
Arc
hive

 of
 S

ID

1

Optimality of the flexible job shop scheduling system based on
Gravitational Search Algorithm

Behnam Barzegar1, Homayun Motameni2

(1)Department of Computer Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran.
(2)Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

barzegar@iauns.ac.ir; motameni@iausari.ac.ir
Received: 2011/09/14; Accepted: 2011/10/01 Pages: 1-12

Abstract
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general

and difficult of all traditional scheduling problems. The Flexible Job Shop Problem
(FJSP) is an extension of the classical job shop scheduling problem which allows an
operation to be processed by any machine from a given set. The problem is to assign
each operation to a machine and to order the operations on the machines, such that
the maximal completion time (makespan) of all operations is minimized. The
scheduling objective minimizes the maximal completion time of all the operations,
which is denoted by Makespan. The goal of this research is to develop an efficient
scheduling method based on Gravitational local search algorithm to address FJSP.
we could reduce scheduling time and costs by transferring and delivering operations
on existing machines, that is among NP-hard problems. Different methods and
algorithms have been presented for solving this problem. Having a reasonable
scheduled production system has significant influence on improving effectiveness
and attaining to organization goals. In this paper, we design algorithm were
proposed for flexible job shop scheduling problem (FJSP-GSA), that is based on
Gravitational search algorithm (GSA). The experimental results showed that the
proposed method has reasonable performance in comparison with other algorithms.

Keywords: Gravitational search algorithm, Flexible job shop scheduling problem, Makespan, Mass,

Gravitational force

1. Introduction

Scheduled production system leads to avoiding stock accumulations, losses
reduction, decreasing or even eliminating idol machines, and effort to better benefitting
from machines for on time responding costumer orders and supplying requested
materials in suitable time.

Classic job shop scheduling production systems contain N independent job on M
machines. Each job includes one or more operations that must be implemented
sequentially. Each operation needs specific process time. Flexible job shop scheduling
production system is specific type of classic job shop scheduling production systems, in
which one job could be implemented on set of machines.

Purpose of scheduling this problem is determining operation sequence for each
machine, such that sequence order is kept and total time of operation (during
implementing one job) be minimized.

In this paper, FJSP-GSA algorithm based on Gravitational local search is proposed
for scheduling time optimization in FJSP.

www.SID.ir

mailto:barzegar@iauns.ac.ir�
mailto:motameni@iausari.ac.ir�
www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

2

Gravitational searching algorithm and proposed solution have been presented to
made suitable time for implementing several operations on one job, which in fact is
assigning proper machine to related operation.

2. Related work

Flexible job shop scheduling production system is one of the most important
combined optimizing problems. The JSP is not only NP-hard, but it is one of the worst
members in the class. An indication of this is given by the fact that one 10 * 10 problem
formulated by Muth and Thompson [1] remained unsolved for over 20 years.

The job-shop scheduling problem (JSP) has been studied for more than 50 years in
both academic and industrial environments and also recently, many researchers have
been done for the flexible job-shop scheduling production system (FJSP).

Bruker and Schlie et al [3] who first considered this problem, offered a multilateral
algorithm for solving flexible job shop problem with two jobs. In real world, for solving
a problem with more than two jobs, two perceptions have been used: hierarchical
perception and integrated perception.

In hierarchical perception assigning any operation to the machines and determining
operation sequences are performed individually. In other words, assignment and
sequence determination are independent. But in integrated perception, sequence
determination is based on this idea that in order to decreasing complexity, main problem
should be decomposed into two problems called assignment and sequence
determination. As this perception decomposes into two problems of assignment and
sequence determination, is used more. Brandimarte et al [2] was the first one who used
this perception for FJSP. He specified path determination with distribution rules and
then focused on solving scheduling problem with TS algorithm.

