
Arc
hive

 of
 S

ID

 

  
 
 

39 

Time and Space Complexity Reduction of a Cryptanalysis Algorithm 
 

Mohammad Ghasemzadeh  
Electrical and Computer Engineering Department,  

Yazd University, Yazd, Iran 
m.ghasemzadeh@yazduni.ac.ir 

Received: 2011/04/16; Accepted: 2011/05/24   Pages: 39-46 
  

Abstract 
Binary Decision Diagram (in short BDD) is an efficient data structure which 

has been used widely in computer science and engineering. BDD-based attack in 
key stream cryptanalysis is one of the best forms of attack in its category. In this 
paper, we propose a new key stream attack which is based on ZDD(Zero-suppressed 
BDD). We show how a ZDD-based key stream attack is more efficient in time and 
space complexity over its BDD-based variant against the E0 type of the Bluetooth 
security mechanism. We implemented it by using the CUDD - Colorado University 
Decision Diagram package. Experimental results show great improvements. We 
have also derived a mathematical proof, which shows that it is better than the BDD-
based attack method even for the worst case analysis. 

 
Keywords: Binary Decision Diagram, Cryptanalysis, Algorithm complexity 

 

 

1. Introduction 

In cryptography, pseudo random sequences are frequently used. A pseudo random 
sequence generator requires to be uniformly distributed, independent, and non-
correlated [8]. In implementation of key stream generators, the LFSR (Linear Feedback 
Shift Register) is being used because all above conditions are met and the corresponding 
algebraic analysis is quite simple. 

The LFSR-based key stream generators consist of two components: a linear bit 
stream generator L and a nonlinear compression function C, i.e. K=(L,C). First they 
generate the key stream Y=C(L(k)), for the cipher key k, then Y and the plain text P are 
bitwise XORed to produce the cipher text E. In cryptanalysis of these generators, the 
encryption system is supposed to be known and we are interested in finding k. 

BDD and its variants are data structures that are used effectively in computer science 
and engineering. These data structures give compact and canonical representations for 
Boolean functions. Recently, a new attack against LFSR-based key stream generators is 
introduced by Krause [3] which is based on a variant of BDD known as FBDD. Later 
Shacked and Wool [9] introduced their OBDD-based attack to E0 key stream generator. 
In this paper, we introduce a new attack to key stream generators which uses ZDD. 
Experimental results show that it makes a remarkable reduction in time and space 
complexity regarding OBDD and FBDD based attacks. We have also derived a proof 
which confirms the experimental results. 

This paper is organized as follows. Section 2 provides the basic definitions and the 
main concepts: E0 encryption system and a brief introduction to BDD and ZDD. In 
section 3 the proposed attack is introduced. First the FBDD attack is discussed, then the 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Time and Space Complexity Reduction of… M. Ghasemzadeh 
 
 

40 

attack to E0 with OBDD is reviewed. Finally our ZDD-based attack is introduced. 
Section 4 is dedicated to the theoretical complexity analysis of our method. Section 5 
provides concludes. 

2. Preliminaries 

2.1 E0 Key Stream Generator 
E0 is an LFSR-based key stream generator which is used in Bluetooth security 

mechanism. LFSR-based key stream generators consist of two components, a linear bit 
stream generator and a nonlinear compression function. After initialization, the linear 
bit stream generator L , generates the bit stream Z . It employs four Linear Feedback 
Shift Registers(LFSR), whose output is the input to the compression function C . The 
output of the compression function would be the key stream ))((= kLCY . The lengths of 
the four LFSR are 25|=| 0L , 31|=| 1L , 33|=| 2L  and 39|=| 3L , and their feedback 
polynomials are: 

1=)( 8122025
0 ++++ xxxxxp  

1=)( 12162431
1 ++++ xxxxxp  

1=)( 4242833
2 ++++ xxxxxp  

1=)( 4283639
3 ++++ xxxxxp  

 
At the beginning, the linear generator needs to be loaded with an initial value for the 

four LFSRs(128 bits in total). Summation of the four output bits of the LFSRs make the 
input of the compression function. The compression function is usually organized with a 
finite state machine

0
: ( , , , , , )EC Q I F δΣ Γ , States of the FSM are = { : 0 15}iQ q i≤ ≤ ,its 

input alphabet = {0,1, 2,3, 4}Σ , output alphabet = {0,1}Γ  and I , F stand for the set of 
initial and final states. The set of FSM transition rules Q Qδ ⊆ × Σ× Γ × have elements 
in the form of 1( , )n nq a q +→ [2, 9, 4]. 

