

Association of PIT1 Gene with Milk Fat Percentage in Holstein Cattle Z. Ebrahimi Hoseinzadeh¹, M.R. Mohammadabadi^{1*}, A. Esmailizadeh **Research Article** Koshkuieh¹, A. Khezri¹ and A. Najmi Noori² Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran Department of Animal Science, Yasouj University, Yasouj, Iran Received on: 27 Aug 2014 Revised on: 25 Oct 2014 Accepted on: 15 Nov 2014 Online Published on: Sep 2015 *Correspondence E-mail: mrm@uk.ac.ir © 2010 Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran Online version is available on: www.ijas.ir ABSTRACT The pituitary-specific transcription factor (PIT1) gene is responsible for pituitary development and hormone secreting gene expression in mammals. PIT-1 is studied as a candidate genetic marker for growth, carcass

and also for milk yield traits. In dairy farm animals, the principal goal of the selection is the improvement of milk yield and composition. The genes of milk proteins and hormones are excellent candidate genes for linkage analysis with quantitative trait loci (QTL) because of their biological significance on the quantitative traits of interest. Thus, in this study association between polymorphism of the pituitary transcription factor 1 (PIT1) gene and milk fat percentage of Holstein cattle in Khorasan Razavi province of Iran were analyzed. A total of 100 dairy cows from a herd containing 1000 animals were included in the study. Genomic DNA was extracted from the whole blood. One pair primers were used for amplification of PIT1 gene and PCR products were electrophoresed on 1% agarose gel. Then, PCR products were digested with Hinfl restriction enzyme. Results were analyzed using PopGene software and allele frequencies A and B were 0.25 and 0.75, respectively. Frequencies of AA, AB and BB genotypes, number of observed alleles, number of effective alleles, expected heterozygosity, observed heterozygosity, mean of heterozygosity, expected hemozygosity, observed hemozygosity, Nei's index and Shanon's index were 6, 40 and 54%, 2, 1.6, 0.37, 0.40, 0.37, 0.62, 0.59, 0.37 and 0.56, respectively. Results of k-square shown that population is in Hardy-Weinberg equilibrium SAS software with GLM procedure was used for calculation of association between milk fat percentage and observed genotypes and results indicated that the effect of genotype on fat percentage was significant (P<0.01) and AB genotype had the highest effect on milk fat percentage. These results imply that the PIT1 genotypes affected milk fat percentage, suggesting that this polymorphism can be used as a molecular marker for this trait.

KEY WORDS Holstein cattle, milk fat, PCR, PIT1 gene, polymorphism.

INTRODUCTION

Iran has a cattle population of 7.9 million of which 45.9, 43.6 and 10.51% are of the indigenous, crossbred and registered (mainly Holstein) genotypes. The contribution of livestock to the national economy is 4% of total GDP. Iranian dairy production has undergone significant and considerable structural changes during the last two decades (FAO, 1993) with creation of larger herds. According to the FAO (1993) report, artificial insemination (AI) coverage in sev-

eral countries including Iran increased remarkably over the 1980 s decade. In general, four groups of sire in terms of their origin are available to dairy producers through AI in Iran. These are American, Canadian, European and Iranian sires, which regardless of their origin can be further categorized to two groups: summarized or sampling sires. Summarized sires are those that have been progeny tested; thus, an estimate of their daughter's producing ability is available. Sampling sires are those that have been selected to transmit high production qualities or type-related traits based on their pedigree. However, they also need to be progeny tested to determine more accurately which sires will pass their high production and type-related traits to their daughters. Many Iranian dairy producers are reluctant to use foreign sampling sires because their daughters' performance is considered somewhat unpredictable. However, Iranian sampling sires are very reasonable and hence, some farmers prefer to use them on the repeat breeder cows as well as on the moderate to low prouder cows (Heravi-Moussavi and Danesh-Mesgaran, 2009). Use of genes concerning with economic characteristics of farm animals for marker assist selection (MAS) can aid on the selection of animals with the highest breeding values. To determine the best genotypes carrying alleles by taking into account the phenotypic values of animals in quantitative characters are difficult. In other words, phenotypic values do not always reflect the genotypic values of the animals. The improvement of any trait in population primarily depends on its economic gain. Milk yield and components are a quantitative trait controlled by many genes, each one of them with small effect. Dairy cattle breeders have primarily concentrated in the high milk yield per cow until now. However, the milk components should not be ignored in selection programs. Because component percentages tend to have negative genetic associations with yield traits, however, selection is limited (Othman et al. 2011). Although the percentage of milk components, especially the fat and protein level with nutrition may be desirable level, this approach ignores the animal genetic effect, and also not permanent (Soyeurt et al. 2006). In short, the planning of a breeding program intended for maintaining the desired levels of milk components as well as increasing milk yield in selection is important. However, focus on the traits and their economic weights in selection would be linked to dairy markets, production systems, feed supply and cost, and the presence of data and its usability with the industry of countries (Shook, 2006). PIT1 (POU1F1) is a member of the POU-domain family of genes that play important regulatory roles in developmental processes (Dybus et al. 2004). PIT1, an approximate 31-33-kilodalton protein (291 amino acid), was first associated with a critical role in the transcriptional regulation of growth hormone (GH) and prolactin (PRL) genes (Dybus et al. 2003). Molecular basis of this polymorphism was the silent mutation $(G \rightarrow A)$ located within exon 6 of the PIT1 gene (Dierkes et al. 1998). PIT1 gene considered as a candidate marker for milk production due to regulation of expression of bGH and the prolactin genes which are essential for mammary gland development and milk yield (Dybus et al. 2004). PIT1 gene has been sublocalized to the centromeric region (1q21-22) of Bos taurus chromosome 1 (Moody et al. 1995). PIT1 gene consists of six exons and five introns. The PIT1 protein consist 3 domains;