Jain and Meeran et al [7] provided a concise overview of JSPs over the last few
decades and highlighted the main techniques. The JSP is the most difficult class of
combinational optimization. Garey et al [8] demonstrated that JSPs are non-
deterministic polynomial-time hard (NP-hard); hence we cannot find an exact solution
in a reasonable computation time. The single objective JSP has attracted wide research
attention. Most studies of single-objective JSPs result in a schedule to minimize the
time required to complete all jobs, i.e., to minimize the make span. Many approximate
methods have been developed to overcome the limitations of exact enumeration
techniques. These approximate approaches include simulated annealing (SA) [9], tabu
search [10-12] and genetic algorithms (GA) [13-15].

Fattahi, Saidi, Jolai [5] have considered hierarchical and integrated perceptions in
relation to scheduling job shop production systems. They based on these perceptions
and two SA and TA heuristics offered six combined algorithms and compared them.
The concluded that combined algorithms from SA and TA along with hierarchical
perception would provide better solutions than other algorithms. Te also offered in their
article a new technique for introducing structure of solution in scheduling flexible job
shop production problems.

Choi and Choi et al [4] have presented a local searching algorithm for scheduling
job shop production problems. They regarded that there is possibility of a substitute
operation for any operation. In this mode, for all operations a machine and process time
are assigned and then, for some operations considered substitute machine and process

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 2, No. 4, November 2011) 1-12

3

time. Moreover, a run time has been considered for any operations, which is depended
to the last operation.

In this study, we first considered problem with primary process and ignored
substitute process, and regarded flexibility and obtained construction duration have been
used as upper boundary. Then, local searching procedure is looking for better solution
by using distribution rules. In this study, different distribution rules in local searching
procedure have been considered.

Xia and Wu et al [6] have presented a hybrid optimizing perception for scheduling
multi object flexible job shop production system problems. In their study, combination
of two methods SA and particle swarm optimization have been used for optimizing
flexible job shop production system problem. PSO algorithm is applied for assignment
problem either for determining any operations use which machine. Value of object
function is calculated b SA algorithm and implemented for each particle in PSO
algorithm once.

Mastrolilli and Gambardella et al [17] proposed a tabu search procedure with
effective neighborhood functions for the flexible job shop problem. Many authors have
proposed a method of assigning operations to machines and then determining sequence
of operations on each machine. Pezzella et al [18] and Gao et al [19] proposed the
hybrid genetic and variable neighborhood descent algorithm for this problem. There are
only a few papers considering parallel algorithms for the FJSP. Yazdani et al [20]
propose a parallel variable neighborhood search (VNS) algorithm for the FJSP based on
independent VNS runs. Defersha and Chen et al [21] describe a coarse-grain version of
the parallel genetic algorithm for the considered. FJSP basing on island model of
parallelization focusing on genetic operators used and scalability of the parallel
algorithm. Both papers are focused on parallelization side of the programming
methodology and they do not use any special properties of the FJSP.

The rest of the paper is as following: First, problem analyzing and in second section,
its disjunctive graph model are presented. In section third, gravitational searching
algorithm is explained and finally in section four, we explain proposed solution by
using gravitational searching algorithm.

3. Flexible Job-shop Scheduling Problem

The FJSP can be an extension of the classical JSP; therefore, we can formulate the
FJSP based on JSP. Consider a set of n jobs, noted J={J1, J2 ,....Jn} , every job in the
set J has a given number operations, and should be operated on a given machine from a

machine set named M={M1,M2 ,....Mm} . So, there are n jobs and m machines. In the
classical JSP problem, with n jobs and m machines, there are n *m operations. However,
in FJSP problems, the operation number can vary with the problem assumption. There
are two kinds of FJSP, i.e., TFJSP and P-FJSP. For the T-FJSP, each job can be
operated on every machine from the set M; for the P-FJSP, there is a problem constraint
for the operating process, in table 1, we can see that one operation of a job must be
processed by a set of machines in M' ⊆ M . In the sequencing stage for the FJSP, we
must consider the candidate machine set size for every operation waiting for processed.

