)

d

dt
qj(t) = fj−1(ρj−1(bj−1, t))− fj(ρj(aj , t)), j = 2, ..., N, (6)

qj(0) = qj,0 ⩾ 0, (7)

fj(ρj(aj , t)) =

{
min{fj−1(ρj−1(bj−1, t)), µj}, qj(t) = 0,
µj , qj(t) > 0.

(8)

Lemma 2.1 Consider a supply chain evolution ρj(x, t), qj(t), i.e., a solution to
(4)-(8). Then, for every j ∈ ζ, t ⩾ 0, and x, it holds ρj(x, t) ⩾ 0, qj(t) ⩾ 0 [4].
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2.1.1 Discretization upwind method:

We describe the upwind method with various possible discretizations for the
equation (1) by the assumption (x, t) = (xi, tn) and for each arc j ∈ ζ, define a
numerical grid in [0, Lj ]× [0, T ] using the following notation [4]:

• ∆xj = Lj

Nj
is the space grid mesh, where Nj is the number of segments into

which we divide the jth supplier;

• ∆tj = T
ηj

is the time grid mesh, where ηj denotes the number of segments into

which [0, T ] is divided;

• (xi, t
n)j = (i∆xj , n∆tj), i = 0, · · · , Nj and n = 0, · · · , ηj are the grid points;

• jρni is the value taken by the approximated density at the point (xi, t
n)j ;

• qnj is the value taken by the approximate queue buffer occupancy at time tn.

Now, discretization (1):

ρj(xi,tn+1)−ρj(xi,tn)
∆t +

Lj

Tj
[ρj(xi,tn)−ρj(xi−1,tn)]

∆x = 0 j ∈ ζ , i = 0 · · · , Nj , n = 0, · · · ηj .

ρj(xi,tn+1)−ρj(xi,tn)
∆t + Lj

Tj

[ρj(xi,tn)−ρj(xi−1,tn)]
∆x = 0,

ρj(xi, tn+1)− ρj(xi, tn) +
Lj∆t
∆xTj

[ρj(xi, tn)− ρj(xi−1, tn)] = 0,

with the strengthening factor condition given by

∆t ⩽ ∆x

maxj
Lj

Tj

. (9)

Therefore, we have:

jρn+1
i =j ρni − ∆t

∆x

Lj

Tj
(jρni −j ρni−1), j ∈ ζ , i = 0 · · · , Nj , n = 0, · · · ηj . (10)

2.1.2 classical explicit fourth- order Runge-Kutta method

The classical explicit fourth-order Runge-Kutta method has been proposed in
[3].
We apply this method for (2).

Let t = tn

L1 = ∆t[fj−1(ρj−1(bj−1, tn))− fj(ρj(aj , tn))], (11)

L2 = ∆t[fj−1(ρj−1(bj−1, tn) +
L1

2
)− (fj(ρj(aj , tn) +

∆t

2
)], (12)

L3 = ∆t[fj−1(ρj−1(bj−1, tn) +
L2

2
)− (fj(ρj(aj , tn) +

∆t

2
)], (13)
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L4 = ∆t[fj−1(ρj−1(bj−1, tn) + (fj(ρj(aj , tn) + L3)]. (14)

Then, we have

qj(tn+1) = qj(tn) +
1

6
(L1 + 2L2 + 2L3 + L4). (15)

2.1.3 Correction of numerical fluxes in the case of negative queues

The ODE numerical scheme does not necessarily maintain the positivity prop-
erties of the true solutions given by Lemma 2.1. Thus, we thus modify the Runge-
Kutta scheme so as to accomplish positivity of queue buffer occupancies. Consider
a supplier j and a time interval [tn, tn+1] so that qn+1 < 0 < qn, then we define
qj(t) for every time t by linear interpolation namely,

qj(t) =
qn+1
j − qnj

∆t
t+

qnj t
n+1 − qn+1

j tn

∆t
, t ∈ [tn, tn+1]. (16)

Then, q(0) vanishes at some time t > tn, which is computed by (16) correcting
to zero qj(t), t ∈ [t, tn+1] the following numerical correction for the entering flux
fn
j,inc is needed [4]:

fn
j,inc =

1

∆t
[∆t′µj + (∆t−∆t′)fn

j−1,out]. (17)