POU-homeo, POU-specific and the N-terminal region which plays a role in transactivation (Haugen *et al.* 1993; Kopp and Jameson, 1998). Mutation in the PIT1 gene has been reported to be responsible for the dwarf phenotypes in mice (Camper *et al.* 1990; Li *et al.* 1990). In mammals, some of the mutations in PIT1 gene subvert growth, prolactin and TSH hormones, and even causes abnormalities of pituitary development called hypoplasia (Renaville *et al.* 1997a).

PIT1 is an essential for development of somatotrope, lactotrope, and thyrotrope cells in the anterior pituitary and it transactives expression of the genes encoding GH, PRL, and TSH-b). Mutations in the human PIT1 are responsible for a CPHD (combined pituitary hormone deficiency) with deficiency of GH, PRL or TSH, while the production of ACTH, LH and FSH are preserved and its lead to late to reach puberty and hypothyroidism (Bona et al. 2004). PIT1 gene is considered to be a candidate gene for the regulation of growth and development in cattle and other mammals due to PRL and GH are effective in proliferation of somatotrophic cells as well as they are necessary for mammary gland development and milk yield (Zhang et al. 2009). In cattle, PIT1 was found to be related to milk yield, protein yield, fat percentage and some conformation traits in Italian Holstein-Friesian bulls (Renaville et al. 1997a), body weight in double-muscled Belgian Blue cattle (Renaville et al. 1997b), some feeding criteria and carcass dimensions in the fattening performance of Holstein-Friesian bulls (Oprzadek et al. 2003), fat milk production in Gyr bulls (De Mattos et al. 2004), milk yield in Holstein-Friesian (Vargas et al. 2004), growth traits in Nanyang cattle (Xue et al. 2006), growth traits of Canchim animals, from two lineages (Carrijo et al. 2008) and also birth weight and height at withers of Geman Yellow × Qinchuan beef cattle (Zhang et al. 2009). There are no reports on the study of PIT1 gene in Holstein cattle in Khorasan Razavi province of Iran by now. Thus, the aim of this study was to determine the allelic frequencies at the bovine PIT1-HinfI locus and to investigate the relationship of the polymorphisms and milk fat percentage of Holstein cattle in Khorasan Razavi province of Iran.

MATERIALS AND METHODS

A total of 100 dairy cows from a commercial herd contains 1000 animals, in Khorasan Razavi province of Iran were included in the study. Whole blood samples (approximately 5 mL per animals) were collected from the Jugular vein of each dairy cattle into tubes with EDTA and stored at -20 $^{\circ}$ C needed for DNA extraction. DNA extraction was carried out by Diatom DNA Prep Kit (Cinagen, Iran) as follows: briefly, to an aliquot of 100 µL blood (after thawing), 400

µL of lysis buffer (Guanidin Thiocyanate, 20 mM; EDTA, 20 mM; Tris-HCl, 10 mM; Triton X100, 40 g/L; DTT, 10 g/L) was added, the mixture was vortexed and incubated at 65 °C for 5 min. The cells were resuspended in 20 μL of nuclease solution (Silica gel: 4 g, Guanidine solution: 100 mL) and spun for 10 sec at $12000 \times g$. The pellet was resuspended in 200 µL of lysis buffer again. The suspended white blood cell suspension was then added to 400 µL of saline buffer (NaCl, 1M; Tris-HCl, 10 mM; KCl, 1M and EDTA, 20 mM), the mixture was vortexed and then spun for 10 sec at 5000 \times g. The DNA was precipitated with 45-55 µL of extra gene solution (Ion Exchange Resin): 10%, Orange G color: 0.02%, Triton X100: 0.01%) and was incubated in 65 °C for 3-5 min. Then protein was precipitated by centrifugation (3 min at $1000 \times g$) and the upper layer containing the DNA was transferred to another tube. The relative purity of DNA was determined using gel electrophoresis on 1% agarose gel.