The detailed definition of the FJSP as follows:
• A set of J independent jobs.
• Each job Ji can be operated on a given set of machines Mi .

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

4

• The Oi, j represents the jth operation of Ji . The machines set waiting for processing

the Oi, j noted byMk ⊆ M .
• We use pi, j,k to represent the processing time of Oi, j operated on the kt machine.

There have two assumptions: a started operation cannot be interrupted; each machine
only can process one operation at the same time.

The objective in our paper is to find the minimum time of the whole operations.

4. Disjunctive Graph

Disjunctive graphs are a well-known modeling concept for job-shop scheduling and
related machine sequencing problems. In a disjunctive graph the nodes correspond to
the operations to be scheduled and the weighted arcs represent precedence constraints
between pairs of operations. A conjunctive arc (i, j) expresses the condition that
operation i must precede operation j, while a pair of disjunctive arcs (i, j), (j, i)
expresses the condition that i must precede j or vice versa. Disjunctive arcs result from
the fact that two operations I and j on the same machine cannot overlap in time. Since
there is a one-to-one correspondence between feasible semi-active schedules and
feasible selections in a disjunctive graph, an optimal schedule minimizing makespan
can be found be determining a feasible selection that minimizes the length of a longest
path in the associated graph.

A distinctive property of disjunctive job-shop graphs is that each pair of disjunctive
arcs contains two arcs with identical extremities but reverse orientation. We introduce a
generalization of the classical disjunctive graph concept, allowing pairs of disjunctive
arcs with different extremities. This generalization allows modeling a variety of
sequencing problems in manufacturing and logistic systems. We consider in particular a
version of the job-shop problem characterized by sequence-dependent set-up times and
no buffers between machines.

As a main result, we show that the feasibility problem for generalized disjunctive
graphs - in contrast to the feasibility problem in the job-shop case - is NP-complete. The
feasibility problem addresses the question of whether a generalized disjunctive graph
has a feasible selection, i.e. a complete, positive acyclic selection of disjunctive arcs.
The proof is based on a polynomial-time reduction of the SAT-problem to the feasibility
problem. We also discuss some implications of this complexity result on the design of
solution methods.

As a second extension of the classical disjunctive graph model, we discuss the
introduction of arbitrary arc weights. Non-positive arc weights allow to describe various
types of conditions typical for scheduling problems, such as due dates, limitations on
total duration of some operations, synchronization and no-wait constraints. We address
the feasibility problem for disjunctive graphs with arbitrary weights. Summarizing some
existing results, we show that the complexity of the feasibility problem depends only on
the conjunctive part of the graph: if it is acyclic, there exists a feasible selection; if it has
a cycle of positive weight, there is no feasible selection; if it has a cycle of non-positive
weight, deciding on feasibility is NP complete.

5. Gravitational Search Algorithm (GSA)

In GSA, optimization is done by using gravitational rules and movement rules in an
artificial discrete-time system.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 2, No. 4, November 2011) 1-12

5

System area is same as problem definition area. According to gravitational rule, act
and state of other masses are recognized through gravitational forces. So, this force
could be used as a tool for transferring information. We can also use proposed solution
for solving any optimization problem which within it any answers of problem is
definable as a state in space, and its degree of similarity with other answers of problem
is mentioned as a distance. Value of masses in each problem is also mentioned in
regards to purpose function. In first step, system space is determined. Area includes a
multi-dimensional coordinated system in problem definition space. Each point in space
is one of the answers of problem and search factors are also series of masses.

Each mass has three properties:
a) mass state, b) gravitational mass, c) Inertia mass.
Abovementioned masses are resulted from active gravitational mass and Inertia

mass concepts in physics.
In physics, active gravitational mass is criteria of degree of gravitational force around

a body, and Inertia mass is criteria of body resistance against movement. These two
properties could be not equal, and their amounts are determined base on suitability of
each mass. Mass state is a point in space which is one of problem answers. After
forming system, its rules are determined [23-24].