 
2.2 BDD versus ZDD 

There are several known methods for representing Boolean formulas. The most 
important of them are: Truth table, Karnough map and Boolean expressions. BDD or 
more precisely ROBDD is also a data structure invented for this purpose. This data 
structure is a graph which can be obtained from the binary decision tree of the Boolean 
formula by applying merging and removing rules [1, 6]. Altogether this method is better 
than other methods. The benefits of ROBDD are: 1. Provides a canonical representation, 
2.Represents Boolean functions more compactly and 3.Offers faster Boolean operations. 

A set can be represented by its characteristic function. In this regard, according to 
each element/subset we consider a minterm in the corresponding characteristic function. 
Theoretical analysis and practical experiments has shown that a variant of BDD called 
ZDD (Zero suppressed Binary Decision Diagrams) [7] is more suitable for representing 
such a characteristic function. 

A ZDD can also be obtained from binary decision tree of a Boolean formula. In a 
BDD whenever 1-edge and 0-edge of a node point to the same node that node must be 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Journal of Advances in Computer Research  (Vol. 2, No. 3, August  2011) 39-46 
 
 

41 

removed, but in a ZDD whenever the 1-edge of a node points to 0-terminal, that node 
must be removed. The merging rule is the same for both of them. In a ZDD each path 
from the root to the 1-terminal stands for an element of the set [3, 5]. 

3. ZDD Based Cryptanalysis Of E0 

In this section we first introduce the FBDD based attacker of Krause [3], then we 
reveal the motivation led us using ZDD instead of FBDD or OBDD. Finally we 
introduce and discuss our ZDD-based attacker. 

 
3.1 FBDD Based Cryptanalysis Of Key Stream Generator 

Krause in his work [3] assumes that except for key k , all other parameters are 
known, also he assumes that the attacker is able to obtain the first bits of the key stream
Y . The goal of the attacker is computing }{{0,1}nk ∈ . Since in an LFSR, the first 
output bits are the same as its initial values, )(= kLZ  would contain k  in the first bits. 
Therefore the problem reduces to finding a bit stream Z  satisfying the following 
conditions: 

1.  Z  can be produced by the linear bit stream generator L . 
2.  )(ZC  is prefix of the observed key stream Y . 
For 1≥m , and the bit stream mz {0,1}∈  the following items are defined: 
• C

mG  is an oracle graph representing the order in which the bits of Z  are being read 
by the compression function C . 

• mR  is a minimal FBDDGC
m −  graph which decides whether Z  can be produced by 

L  or not. 
• mQ  is a minimal FBDDGC

m −  graph which decides whether )(ZC  is a prefix of Y  
or not. 

• mP  is a minimal FBDDGC
m −  graph which decides whether Z  can be produced by 

L  where )(ZC  is a prefix of Y  or not. 
In this method, the key is considered to be n  bits and it computes *m , where *m  

denotes the length of the consecutive bits required for finding the key k . Considering 
above formulations, the following algorithm can compute k : 

 
1.  nQP ← . 
2.  for 1+← nm  to *m  do: 

)( mm RQPP ∧∧←  
3.  return *Z  where 1=)( *ZP . 
On the other words, the above loop iterates until *m

P  has only one assignment 
mz {0,1}* ∈  where 1=)( *ZP . 