The sequences of the forward and reverse primers for the amplification of the PIT1 gene were: 5' –AAA CCA TCA TCT CCC TTC TT-3' and 5'-AAT GTA CAA TGT GCC TTC TGA G-3'.

The polymerase chain reaction for the PIT1 gene was performed in a 25 µL reaction mixture, containing 1.5 mM MgCL₂, 200 μ M of each dNTPs, 0.3 μ M of each primers, 1X PCR buffer, 1U Taq polymerase (Cinagen, Iran) and 100 ng of genomic DNA template. The reaction mixture was placed in a DNA thermal cycler. Thermal cycling conditions included: an initial denaturation step at 95 °C for 4 min followed by 35 cycles of 94 °C for 45 sec, 59.7 °C for 45 sec, 72 °C for 1 min and a final extension at 72 °C for 10 min. A 20 µL aliquot of the PCR products was digested with 7 U of HinfI restriction enzyme at 37 °C overnight in incubator for 16 h. Restriction fragments from the above PCR reactions were electrophoresed on 2% agarose gels and stained with ethidium bromide. The allele and genotype frequencies were estimated by direct counting. The heterozygosities (as gene variation indicates) were calculated using the PopGene software version 1.31 (Yeh et al. 1999), according to Nei procedure (1978). The Chi-square test whether the distribution of the genotype frequencies was in the Hardy-Weinberg equilibrium was carried out by Pop-Gene Version 1.31 (Yeh et al. 1999) and also heterozigosity value was determined (Nei, 1973).

The next stage involved an analysis of associations between the PIT1 genotypes and milk fat percentage. The following linear model was used in this study:

 $Yij = \mu + Gi + Sj + \epsilon ij$

Where:

Yij: observed milk fat percentage in ijth animal.

- μ : mean of milk fat percentage for population.
- Gi: fixed effects of genotype PIT1 (AA, AB, BB).
- Sj: fixed effects of sires (fathers).
- εij: random error.

PROC GLM (General Linear Model) in the computer program SAS (SAS, 2002) was used to determine the associations between PIT1 genotypes and milk fat percentage. After statistically analyses, the differences between any two least squares means of the genotypes were compared with Least Significant Difference (LSD) for milk fat percentage by using adjusted Tukey's procedure.

RESULTS AND DISCUSSION

Extracted DNA had good quality and had not any protein and phenol contamination (Figure 1). All tested DNA from Holstein cattle in Khorasan Razavi province of Iran used in the present study were amplified using these primers and gave PCR products at the expected size, 451-bp (Figure 2). The amplified DNA fragments (451 bp) were digested with HinfI enzyme and separated electrophoretically to detect the genetic polymorphisms of PIT1 gene. The point mutation $(A \rightarrow G)$ in exon VI, affecting a *HinfI* restriction site, was used to differentiate between two alleles, A and B. The restriction fragments obtained for the PIT1 gene polymorphism were: 244 and 207 bp for BB genotype; 451, 244 and 207 bp for AB genotype and 451 bp (undigested fragment) for AA genotype (Figure 3). The genotype and allele frequencies of PIT1 polymorphisms (Hinfl, 451 bp) in Holstein cattle in Khorasan Razavi province of Iran has shown in Table 1.

Figure 1 Some samples of extracted DNA from studied animals on 1% agarose gel

Figure 2 Ethidium bromide-stained agarose gel of amplified PCR products representing amplification of PIT1 gene in Holstein cattle in Khorasan Razavi province of Iran. Lane M50: 50 bp ladder marker. Lanes 1-10: 451 bp PCR products amplified from DNA of studied cattle

Figure 3 PCR products digested with *Hinf1* on 2% agarose gel electrophoresis stained with ethidium bromide. AA: undigested PCR product, AB: digested PCR product (451, 244 and 207 bp) and BB: digested PCR product (244 and 207 bp).

 Table 1
 The genotype and allele frequencies of PIT1 Hinf1 polymorphism in Holstein cattle in Khorasan Razavi province of Iran

Genotype	Number of genotypes	Genotype frequencies	Allele	Allele frequencies	
AA	6	0.06		0.26	
AB	40	0.40	А	0.20	
BB	54	0.54	р	0.74	
Total	100	1	D		

As shown in 40 and 54 heads of 100 Holstein cattle in Khorasan Razavi province of Iran were determined as AA, AB and BB genotypes, respectively. Allele A and B frequencies in studied cattle were found as 0.26 and 0.74, respectively. The population was found in the Hardy-Weingberg equilibrium with respect to *Hinf1* polymorphism in the present study (P>0.05).