We suppose that only there are only gravity rule and movement rule. Their general
forms are similar to nature rules and have defined as below:

Gravity Rule): Any mass in an artificial system attracts all other masses toward itself.
The value of this force is proportional with gravitational mass of related mass and
distance between two masses.

Movement Rule): Recent speed of each mass is equal to sum of the coefficient of last
speed of that mass and its variable speed. Also, acceleration or variable speed is equal to
delivered force on mass, divide on amount mass.

In following, we explain principals of this algorithm: Suppose that there is a system
with S masses and within it, state of mass i-th is defined as relation (1), where x
denotes position of mass i-th in dimension d and n denotes number of dimensions in the
search space.

()1 d D
i i i iX x , , x , , x= … … (1)

Worst (t) and best (t) are for minimization problems and are calculated with relations
(2) and (3). (For maximization problems is just enough to consider the inverse of these
two relations).

() ()Best t max tjfit= (2)

j∈{1,…,m}

() ()worst t min tjfit= (3)

j∈{1,…,m}
We can account fitness of recent population with relation (4), and obtain mass of

factor i-th in time t (i.e. with relation (5)), where M and fit are denote mass and fitness
of factor i-th in time t, respectively.

qi(𝑡𝑡) = 𝑓𝑓𝑓𝑓𝑡𝑡 𝑓𝑓−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡 (𝑡𝑡)
𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡 (𝑡𝑡)− 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡 (𝑡𝑡)

 (4)

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

6

M(𝑡𝑡) = 𝑞𝑞𝑓𝑓
∑ (𝑡𝑡)𝑤𝑤
𝑗𝑗=1

 (5)

In this system, force F is delivered on mass i-th from mass j-th in time t in the
direction of dimension d, which value of this force is obtained base on relation (6), And
in relation (6), G(t) is gravity constant in time t which is regulated in the beginning of
operating algorithm, and is decreased by the time.

Fij
d(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)×𝑀𝑀𝑗𝑗 (𝑡𝑡)

𝑅𝑅𝑓𝑓𝑗𝑗 (𝑡𝑡)+𝜀𝜀
 (𝑋𝑋𝑗𝑗𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑓𝑓𝑑𝑑(𝑡𝑡)) (6)

R is ECLIDIAN distance between factor i-th and factor j-th that is defined as
relations (7),” ” is also a small value for avoiding denominator from becoming zero.

ij = �(𝑋𝑋2 − 𝑋𝑋1)2 + (𝑌𝑌2 − 𝑌𝑌1)2 + (𝑍𝑍2 − 𝑍𝑍1)2 + ⋯+ (𝑛𝑛2 − 𝑛𝑛1)2 (7)

The force delivered on mass i-th in direction d at time t is equal to resultant of total
force from k superior mass in population (k is better factor than recent factor). Kbest
denotes series of k superior masses in population. K value is not constant and is defined
as a time-dependant value, such that all masses at the beginning influence on each
other and deliver force, but by passing time, number of effective members in population
is decreased linearly. And for accounting sum of delivered forces on mass i-th in
dimension d, we could write (8). In this relation, rand is a random number with normal
distribution in the interval [0,1].

Fi
d(𝑡𝑡) = ∑ 𝑤𝑤𝑟𝑟𝑛𝑛𝑑𝑑 𝑗𝑗 × 𝐺𝐺(𝑡𝑡) 𝑀𝑀𝑗𝑗 (𝑡𝑡)×𝑀𝑀𝑓𝑓(𝑡𝑡)

𝑅𝑅𝑓𝑓𝑗𝑗 (𝑡𝑡)+𝜀𝜀𝑗𝑗𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡 ,𝑗𝑗≠𝑓𝑓 (𝑋𝑋𝑗𝑗𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑓𝑓𝑑𝑑(𝑡𝑡)) (8)

According to Newton's second movement rule; each mass takes acceleration in the
direction of dimension d, which is proportional with delivered force on that mass, and
has mentioned in relation (9).

ai
d(t) = Fi

d (t)
Mi (t) → (9)

ai
d(t) = � rand j × G(t)

Mj(t) × Mi(t)
Rij (t) + ε

jϵkbest ,j≠i

(Xj
d(t) − Xi

d(t))

And speed of each mass is equal to sum of coefficient of mass recent speed and
acceleration, and is explained as relation (10). In this relation, rand is a random number
with normal distribution in the interval [0,1], and its random property is resultant of
keeping search in random mood.