We define,

t = tn +∆t′,

which is computed by (15) and (16):

∆t′ =
∆tqnj

qn+1
j − qnj

=
∆tqnj

1
6(L1 + 2L2 + 2L3 + L4)

. (18)

The correction (18) on the boundary incoming data for the supplier j influences
the approximation of alternative classical explicit Runge-Kutta numerical method
for avoiding negativity of queues is the use of adaptive time meshes, where ∆t is
replaced by ∆t′ computed in (18).

3. Convergence

The aim of this section is to study the convergence of the upwind- classical explicit
Runge-Kutta numerical method.
We also consider the following single-step method:

qj(tn+1) = qj(tn) + ∆tΦ(xj , qj ,∆t), (19)

Comparing (15) and (19), we conclude that the fourth-order Runge-Kutta
method term:

Φ(xi, qj ,∆t) =
1

6∆t
[L1 + 2L2 + 2L3 + L4]. (20)
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On the other hand, we have the following equation (2) if flux fj−1, fj and Li, i =
1, · · · , 4 satisfies the Lipschitz condition,

|(fj−1(ρj−1(bj−1, t))− fj(ρj(aj , t)))− (fj−2(ρj−2(bj−2, t))− fj(ρj(aj , t))|
⩽ L|fj−1(ρj−1(bj−1, t))− fj−2(ρj−2(bj−2, t))|.

then, we apply the flux fj−1, fj and Li, i = 1, · · · , 4 to Runge-Kutta method.
So, the taylor series expansion has the following differential equation

q(tj+1) = q(tj +∆t) = q(tj) + ∆tq′(tj) +
∆t2

2
q′′(tj) + · · ·

Then, we have the following equation(11), (12), (13), (14)

|L1 − L∗
1| = ∆t|(fj−1(ρj−1(bj−1, t))− fj(ρj(aj , t)))− (f∗

j−1(ρj−1(bj−1, t))− fj(ρj(aj , t)))|
⩽ ∆tL|(fj−1(ρj−1(bj−1, t)))− f∗

j−1(ρj−1(bj−1, t))|,
(21)

|L2 − L∗
2| = ∆t|(fj−1(ρj−1(bj−1, t)) +

1
2L1)− (fj(ρj(aj , t)) +

1
2∆t)−

((f∗
j−1(ρj−1(bj−1, t)) +

1
2L

∗
1)− (fj(ρj(aj , t)) +

1
2∆t)|

⩽ ∆tL{|(fj−1(ρj−1(bj−1, t)))− f∗
j−1(ρj−1(bj−1, t))|+ 1

2 |L1 − L∗
1|}

⩽ ∆tL{|(fj−1(ρj−1(bj−1, t)))− f∗
j−1(ρj−1(bj−1, t))|+

1
2(∆tL|(fj−1(ρj−1(bj−1, t)))− f∗

j−1(ρj−1(bj−1, t))|}
⩽ ∆tL(1 + 1

2∆tL)|(fj−1(ρj−1(bj−1, t)))− f∗
j−1(ρj−1(bj−1, t))|,

(22)

|L3 − L∗
3| = ∆tL|(fj−1(ρj−1(bj−1, t)) +

1
2L2)− (fj(ρj(aj , t)) +

1
2∆t)−

|(f∗
j−1(ρj−1(bj−1, t)) +

1
2L

∗
2)− (fj(ρj(aj , t)) +

1
2∆t)

⩽ |∆L{|fj−1(ρj−1(bj−1, t))− f∗
j−1(ρj−1(bj−1, t))|+ 1

2 |L2 − L∗
2|

With replacing (21) and (22):
⩽ ∆tL{1 + 1

2∆tL(1 + 1
2∆tL)}|(fj−1(ρj−1(bj−1, t)))−

f∗
j (ρj(aj , t))|,

(23)

|L4 − L∗
4| ⩽ ∆tL{1 + 1

2
∆tL(1 +

1

2
∆tL)}|(fj−1(ρj−1(bj−1, t)− f∗

j (ρj(aj , t))|. (24)