Number of observed alleles, number of effective alleles, expected heterozygosity, observed heterozygosity, mean of heterozygosity, expected hemozygosity, observed hemozygosity, Nei's index and Shanon's index were 2, 1.6, 0.37, 0.40, 0.37, 0.62, 0.59, 0.37 and 0.56 respectively. Results of different studies on genotype and allele frequencies of PIT1 (*Hinf I*) polymorphism are shown in Table 2.

As shown in Table 2, in the most breeds in terms of PIT1 polymorphisms (*HinfI_451* bp), A allele seems to have a lower frequency values than B allele. This situation is similar to our study. In the present study, the frequency of AA genotypes was lower than frequency of BB genotypes that it was confirmed by the results of other researchers (Table 2).

The value of expected heterozygosity was calculated to be 0.37 in Holstein cattle in Khorasan Razavi province of Iran. When compared with literature, this value was lower than findings to be as, 0.50 in Nanyang cattle (Xue *et al.* 2006), 0.43 in East Anatolian Red breed cattle (Özdemir 2012), 0.47 in Brown Swiss cattle (Aytekin and Boztepe, 2013), 0.48 in East Anatolian Red cattle (Özdemir, 2012), 0.38 in Holstein cows (Edriss *et al.* 2008), 0.44 in Angus × Qinchuan cattle (Zhang *et al.* 2009), 0.39 in Charolais × Nelore cattle (Carrijo *et al.* 2008), 0.47 in Manzadrani cattle (Zakizadeh *et al.* 2007), 0.40 in Sarabi cattle (Zakizadeh *et al.* 2007), 0.45 in Golpayegani cattle (Zakizadeh *et al.* 2007), 0.47 in Sarabi cattle (Javanmard *et al.* 2005), 0.38 in Golpayegani cattle (Javanmard *et al.* 2005), 0.47 in Dashtiyari cattle (Javanmard *et al.* 2005), 0.47 in Golpayegani × Brown Swiss F1 cattle (Javanmard *et al.* 2005), 041 in Holstein-Friesian cattle (Vargas *et al.* 2004), 0.44 in Angus beef cattle (Zhao *et al.* 2004), 0.48 in Belgian Blue cattle (Renaville *et al.* 1997b) and 0.43 in 1/2 Angus cattle (Curi *et al.* 2006).

This value was higher than findings to be as, 0.32 in Holstein cattle (Özdemir, 2012), 0.30 in Najdi cattle (Beigi Nassiri et al. 2010), 0.16 in Jordan native cattle (Jawasreh et al. 2009), 0.29 in Holstein-Friesian cattle (Jawasreh et al. 2009), 0.36 in Qinchuan cattle (Zhang et al. 2009), 0.30 in Limousin×Qinchuan (Zhang et al. 2009), 0.29 in Germany Yellow×Qinchuan cattle (Zhang et al. 2009), 0.12 in distinct Indian native cattle (Bos indicus) (Mukesh et al. 2008), 0.23 in Charolais × Zebu cattle (Carrijo et al. 2008), 0.34 in Simmental cattle (Viorica et al. 2007), 0.33 in Holstein (Zakizadeh et al. 2007), 0.19 in Nellore cattle (Curi et al. 2006), 0.21 in Canchi cattle (Curi et al. 2006), 0.23 in 1/2 Simmental cattle (Curi et al. 2006), 0.36 in Qinchuan cattle, 0.23 in China Holstein-Friesian cattle (Yan et al. 2006), 0.14 in Sistani cattle (Javanmard et al. 2005), 0.35 in Taleshi cattle (Javanmard et al. 2005), 0.29 in Manzadrani cattle (Javanmard et al. 2005), 0.10 in Gry bulls (De Mattos et al. 2004), 0.26 in Holstein cattle (Hori-Oshima and Barreras-Serrano, 2003), 0.31 in Italian Holstein-Friesian bulls (Renaville et al. 1997a).

But, similar results such as 0.37 in black-and-white bulls (Oprzadek *et al.* 2003), 0.37 in Holstein-Friesian cattle (Misrianti *et al.* 2010), 0.37 in Poland black-and-white cows (Dybus *et al.* 2004).

High heterozygosity value in a population is based on parental choice of increasing the frequency of heterozygotes in terms of the relevant gene. Especially, the bulls used in artificial insemination according to genes in relation with the economic traits such as milk yield and components are not pre-tested yet. This situation may alter the genetic makeup of the population by chance and also can lead to deflection of the balance. Arora and Bhatia (2004) denoted that the high mean heterozygosity values could be attributed to low level of inbreeding, low selection pressure and large number of alleles present in a population.