Vi
d (𝑡𝑡 + 1) = 𝑤𝑤𝑟𝑟𝑛𝑛𝑑𝑑𝑓𝑓 × 𝑉𝑉𝑓𝑓𝑑𝑑(𝑡𝑡) + 𝑟𝑟𝑓𝑓𝑑𝑑(𝑡𝑡) (10)

Now, mass should moves. It is obvious that more speed of the mass, cause more
movement in that dimension. New state of factor i-th is mentioned by relation (11).

Xi
d(𝑡𝑡 + 1) = Xi

d (𝑡𝑡)𝑓𝑓 + 𝑉𝑉𝑓𝑓𝑑𝑑(𝑡𝑡 + 1) (11)

At the beginning of forming system, each mass (factor) is randomly positioned in
one point of space that is an answer of problem. In each moment, masses are evaluated
and then changing in the position of each mass is calculated after solving relations 8 to
11. System parameters are updated in each stage (G, M).

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 2, No. 4, November 2011) 1-12

7

Stop condition could be determined after passing specified time. In Figure 1, semi-
code of this algorithm has been presented: (Rashedi and Nezamabadi-pour and Saryazdi
et al,2009).

Figure 1. semi-code of Gravitational Search Algorithm

6. Proposed Method Based on Gravitational Search Algorithm (FJSP-GSA)

Regarding to gravitational searching algorithm, each searching factor should be
contain information for solving problems. This information says that for example each
factor in any time might be aware that in each point of searching space, which operation
is implementing on which machine. According to problem definition, we could consider
a table like below table that in it, each operation is implementable on set of machines.
But in any time, only one job is implemented on each machine, and then next operation
should be implemented.

determining system area and initial valuing

initial positioning the masses

evaluating masses

updating parameters G, best, worst and M

calculating delivered force on each mass

accounting acceleration and speed of each mass

updating position of masses

if stop condition
doesn’t meet, go to

phase3

Return best solution

NO

YES

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

8

Table 1. Example of an job with 4 actions on 4 machines

 A1 A2 A3 A4
M1 ██
M2 ██
M3 ██
M4 ██

You could see with some attention that above table is similar to N-minister problem

table that in each column is placed just one minister (one job for each machine). The
only difference is that in new table maybe several jobs are implemented on each
machine.

To brief this table we use One-dimensional array and we assign to each factor in
searching space.

It is obvious that each house of this array is assigned to one column of table, and
value of that house states number of machines that related job would be implemented by
them. For example, second house of below array indicates that second job (in second
column) would be implemented on third machine.

In gravitational searching algorithm, each factor in searching space includes a one
dimensional array which keeps summary of recent state of implemented operations on
related machines. So, with having five masses, in fact five searching factors are applied
for finding purpose state (minimum time for performing operation).

To indicate that bigger mass has better state, we should subtract total time of
implementing an operation from a constant value (this value could be maximum
required time for implementing a job which counts as a constraint). Result answer of
this subtraction is qi, conforming with formula (4). Now if base on formula (5), we
divide fitness of one factor on sum of factors fitness, mass factor is attained.

Accounting delivered force, acceleration, speed and position of each mass are
depended on dimension of each mass, and they are independent of each other.

Consider a two-dimensional space. If there are two masses in one column during
applying calculations on dimension X, calculations should be stopped, since second
mass doesn’t deliver force on first mass in direction of dimension X.

