International Journal of Mathematical Modelling & Computations Vol. 03, No. 02, 2013, 95-98

Certain Sufficient Conditions for Close-to-Convexity of Analytic Functions

I. Kala Tripathi^{a,*} and Nimisha^b

^aDepartment of Applied Mathematics, GNIT, Greater Noida, U.P., India; ^bDepartment of Applied Mathematics, SDCET, U.P., Ghaziabad, India.

Received: 23 March 2013; Accepted: 28 July 2013.

Abstract. The object of this paper is to derive certain sufficient conditions for close-toconvexity of certain analytic functions defined on the unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$.

Keywords: Discrete Markovian service process; N threshold policy; Finite buffer;Queue; Supplementary variable

Index to information contained in this paper

- 1. Introduction
- 2. Main Results
- 3. Conclusion
- 4. Acknowledgement

1. Introduction

Let $\mathcal{H}(\Delta)$ be the class of analytic functions in the unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}[a, n]$ be the subclass of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. We denote $\mathcal{H} = \mathcal{H}[1, 1]$. Let \mathcal{A} denote the subclass of \mathcal{H} normalized by the conditions f(0) = 0 = f'(0) - 1. Thus, the class \mathcal{A} consists of the functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1)

Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions.

A function $p(z) = 1 + p_1 z + p_2 z^2 + ...$ is said to be in the class \mathcal{P} if $\operatorname{Re} p(z) > 0$. For two analytic functions f and g, we say that f is subordinate to g or g is superordinate to f, denoted by $f \prec g$, if there is a Schwarz function w with $|w(z)| \leq |z|$ such that f(z) = g(w(z)). If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(\Delta) \subseteq g(\Delta)$. A function $f \in \mathcal{A}$ is starlike if $f(\Delta)$ is starlike domain with respect to 0, and a function $f \in \mathcal{A}$ is convex if $f(\Delta)$ is a convex domain. Analytically, the

^{*}Corresponding author. Email: indukala_tripathi@yahoo.com

prerequisites are equivalent to the following conditions $\frac{zf'(z)}{f(z)} \in \mathcal{P}$ and $1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}$, respectively. The class of starlike and convex functions of order $\alpha, (0 \leq \alpha < 1)$ is defined as follows:

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha$$

and

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha$$

These classes are denoted by $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ respectively. The class of close to convex functions is defined by

$$\mathcal{C}(\alpha) := \{ f : f \in \mathcal{A}; \text{and } \operatorname{Re}\left(\frac{f'(z)}{g'(z)}\right) > \alpha, z \in \delta, 0 \leqslant \alpha < 1; g \in \mathcal{K} \}.$$

It is well known [1] that $f \in \mathcal{K}(\alpha) \Leftrightarrow zf'(z) \in \mathcal{S}^*(\alpha)$. Thus, if $f \in \mathcal{S}^*(\alpha)$, then $f \in \mathcal{C}(\alpha).$

The following Lemma is needed in the present investigation:

LEMMA 1.1 [2, 3] Let the function w(z) be analytic in δ with w(0) = 0. If |w(z)|attains its maximum value on the circle |z| < 1 at a point $z_0 \in \Delta$, then $z_0 w'(z_0) =$ $cw(z_0)$, where $c \ge 1$.

2. Main Results

THEOREM 2.1 Let $c \ge 1$ and one of the following conditions holds

- (1) A = 1, 0 < B < 1(2) $0 < A < 1, 0 \leq B < A$.

If the function $f \in \mathcal{A}$ satisfies the inequality

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f(z)}\right) > 1 + \frac{Ac}{1+A} + \frac{(1+A)Bc}{(1+B)^2} \ (z \in \Delta),$$

then

$$|f'(z) - 1| < |A - Bf'(z)|.$$

Proof Let the function w be defined as

$$f'(z) = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad w(z) \neq -\frac{1}{B}.$$
(2)

Then, clearly w is analytic in the unit disk Δ with w(0) = 0. From (2), by a simple computation, we get

$$1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{Azw'(z)}{(1 + Aw(z))} - \frac{Bzw'(z)}{(1 + Bw(z))}.$$
(3)

Suppose that there is a point z_0 in the unit disk Δ with the properties $|w(z_0)| = 1$ and |w(z)| < 1, whenever $|z| < |z_0|$. Now, from the Lemma 1.1, we have

$$z_0 w(z_0) = c w(z_0), (c \ge 1, w(z_0) = e^{i\theta}, \theta \in \mathbb{R}).$$

$$\tag{4}$$

From (3) and (4), we obtain

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = 1 + \frac{Ac(\cos(\theta) + A)}{1 + A^2 + 2A\cos(\theta)} - \frac{Bc(\cos(\theta) + B)}{1 + B^2 + 2B\cos(\theta)} := u(\theta).$$

A simple calculation shows that $u(\theta)$ attains its maximum at $\theta = 0$ and

$$\max_{\theta \in \mathbb{R}} \{ u(\theta) \} = 1 + \frac{Ac}{1+A} + \frac{(1+A)Bc}{(1+B)^2}.$$

Which is a contradiction to our hypothesis. Thus, |w(z)| < 1, $z \in \Delta$ which implies that |f'(z) - 1| < |A - Bf'(z)|. This completes the proof.

If we set B = 0 in the Theorem 2.1, then we have:

COROLLARY 2.2 Let $c \ge 1$ and 0 < A < 1. If the function f $\in \mathcal{A}$ satisfies the inequality

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f(z)}\right) > 1+\frac{Ac}{1+A} \ (z \in \Delta),$$

then

$$\operatorname{Re}(f'(z)) > 1 - A.$$

Which equivalently can be written as $f \in C(1 - A)$. If we set A = 1/2 and c = 1 in the Corollary 2.2, then we have:

COROLLARY 2.3 If the function $f \in \mathcal{A}$ satisfies the inequality

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f(z)}\right) > 2.33 \quad (z \in \Delta),$$

then

$$\operatorname{Re}(f'(z)) > 1/2.$$

Which equivalently can be written as $f \in \mathcal{C}(1/2)$. Setting A = 1 in the Theorem 2.1, we have:

COROLLARY 2.4 Let $c \ge 1$ and 0 < B < 1. If the function $f \in A$ satisfies the inequality

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f(z)}\right) > 1 + \frac{c}{2} + \frac{2Bc}{(1+B)^2} \ (z \in \Delta),$$

then

$$|f'(z)| < \frac{2}{1-B}.$$

Setting B = 1/2 and c = 2 in the above corollary, we have: COROLLARY 2.5 If the function $f \in \mathcal{A}$ satisfies the inequality

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f(z)}\right) > 2.88 \quad (z \in \Delta),$$

then

$$|f'(z)| < 4.$$

3. Conclusion

In this paper several sufficient conditions for close-to-convexity of analytic functions are obtained. Further this paper leaves a scope to the researchers to discuss more general results in this direction using differential subordination.

4. Acknowledgement

The authors are thankful to the reviewer/refree for valuable comments.

References

- Duren P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
- [2] Jack I.S., Functions starlike and convex of order α , J.London Math. Soc., **3(2)** (1971) 400-474.
- [3] Miller S. S. and Mocanu, Second order differential inequalities in the complex palne, J.Math. Anal.Appl. **65**, (1978) 289-305.