The number of alleles and their frequencies determine the value of heterozygosity in a population. Arora and Bhatia (2004) stated that the level of variation depicted by number of alleles at each locus serves as a measure of genetic variability having direct impact on differentiation of breeds within a species. Also, it may cause some variations in phenotypes. High heterozygosity value in a population is based

Table 2 Results of different studies on genotype and allele frequencies of Pit-1	(Hinfl) polymorphism
--	----------------------

	Genotype frequency		Allele frequency		Expected het-	Length of	D (
Breed	AA	AB	BB	А	В	erozygosity	PCR fragment	Keterence
Brown Swiss cattle	0.12	0.51	0.37	0.37	0.63	0.47	451 bp	Aytekin and Boztepe, 2013
East Anatolian Red	0.14	0.54	0.32	0.41	0.59	0.48	260 hr	Özdəmir 2012
Holstein	0.04	0.31	0.65	0.20	0.80	0.32	200 op	Ozdenni, 2012
Najdi	0.36	0.30	0.67	0.18	0.82	0.30	451 bp	Beigi Nassiri et al. 2010
Holstein-Friesian	0.02	0.45	0.53	0.24	0.76	0.37	611 bp	Misrianti et al. 2010
Jordan native cattle	0	0.18	0.82	0.09	0.91	0.16	422 h	I
Holstein-Friesian	0.05	0.25	0.70	0.17	0.83	0.29	422 bp	Jawasren <i>et al.</i> 2009
Qinchuan	0.03	0.40	0.57	0.23	0.77	0.36		
Limousin × Qinchuan	0.04	0.28	0.68	0.18	0.82	0.30		
Angus × Qinchuan	0.11	0.44	0.45	0.33	0.67	0.44	451 bp	Zhang et al. 2009
Germany Yellow × Qin- chuan	0.07	0.21	0.72	0.18	0.82	0.29		
Holstein cows (4 herds)	0.03	0.45	0.52	0.26	0.74	0.38	451 bp	Edriss et al. 2008
16 distinct Indian native cattle (<i>Bos indicus</i>)	0	0.12	0.88	0.06	0.94	0.12	1350 bp	Mukesh et al. 2008
5/8 Charolais ve 3/8 of Zebu	-	-	-	0.13	0.87	0.23	1201 km	Corrigo et al 2008
21/32 Charolais ve 11/32 Nelore	-	-	-	0.27	0.73	0.39	1301 Up	Carrijo <i>et al.</i> 2008
Simmental	0.12	0.20	0.68	0.22	0.78	0.34	1350 bp	Viorica et al. 2007
Manzadrani	0.17	0.41	0.42	0.37	0.63	0.47		
Sarabi	0.08	0.38	0.54	0.27	0.73	0.40	451 hr	Zakizadah at al. 2007
Golpayegani	0.11	0.45	0.44	0.34	0.66	0.45	• 451 bp	Zakizadeli <i>el al</i> . 2007
Holstein	0.06	0.30	0.64	0.21	0.79	0.33		
Nellore	0.79	0.21	0	0.90	0.10	0.19		
Canchim	0.80	0.17	0.03	0.88	0.12	0.21	1201 ha	Corrige of all 2000
1/2 simmental	0.73	0.27	0	0.87	0.13	0.23	1301 bp	Curi <i>et al</i> . 2006
1/2 angus	0.30	0.69	0.01	0.64	0.36	0.43		
Qinchuan	-	-	-	0.23	0.77	0.36	451.1	V
China Holstein-Friesian	-	-		0.13	0.87	0.23	451 bp	Y an <i>et al</i> . 2006
Nanyang	0.21	0.51	0.28	0.47	0.53	0.50	451 bp	Xue et al. 2006
Sarabi	0.45	0.34	0.21	0.62	0.38	0.47		
Golpayegani	0.61	0.26	0.13	0.74	0.26	0.38		
Sistani	0.84	0.16	0	0.92	0.08	0.14		
Taleshi	0.61	0.32	0.07	0.77	0.23	0.35	(00 h-	I
Manzadrani	0.69	0.27	0.04	0.83	0.17	0.29	600 bp	Javanmard <i>et al</i> . 2005
Dashtiyari	0.62	0	0.38	0.62	0.38	0.47		
Golpayegani × Brown Swiss F1	0	0.77	0.23	0.39	0.61	0.47		
Holstein-Friesian	0.10	0.35	0.55	0.28	0.72	041	451 bp	Vargas et al. 2004
Poland Black-and-White cows	0.05	0.38	0.57	0.24	0.76	0.37	451 bp	Dybus et al. 2004
Gry bulls	0.90	0.10	0	0.95	0.05	0.10	~1.355 bp	De Mattos et al. 2004
Angus beef cattle	0.11	0.44	0.45	0.33	0.67	0.44	451 bp	Zhao et al. 2004
Black and White bulls	0.06	0.37	0.57	0.25	0.75	0.37	451 bp	Oprzadek et al. 2003
Holstein	0.03	0.26	0.71	0.16	0.84	0.26	451 bp	Hori-Oshima and Barreras- Serrano, 2003
Belgian Blue	0.20	0.44	0.36	0.42	0.58	0.48		,
Italian Holstein-Friesian bulls	0.02	0.32	0.66	0.18	0.82	0.31	451 bp	Renaville et al. 1997a