For example, in Figure 2, you see that two masses (A and B) are placed in one
column, so they don’t deliver force in direction of dimension X on each other.

And similarly, two masses C and D are placed in one line, and so don’t deliver force
on each other in direction of dimension Y. But pair masses (B,C), (B,D), (C,D), (A,D)
are delivered force on each other in both directions of dimensions X and Y, and so
calculations are applied on them completely.

Figure 2. Two-dimensional space with 4 masses

A C

B
D

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 2, No. 4, November 2011) 1-12

9

Therefore, in first condition, we investigate un-parallelism of two masses in
interested dimension. Then in order to account sum of delivered forces on related mass,
we need to determine forces delivered from those masses which are placed in Kbest
series.

Kbest array is filled with initial value of (-1). According to gravitational algorithm, at
the first moment of operating algorithm, all masses deliver force on each other. After
assessing first condition, we add number of masses to Kbest series (Figure 3).

for (byte j = 0; j < j_num; j++)
K_best[j] = -1;
for (byte i = 0; i <= mass_num; i++)
{
if (Loc_arr[0, i] >= n)
Loc_arr[0, i] = n;
if (Loc_arr[1, i] >= n)
Loc_arr[1, i] = n;
if (Loc_arr[0, k] != Loc_arr[0, i])
{
for (byte j = 0; j < mass_num; j++)
if (K_best[j] == -1)
{
K_best[j] = arr[Loc_arr[0, i], Loc_arr[1, i]];
break;
}
}
}

Figure 3. calculating K_best

It is obvious that according to gravitational algorithm, in next moment, we should add
the condition of “being masses heavier” to the first condition, i.e. in addition to
condition of un-parallelism of masses, those masses which are heavier than recent
masses, should be added to Kbest series.
Now, we could write calculations as follow:

while ((K_best[l] >= 0) && (number <= mass_num))
{
R = Math.Sqrt((Math.Pow((Loc_arr[0, k_best_T] –
Loc_arr[0, k]), 2) + Math.Pow((Loc_arr[1, k_best_T] –
Loc_arr[1, k]), 2)));
F_arr[0, k] = F_arr[0, k]+((rand_obj.Next(100) /
100.0) * G * (Math.Abs((hiu_mass[k_best_T] -
hiu_mass[k])) /
(R + E))* Math.Abs(Loc_arr[0,k_best_T] -
Loc_arr[0,k]));
}
A_mass = F_arr[0, k] / hiu_mass[k];
V_arr[0, k] =((rand_obj.Next(100)/100.0)* V_arr[0, k])
+ A_mass;
x_temp= (Loc_arr[0,k] + Math.Round(V_arr[0,k]));

Figure 4. calculating for each masses

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

10

New positions of mass, has been specified. And it is obvious that researcher factor
should have new state and finally new mass in new position of search space. But how
these changes in state and mass should be created?

In proposed solution, we divide state array on N-dimensions of search space, i.e. for
each dimension, we assign some houses to state array.

For example, we would have a state array with six houses and a three-dimensional
search space, where we assign two houses for dimension X and two houses for
dimension Y and two houses for dimension Z (Figure 5).

2 3 1 7 8 6

dimension X dimension Z
dimension Y

Figure 5. state array and dimensions

Attention that order of assigned dimensions to the houses are arbitrary, but with
change in position of factor in search space, movement is determined in direction of
related dimension, and only corresponding cells with that dimension may be change in
state array, and other values remain constant. So factors could move in direction of their
corresponding dimensions.

Way of changing values is important, and is explained as follow:
When a factor starts to move in one direction, we divide each corresponding value

with related dimension on distance, then by calling neighborhood function, we specify
that by replacing which value in state array total spent time would be decreased and
corresponding mass found better state.

If in searching space is reminded just one mass, search is finished and with
considering existing number of reminded mass (best mass) in array, list of machines is
presented for processing reminded operations of one job in order to minimizing time
production.