 
3.2 Reduction of FBDD-based Cryptanalysis using OBDDs 

The algorithm described by Krause is generic and needs to be adapted. Shacked and 
Wool [9] made reductions and adopted it for 0E , by using OBDD instead of FBDD. 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Time and Space Complexity Reduction of… M. Ghasemzadeh 
 
 

42 

Krause in [4] generalized OBDD attack to oblivious key stream generator. In the OBDD 
attack the output bits of )(kL are considered as: 4 4 1 4 2 4 3= (..., , , , ,...)j j j jZ z z z z+ + + , where 

4 ( )j i i iz L k+ ∈ . This ordering leads to the following equations for the linear key stream 
generator L : 

 

     32 48 80 100= 4 : =i i i i ii j z z z z z− − − −∀ ⊕ ⊕ ⊕   (1) 

124966448=:14= −−−− ⊕⊕⊕+∀ iiiii zzzzzji  

1321129616=:24= −−−− ⊕⊕⊕+∀ iiiii zzzzzji  

15614411216=:34= −−−− ⊕⊕⊕+∀ iiiii zzzzzji  
 
Afterwards, according to the obtained equations, mR  graph is produced by building 

OBDDs for each iz . 
In building OBDDs which check bits for each iL , the algorithm calls the first || iL  

bits in its bit stream. The goal of the algorithm is to compute these leading bits of iL . 
According to above equations, an algorithm must build OBDDs for ||4|:| LjLz j ≤≤ . A 
BDD structure called basic chain is used to compute mQ graph which represents sums of 
4 bits. For each state and each of the 5 possible sums, if the output bit matches the bit 
given in the key streamY , it can proceed to next chain; otherwise this path would lead 
to a Terminal−0 . 

 
3.3 ZDD-Based Cryptanalysis Of E0 

Combinations of n  items can be represented by an n-bit vector, ),...( 1 nxx , where 
{0,1}∈ix  determines whether ix is included in the combination or not. In this way, a set 

of combinations can be represented with a Boolean function. Such a Boolean function is 
called characteristic function of the set. In general, OBDDs are more efficient in 
compact representation of characteristic functions than other methods, but Minato[7] 
has shown that if we change the elimination rule, we can represent characteristics 
functions much more efficiently. 

The goal of key stream Cryptanalysis is to analyse all possible keys and find the right 
one. FBDD attack can be reduced by using OBDD, because these generators have the 
same ordering, in building mR and mQ graphs as well as in building mP . The compression 
function of these generators can be shown with a finite state machine. We may use ZDD 
to construct a more efficient attack on this kind of key stream generators (to attack 0E
key stream generator). 

In our ZDD attack against 0E generator, we implemented the mR graph in a similar 
way as in OBDD attack, the only difference is using ZDD instead of OBDD. Each 
synthetic ZDD contains of 5 variables and 9 vertices, therefore, it requires 3456 
vertices. We computed the mQ graph by the following method; Since finite state machine 
of 0E generator has 16 states, we used 4 variables n

iqi 3,0 ≤≤  to mark the states. Thus 
the following function can be computed: 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Journal of Advances in Computer Research  (Vol. 2, No. 3, August  2011) 39-46 
 
 

43 

,,,,(= 1
0

1
1

1
2

1
3

++++ mmmm
m qqqqFQ ),..,,,, 0142434 zzzz mmm +++  

Clearly, mQ consists of 44 +m variables. It stands for all the possible paths in the 
finite state machine after reading 1+m input symbols. We implemented mQ using the 
following algorithm: 

 
1. If 

0EC includes transition rule 1),( +→ mm qaq AND correspondent output rule   

baqm →),(  AND mm bbb (=  is m  th bit in known key stream Y): 
(a) Compute mq  and 1+mq  based on i

mq : 
∗∗∗∗ ∧∧∧ )()()()(= 0123

mmmmm qqqqq  
where ∗)( i

mq  is i
mq  or ∗)( i

mq  is 'i
mq )(  according to labels of 

the states of the machine. For example in step m, the 5th 
state is : )()()()( 0123

m
'

mm
'

m qqqq ∧∧∧  . 
(b) For all az im =4 +∑ , compute: 

)(= 41424341 mmmmmmj qzzzzqX ∧∧∧∧∧ ++++  

2.  Compute '
mQ  function based on: 

)...(= 00 j
' XXQ ∨∨  

)(...)((= 110 −− ∧∨∨∧ mjm
'
m QXQXQ  

3.  Compute mQ  by removing ∗)( i
mq  from '

mQ . 
 