on parental choice of increasing the frequency of heterozygotes in terms of the relevant gene. Especially, the bulls used in artificial insemination according to genes in relation with the economic traits such as milk yield and components are not pre-tested yet. This situation may alter the genetic makeup of the population by chance, and also can lead to deflection of the balance. Arora and Bhatia (2004) denoted that the high mean heterozygosity values could be attributed to low level of inbreeding, low selection pressure and large number of alle-

 Table 3
 The association of Pit-1 gene polymorphism with milk fat

 percentage in Holstein cattle in Khorasan Razavi province of Iran

S.O.V.	df	Sum of square	Mean of square	F statis- tic	Significant level
Model	4	3.62	0.90	3.25	** (α=0.01)
Error	93	25.93	0.27		
SOV: source of variation.					

 Table 4
 Least square means and standard error of the means of 3

 genotypes (AA, AB and BB) on milk fat percentage in Holstein

 cattle in Khorasan Razavi province of Iran

Genotype	Least square mean	Standard error	Significant level
AA	3.22	0.21	**(α=0.01)
AB	3.62	0.08	**(α=0.01)
BB	3.25	0.07	**(α=0.01)

Comparison between 3 genotypes (AA, AB and BB) with milk fat percentage, by using adjusted Tukey's procedure showed that association between genotypes (AA, AB and BB) and milk fat percentage is significant (Table 4). AB genotype was more significant than AA and BB genotypes, thus is more effective on milk fat percentage and can conclude that cattle with AB genotype have milk with more fat percentage in comparison with AA and BB genotypes. BB genotype is more effective than AA genotype on milk fat percentage.

Our results confirmed results of other researchers. Renaville *et al.* (1997a) stated that the A allele showed significant superiority over the B allele for milk yield (P<0.10), protein yield (P<0.05), some conformation traits such as body depth (P<0.10), angularity (P<0.10), rear leg set (P<0.10) and also less fat percentage (P<0.10) in Italian Holstein-Friesian bulls. De Mattos *et al.* (2004) reported *HinfI* variants is associated with only the fat yield of milk yield traits and bulls carrying AB genotype (16.6 kg) were superior than AA genotype (6.5 kg) for fat yield (P<0.05). They stated that this superiority resulted from the influence of allele B on these genotypes. Although this superiority could result from the non additive heterosis effect and could affect the milk fat percentage.

Parmentier *et al.* (1999) demonstrated significant superiority of the HinfI B allele for milk (+222.4) and protein (+9.17) yields, but an inferiority for fat yield (-2.29%). The results can be interpreted as a single positive action of the A allele on protein yield and, to a lesser extent, on milk yield and fat content. This interpretation declared the milk production performance for PIT1 which is characterized by higher fat content other than milk yield or milk protein content.

Based on our results and literature investigating the relationship between PIT1-*HinfT* polymorphism and milk production traits, it is mentionable that A allele and AA genotype should be exploited for selection of dairy traits except for Gry bulls (*Bos indicus*) due to different genomic background (De Mattos *et al.* 2004). Distribution differences of allele frequencies between different populations may indicate genetic differences in the base populations (Carrijo *et al.* 2008).

In contrast to this, association analysis to be made with phenotypic values in different populations with the same distribution of allele frequencies may be varied.

Increasing the number of animal and data, especially taking into consideration the genotype \times environment interactions and other genes affecting milk yield and components should be made more comprehensive studies. Besides, it would be more informative that different alleles in other genes connection with the PIT1 gene could be evaluation. A heterozygosity of less than 0.5 indicated low variation for these genes in studied population.

CONCLUSION

It is suggested that the strategies such as migration, introduction of new diversity and crossbreeding for increasing gene diversity and its conservation besides exploration of this potential genetic diversity should be adapted. Although the allele frequency of B is high for some Iranian populations, the AB genotype (favorable genotype) frequency is not too high. Therefore, it is suggested that crossbreeding should be done between these populations and/or with exotic breeds to increase the frequency of the favorable genotype.

ACKNOWLEDGEMENT

The authors wish to thank the Director of farms "Taliseh" Mr. Talebi, for providing us the data and let the blood sampling of cows.