For instance, follow array shows that if first job is implemented by third machine,
second job is implemented by fifth machine and so on, then we would have ideal time
for producing or performing related job, Such that required time for performing one job
on specified machines with above mentioned operations and ignoring other times (such
as supplying materials, path stops, delivering times) would be as follows (Figure 6):

Figure 6. Result array

 20+32+40+17=109 Second

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 2, No. 4, November 2011) 1-12

11

S No Instance
Name

Instance
Size
(n × m)

Obtained Values from
the JSSP using Simple
Genetic Algorithm

Goncalves
et al [15]

Obtained Values from
the Proposed
Algorithm (FJSP-GSA)

1. FT06 6 × 6 55 55 55
2. LA01 10 × 5 686 666 633
3. LA02 10 × 5 739 655 680
4. LA03 10 × 5 670 597 484
5. LA04 10 × 5 634 590 546
6. LA05 10 × 5 593 593 544
7. LA06 15 × 5 956 926 896
8. LA07 15 × 5 994 890 860
9. LA08 15 × 5 906 863 855
10. LA09 15 × 5 956 951 954
11. LA10 15 × 5 958 958 955
12. LA11 20 × 5 1267 1222 1215
13. LA12 20 × 5 1071 1039 1020
14. LA13 20 × 5 1188 1150 1121
15. LA14 20 × 5 1292 1292 1270
16. LA15 20 × 5 1383 1207 1155
17. LA16 10 × 10 1080 945 943
18. LA17 10 × 10 906 784 745
19. LA18 10 × 10 976 848 828
20. LA19 10 × 10 1021 842 718
21. LA20 10 × 10 1072 907 890

7. Experimental Results

The C#.Net 2008 language programming was used for testing the proposed algorithm
and in this paper, we have used 21 instances that are taken from the OR-Library
(Beasley, 1990) as benchmarks to test our new proposed algorithm.

We have used the Intel Pentium Core i5 Duo 2.4GHz Processor and 4GB RAM
configuration system with Windows XP as the platform to run this algorithm and
achieved the following results.

Goncalves et al [15] gives optimal Solution for most of the benchmark problems. But
our proposed algorithm gives the optimal solution within a minimum considerable
amount of time. We can’t compare the computation times of Goncalves et al [15] with
our proposed work, because the system configuration is not unique (Tamilarasi and
kumar [22]).

8. Conclusion

This paper has presented a new Gravitational search algorithm for FJSP. Purpose of
scheduling job shop production systems is determining sequence of operations on
related machines, such that production time get optimized. Gravitational search
algorithm is one of random-base algorithms for optimum finding in different problems,
which has been established based on exploiting gravity rules in nature. Proposed
solution which is offered for scheduling job shop production systems is based on this
algorithm where optimal or near optimal solutions might be found. This solution
correspond dimensions of searching space with state array houses, and while controlling
the search guarantees improved search and proportioned states.

Finally, we believe that the methodology used in this paper can be extended to solve
other scheduling problems.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Optimality of the flexible job shop scheduling … B. Barzegar, H. Motameni

12

9. References

[1] J.F. Muth and G.L. Thompson Industrial Scheduling. Prentice-Hall, Engle-wood Cliffs, N.J.
(1963).

[2] P. Brandimarte. Routing and scheduling in flexible job shop by tabu search. Annals of Operation
Research, 41, PP. 157-183. (1993).

[3] P. Bruker, & R. Schlie . Job shop scheduling with multi-purpose machines. Computing, 45, PP.
369-375. (1990).

[4] Choi IC & Choi DS. A local search algorithm for job shop scheduling problems with alternative
operations and sequence–dependent setups. Computers & Industrial Engineering, 42, PP. 43-45.
(2002).

[5] P. Fattahi, M.Saidi, F. Jolai. Mathematical modeling and heuristic approaches to flexible job shop
scheduling problems. Journal of Intelligent Manufacturing. (2002).