We need to mention that finally we are interested in computing 128Q . The constructed 

mQ correctly decides whether )(ZC is prefix ofY or not. By scanning all the paths from 
root to T−1 , we compute all Z s which produce the same prefix asY . 

A pseudo random sequence must be distributed uniformly, i.e., the probability of 0 
occurrence must be equal to the probability of 1 occurrence. This property along with 
other required properties, enforce the constructed mQ to be a sparse graph. In 
implementing our proposed attack, we mapped the problem to a combinatorial set 
problem. In fact, in each iteration of computing mQ , we checked all possible 
combinations of input bits and final states. 

Most operation on sets such as union, intersect, difference are already defined and 
implemented for ZDD. In addition some other useful functions like: 

 
• Z.onset(N) selects the subset of the combinations including N, and then deletes N 

from each combination. 
• Z.offset(N) returns the subset of the combinations excluding N. 
• Z.Count(N) returns number of combinations in the ZDD Z . 
are available in most BDD packages. 
 
We ran our algorithm in C along with the CUDD package[10]; Our algorithm can be 

displayed with the following pseudo code: 
 
 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Time and Space Complexity Reduction of… M. Ghasemzadeh 
 
 

44 

For ∀  element δ∈  
   { 

    If ))=(),(),(( 1 mmmm bbbaqqaq ∧→∧→ +  
      { 
        ))(,)(,)(,)(= 0123 ∗∗∗∗

mmmmm qqqqctZDDInterseq  

        ,)(,)((= 2
1

3
11

∗
+

∗
++ mmm qqctZDDInterseq ))(,)( 0

1
1

1
∗

+
∗

+ mm qq  

        For 3,04 ≤≤∀ + iZ ij  
          { 
           if aZ ij =4 +∑  

             ,,(= 341 ++ mmj zqctZDDInterseX ),,, 41424 mmmm qzzz ++  
          } 
      } 

   
,(,( j

'
m XtZDDInterscjZDDUnionQ ∀←  

   
))(==)((),(.

11 −− mQmjXmmm qqifqOnesetQ  

  }  
 
For every mq   

   )(. mm qOnesetQQ ←  

 

4. Theoretical Complexity Analysis 

The time complexity of the algorithm is determined by the space complexity of the 
constructed ZDD during the entire process of construction. First, lets take a look at the 
complexity of functions which are used in the algorithm: 

 
• The time complexity of producing the ZDD representing ),...,( 0 nxxF  is |)(| FGO , 

where || FG  denotes the number of vertexes in constructed graph. 
• Time complexity of each set operation such as union and intersect of two graph F,G 

is |)|.|(| GF GGO  
 
In the algorithm, during the || 0L steps, it introduces 4 new variables, and one 

constraint az ij =4 +∑ , then the number of assignments is multiplied by 32 . After
|||| 01 LL − steps it has two constraints, 04 Lz j ∈ is determined , then the number of 

assignments is multiplied by 22 . After |||| 12 LL − steps it has three constraints, 04 Lz j ∈  

and 114 Lz j ∈+ are determined, then the number of assignments is multiplied by 12 . After 
|||| 23 LL − step it has four constraints and there are no more choices, then the number of 

assignments will be constant. In the next steps, the number of assignments start to 
decrease to half. On the other hand, due to ZDD properties, the average number of 
vertices in each path would be 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Journal of Advances in Computer Research  (Vol. 2, No. 3, August  2011) 39-46 
 
 