REFERENCES

- Arora R. and Bhatia S. (2004). Genetic structure of Muzzafarnagri sheep based on microsatellite analysis. *Small Rumin. Res.* 54, 227-230.
- Aytekin İ. and Boztepe S. (2013). Associations of PIT1 gene polymorphism with milk yield and composition traits in brown swiss cattle. J. Anim. Plant Sci. 23, 1281-1289.
- Beigi Nassiri M.T., Biranvand Z., Hartatik T., Fayazil J. and Tavakoli S. (2010). The study of PIT1 gene polymorphism in the Najdi cattle using PCRRFLP method. J. Anim. Vet. Adv. 9, 2001-2003.
- Bona G., Paracchini R., Giordano M. and Momigliano-Richiardi

- P. (2004). Genetic defects in GH synthesis and secretion. *European J. Endocrinol.* **151**, 3-9.
- Camper S.A., Saunders T.L., Katz R.W. and Reeves R.H. (1990). The PIT1 transcription factor gene is a candidate for the murine Snell dwarf mutation. *Genomics.* 8, 586-590.
- Carrijo S.M., De Alencar M.M., Toral F.L.B. and De Almedia Regitano L.C. (2008). Association of PIT1 genotypes with growth traits in Canchim cattle. *Sci. Agric.* **65**, 116-121.
- Curi, R.A., Palmieri D.A., Suguisawa L., de Oliviera H.N., Silveira A.C. and Lopes C.R. (2006). Growth and carcass traits associated with GH1/*Alu*I and POU1F1/*HinfI* gene polymorphisms in Zebu and crossbred beef cattle. *Genet. Mol. Biol.* **29**, 56-61.
- De Mattos K.K., Del Lama S.N., Martinez M.L. and Freitas A.F. (2004). Association of bGH and PIT1 gene variants with milk production traits in dairy Gyr bulls. *Pesqui. Agropecu. Bras.* 39, 147-150.
- Dierkes B., Kriegesmann B., Baumgartner B.G. and Brening B. (1998). Partial genomic structure of the bovine PIT1 gene and characterization of a *Hinf1* transition polymorphism in exon 6. *Anim. Genet.* **29**, 405.
- Dybus A., Kmieć M., Sobek Z., Pietrzyk W. and Wiśniewski B. (2003). Associations between polymorphism of growth hormone releasing hormone (GHRH) and pituitary transcription factor 1 (PIT1) genes and production traits of Limousine cattle. Arch. Tierz. 46, 527-534.
- Dybus A., Szatkowska I., Czerniawska-Piątkowska E., Grzesiak W., Wojcik J., Rzewucka E. and Zych S. (2004). PIT-1-*HinfI* gene polymorphism and its associations with milk production traits in polish Black-and-White cattle. *Arch. Tierz.* **47**, 557-563.
- Edriss V., Edriss M.A., Rahmani H.R. and Sayed-Tabatabaei B.E. (2008). PIT1 gene polymorphism of Holstein cows in Isfahan Province. *Biotechnology*. **7**, 209-212.
- FAO. (1993). Survey of present status of the use of artificial insemination in developing countries. World Anim. Rev. 75, 26-35.
- Haugen B.R., Wood W.M., Gordon D.F. and Ridgeway E.C. (1993). A thyrotrope-specific variant of PIT1 transactivates the thyrotropin β promoter. *J. Biol. Chem.* **268**, 20818-20824.
- Heravi-Moussavi A.R. and Danesh-Mesgaran M. (2009). Effect of diverse sire origins on first-parity performance in Iranian Holstein cows. *Res. J. Biol. Sci.* **4**(7), 800-806.
- Hori-Oshima S. and Barreras-Serrano A. (2003). Relationships between DGAT1 and PIT1 Genes Polymorphism and Milk Yield in Holstein Cattle, Proceedings, Western Section. American Society of Animal Science.
- Javanmard A., Asadzadeh N., Banabazi M.H. and Tavakolian J. (2005). The allele and genotype frequencies of bovine pituitary specific transcription factor and leptin genes in Iranian cattle and buffalo populations using PCR-RFLP. *Iranian J. Biotechnol.* **3**, 2.
- Jawasreh K.I.Z., Awawdeh F., Rawashdeh I., Hejazeen F. and Al-Talib M. (2009). The allele and genotype frequencies of bovine pituitary specific transcription factor and leptin genes in Jordanian cattle population by using PCR-RFLP. *Australian J. Basic Appl. Sci.* **3**, 1601-1606.
- Kopp P. and Jameson J.L. (1998). Thyroid disorders. Pp. 459-473

in: Principles Of Molecular Medicine. J.L. Jameson and F.S. Collins, Eds. Humana Press. Totowa NJ.