[6] W. Xia, Z. Wu .An effective hybrid optimization approach for multi-objective flexible jobshop
scheduling problems. Computers & Industrial Engineering. 48, PP. 409–425. (2005).

[7] Jain and Meeran. Deterministic job-shop scheduling: Past, present and future. Europ. J.
Operational Res. 113, PP. 390–434. (1999).

[8] MR Garey, DS Johnson and R. Sethi. The complexity of flowshop and jobshop scheduling. Maths.
Operations Res. 1, PP. 117–129. (1976).

[9] HR. Lourenço. Local optimization and the job shop scheduling problem. Eur. J. Operational Res.
83, PP. 347–364. (1995).

[10] D. Sun, R. Batta and L. Lin .Effective job shop scheduling through active chain manipulation.
Compu. & Operations Res. 22(2), pp.159–172.(1995).

[11] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem. Managt.
Sci. 42(6), pp. 797–813. (1996).

[12] F. Pezzella and E. Merelli. A tabu search method guided by shifting bottleneck for the job shop
scheduling problem. Eur. J. Operational Res. 120(2), pp. 297–310. (2000).

[13] J. Bean. Genetic algorithms and random keys for sequencing and optimization. Operations Res.
Soc. Am. J. Computing (ORSA). 6, pp.154–160. (1994).

[14] S. Kobayashi, I. Ono and M. Yamamura. An efficient genetic algorithm for job shop scheduling
problems. In LJ. Eshelman (Ed.). Proce. 6th Intl. conf. on genetic algorithms. San Francisco,
CA:Morgan Kaufman Publ. pp. 506–511. (1995).

[15] JF. Gonçalves, JJM. Mendes and Resende MGC. A hybrid genetic algorithm for the job shop
scheduling problem. Europ. J. Operational Res. 167(1), pp. 77–95. (2005).

[16] L. Wang and DZ. Zheng. An effective hybrid optimization strategy for jobshop scheduling
problems. Compu. & Operations Res. 28, pp. 585–596. (2001).

[17] M. Mastrolilli and LM. Gambardella. Effective neighborhood functions for the flexible job shop
problem. J. Scheduling. 3(1), pp. 3–20. (2000).

[18] F. Pezzella, G. Morganti and G. Ciaschetti. A genetic algorithm for the flexible job-shop
scheduling problem. Compu. & Operations Res. 35, pp. 3202–3212. (2008).

[19] J. Gao, L. Sun and M. Gen. A hybrid genetic and variable neighborhood descent algorithm for
flexible job shop scheduling problems. Compu. & Operations Res. 35, pp. 2892–2907. (2008).

[20] M. Yazdani, M. Amiri and M. Zandieh. Flexible job-shop scheduling with parallel variable
neighborhood search algorithm. Expert Sys. with Appli. Intl. J. 37(1), pp. 678–687. (2010).

[21] FM. Defersha and M. Chen. A coarse-grain parallel genetic algorithm for flexible job-shop
scheduling with lot streaming. Proc. Intl. Conf. Compu. Sci. & Engg. 1, pp. 201–208. (2009).

[22] Tamilarasi and T. Anantha kumar. An enhanced genetic algorithm with simulated annealing for
job-shop scheduling, International Journal of Engineering, Science and Technology Vol. 2, No.
1, 2010, pp. 144-151. (2010).

[23] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi. "GSA: A Gravitational Search Algorithm" ,
Information Sciences,179. pp. 2232–2248. (2009).

[24] B. Barzegar, A. Rahmani, K. Zamanifar, A. Divsalar. " Gravitational Emulation Local Search
Algorithm for Advanced Reservation and Scheduling in Grid Computing Systems" , Fourth
International Conference on Computer Sciences and Convergence Information Technology,
(2009).

www.SID.ir

http://csdl.computer.org/csdl/proceedings/iccit/2009/3896/00/3896b240-abs.html�
www.SID.ir