45 

m
miiC

2=
2

.).(4,
4

∑  

therefore, based on above arguments, we can compute the higher bound as 
128)0:( →m : 

m
m mPLm 3

0 22|=|:|| ×≤  
|)0|2(|0|3

10 222|=|:|||| LmL
m mPLmL −××≤≤  

|1||)0||12(||0|3
21 2222|=|:|||| LmLLL

m mPLmL −− ×××≤≤  
|)1||22(||)0||12(||0|3

32 2222|=|:|||| LLLLL
m mPLmL −− ×××≤≤  

mLLLLLL
m mPmL −−− ××××≤ |3||1||2||)0||12(||0|3

3 22222|=:|||  
 
On the other hand, mP is obtained by intersection of mQ and mR , then we can compute 

the other higher bound: 
||=|||=|)(|:| 40 mmmm QRQPTimeLm ×≤  

3
010 2)|(|=|)(|:||| ×−×≤≤ LmQPTimeLmL mm  

3
1021 2|)|||(|=|)(|:||| ×−−×≤≤ LLmQPTimeLmL mm  

3
21032 2|)|||||(|=|)(|:||| ×−−−×≤≤ LLLmQPTimeLmL mm  

33
32103 2128)(|=|2|)|||||||(|=|)(:|| ×−××−−−−×≤ mQLLLLmQPTimemL mmm  

 
In practice, || mQ has approximately 142 nodes. The overall upper bound of complexity 

can be obtained from intersection of the above two bounds, which will give a space 
complexity of 232 , and time complexity of 822 . We need to mention that this is a non-
refined approximation bound, accurate analysis would give even better values. Here we 
can see that using ZDD gives a graph with 82 nodes less than its predecessor which used 
OBDD. 

5. Conclusion 

Zero-suppressed Binary Decision Diagram (in short ZBDD or ZDD) is a variant of 
BDD. While BDD gives more compact representation and more efficient operations on 
Bollean formulas, ZDD gives more compact representation and more efficient 
operations on characteristics functions representingd sets of subsets. This research 
shows, by utilizing this property, how ZDD can be used to construct an attacker more 
efficient than the outstanding OBDD-based attacker. 

6. References 

[1] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE 
Transactions on Computers, 35(8):677-691, 1986. 

[2] Fluhrer, Scott R. and Lucks, Stefan. Analysis of the E0 Encryption System.  8th Annual 
International Workshop on Selected Areas in Cryptography, pages 38-48, London, UK, 2001. 
Springer-Verlag. 

[3] Matthias Krause. BDD-Based Cryptanalysis of Keystream Generators. EUROCRYPT, pages 222-
237, 2002. 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Time and Space Complexity Reduction of… M. Ghasemzadeh 
 
 

46 

[4] Matthias Krause. OBDD-Based Cryptanalysis of Oblivious Keystream Generators. Theor. Comp. 
Sys., 40(1):101-121, 2007. 

[5] Matthias Krause and Dirk Stegemann. Reducing the Space Complexity of BDD-Based Attacks on 
Keystream Generators. 13th annual Fast Software Encryption Workshop, pages 163-178, 2006. 

[6] Christoph Meinel and Thorsten Theobald. Algorithms and data structures in VLSI design: OBDD - 
foundations and applications. Berlin, Heidelberg, New York: Springer-Verlag, 1998. 

[7] Shin-ichi Minato, Zero-suppressed bdds and their applications, in:Proceedings of International 
Journal on Software Tools for Technology Transfer, Springer, 2001, pp. 156-170. 

[8] Matt Robshaw. Stream Ciphers. Technical report, RSA Laboratories, 1995. 
[9] Yaniv Shaked and Avishai Wool. Cryptanalysis of the Bluetooth E0 cipher using OBDD's.  

Proceedings of 9th Information Security Conference, LNCS 4176, pages 187-202, 2006. 
[10] Fabio Somenzi. CUDD: Colorado University Decision Diagram Package. http://vlsi.colorado. 

edu/~fabio/CUDD/ , 2009. 
 
 

www.SID.ir

www.SID.ir