- Li S., Crenshaw R.D., Rawson E.J., Simmons D.M., Swanson L.W. and Rosenfeld M.G. (1990). Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene PIT1. *Nature*. **357**, 528-533.
- Moody D.E., Pomp D. and Berendse W. (1995). Restriction fragment length polymorphism in amplification products of bovine PIT1 gene and assignment of PIT1 to bovine chromosome 1. *Anim. Genet.* **26**, 45-47.
- Mukesh M., Sodhi M., Sobti R.C., Prakash B., Kaushik R., Aggarwal R.A.K. and Mishra B.P. (2008). Analysis of bovine pituitary specific transcription factor-*HinfI* gene polymorphism in Indian zebuine cattle. *Livest. Sci.* **113**, 81-86.
- Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natio. Acad. Sci. 70, 3321-3323.
- Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics.* **89**, 583-590.
- Oprzadek J., Flisikowski K., Zwierzchowski L. and Dymnicki E. (2003). Polymorphisms at loci of Leptin (LEP), PIT1 and STAT5A and their association with growth, feed conversion and carcass quality in black-and-white bulls. *Anim. Sci. Pap. Rep.* **21**, 135-145.
- Othman E., Fawzia A., Zayed A., El Gawead A. and Medhat El-Rahman R.A. (2011). Genetic polymorphism of three genes associated with milk trait in Egyptian buffalo. *J. Genet. Engin. Biotechnol.* 9, 97-102.
- Özdemir M. (2012). Determination of Pit-1/*Hinf1* polymorphism in Holstein and Native Ear cattle raised as genetic resource in Turkey. *J. Anim. Plant Sci.* **22**, 25-28.
- Parmentier I., Portetelle D., Gengler N., Pradi A., Bertozzi C., Vleurick L., Gilson R. and Renaville R. (1999). Candidate gene markers associated with somatotropic axis and milk selection. *Domes. Anim. Endocrinol.* 17, 139-148.
- Renaville R., Gengler N., Vrech E., Prandi A., Massart S., Corradini C., Bertozzi C., Mortiaux F., Burny A. and Portetelle D. (1997a). PIT1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls. J. Dairy Sci. 80, 3431-3438.
- Renaville R., Gengler N., Parmentier I., Mortiaux F., Massart S., Bertozzi C., Burny A. and Portetelle D. (1997b). PIT1 gene *HinfI* RFLP and growth traits in doublemuscled Belgian Blue cattle. J. Anim. Sci. 75(1), 146.
- SAS Institute. (2002). SAS/STAT 9 User's Guide –Procedures, SAS Inst. Inc., Cary, NC.
- Shook G.E. (2006). Major advances in determining appropriate selection goals. *J. Dairy Sci.* **89**, 1349-1361.
- Soyeurt H., Dardenne P., Gillon A., Croquet C., Vanderic S., Mayeres P., Bertozzi C. and Gengler N. (2006). Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 89, 4858-4865.
- Vargas L.D., Gana V.E. and Escudero I.F. (2004). PIT1 gene polymorphism in dairy cows from Central Chile. *Arch. Zoot.* 53, 217-220.
- Viorica C., Vlaic A. and Gaboreanu I. (2007). *Hinf1* polymorphism of K-Casein and PIT1 genes in Romanian Simmental Cattle. *Lucrări Stiințifice Zootehnie Si*

Biotehnologiy. 40, 59-61.

- Xue K., Chen H., Wang S., Cai X., Liu B., Zhang C.F., Lei C.Z., Wang X.Z., Wang Y.M. and Niu H. (2006). Effect of genetic variations of the POU1F1 gene on growth traits of nanyang cattle. *Acta Genet. Sinica.* 33, 901-907.
- Yan L.J., Liu B., Fang X.T., Chen H., Zhang R.F., Bao B. and Zhang H.J. (2006). Analysis of POU1F1 gene polymorphisms in Qinchuan cattle and Chinese Holstein cattle. *Yi Chuan.* 28(11), 1371-1375.
- Yeh F.C., Yang R. and Boyle T. (1999). Pop Gene Version 1.31. Microsoft Window-based free software for population genetic analysis, University of Alberta. Edmonton, AB, Canada.
- Zakizadeh S., Reissmann M., Rahimi G., Javaremi N.A., Reinecke P., Mirae-Ashtiani S.R. and Shahrbabak M.M. (2007).

Polymorphism of bovine POU1F1 gene: allele frequencies and effects on milk production in three Iranian native breeds and Holstein cattle of Iran. *Pakistan J. Biol. Sci.* **10**, 2575-2578.

- Zhang C., Liu B., Chen H., Lan X., Lei C., Zhang Z. and Zhang R. (2009). Associations of a *Hinfl* PCRRFLP of POU1F1 gene with growth traits in Qinchuan cattle. *Anim. Biotechnol.* 20, 71-74.
- Zhao Q., Davis M.E. and Hines H.C. (2004). Associations of polymorphisms in the PIT1 gene with growth and carcass traits in Angus beef cattle. J. Anim. Sci. 82, 2229-2233.