Now we can prove ∆t → 0 (20), (21), (22), (23) and (24) applies Lipschitz
condition

|Φ(xj , qj ,∆t)− Φ∗(xj , qj ,∆t)| = 1
∆t |(

1
6L1 +

2
6L2 +

2
6L3 +

1
6L4)− 1

6(L
∗
1 + 2L∗

2 + 2L∗
3 + L∗

4)|
= 1

6 |(L1 − L∗
1) + 2(L2 − L∗

2) + 2(L3 − L∗
3) + (L4 − L∗

4)|
⩽ 1

∆t{
1
6 |L1 − L∗

1|+ 2
6 |L2 − L∗

2|+ 2
6 |L3 − L∗

3|+ 1
6 |L4 − L∗

4|},

by (21),(22), (23) and (24):

|Φ− Φ∗| ⩽ L{1 + 1

6
∆tL+

1

6
∆t}|(fj−1(ρj−1(bj−1, t)))− f∗

j−1(ρj−1(bj−1, t))|,
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if ∆t → 0

|Φ− Φ∗| ⩽ L|(fj−1(ρj−1(bj−1, t)))− f∗
j−1(ρj−1(bj−1, t))|.

Therefore, the convergence of the method is proved.

4. Numerical Results

The exmaple we consider is similar to the one in [1], a supply chain with N = 4
suppliers and the following parameters: Lj = Tj = 1 and j = 1, · · · , 4.

We discretizate the system (15) using an upwind-scheme for upwind- classical ex-
plicit Runge-Kutta method. Numerical exmaple for negative queue buffer occupan-
cies. Therein, each arc j could have different space increments, namely ∆xj =

Lj

Nj
,

where Nj is the number of space discretization points. the time steps ∆t are con-
stant and satisfy the amplification factor condition on each arc.
The program has been provided with Matlab 7.12 to compare the results with [4].
We conclude the following: Consisting of maximal fluxes, processing times, and
lengths of each supplier are reported in Table 1.

Table 1. A supply chain

with N=4 suppliers.

Supplier µj Tj Lj

1 99 1 1
2 12 1 1
3 10 1 1
4 8 1 1

For the first arc the inflow profile with a lotof simulation time T = 300 (given
by [4] to fix notation), let us define the following [4]:
Different Spatial Steps Method (DSSM): Upwind scheme for densities, equation
(10) the numerical grid, is defined by choosing a fixed time grid mesh ∆t; then
different space grid meshes are necessary.
Different Temporal Steps Method (DTSM): Upwind method for densities, equation
(10) the numerical grid, is defined by choosing a fixed space grid mesh ∆x; then
different time grid meshes are necessary.

Table 2. CPU times and L1errors using DSSM

∆t ∆x1 ∆x2 ∆x3 ∆x4 CPU proposed method Method in[4]
L1errors L1errors

0.00625 0.00625 0.00125 0.00125 0.00125 1.671 0.0021 0.0029
0.0125 0.0125 0.0025 0.0025 0.0025 0.140 0.0115 0.027847
0.025 0.025 0.005 0.005 0.005 0.046 0.01982 0.132399
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Table 3. CPU times and L1errors using DTSM

∆x ∆t1 ∆t2 ∆t3 ∆t4 CPU proposed method Method in[4]
L1errors L1errors

0.00625 0.0025 0.01875 0.0125 0.00625 0.828 0.00162 0.003435
0.0125 0.05 0.00375 0.0025 0.00125 0.140 0.03132 0.059411
0.025 0.1 0.075 0.05 0.025 0.046 0.07581 0.127714

5. Conclusion

A manufacturer can determine few suppliers to build a long-term close relationship
with them. The proposed method has been applied to find approximate solutions
of classical explicit fourth-order Runge-Kutta method. The method is based on
computing the coefficients in the upwind-Euler scheme for an ODE-PDE model of
supplier by classical explicit fourth-order Runge-Kutta method. It is observed that
the method has the best advantage when the known functions in an equation can
be expanded to using iterative methods which converge rapidly. The method can
be developed and applied to supply chain.
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