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Abstract 
This study evaluates the discriminative power of sequential spectrum analysis of 

the short-term electrocardiogram (ECG) time series in separating normal and 
subjects with life threatening arrhythmias like, ventricular tachycardia/fibrillation 
(VT/VF). The raw ECG time series is transformed into a series of binary symbols 
and the binary occupancy or relative distribution of mono-sequences (i.e. tuples 
containing only one type of symbol ‘0’ or ‘1’) is computed. The quantified 
approximate entropies (ApEn0 and ApEn1) of the binary occupancies in the 
sequential spectra are found to have potential in discriminating normal and VT/VF 
subjects and thus can significantly add to the prognostic value of traditional cardiac 
analysis. The receiver operating characteristic curve (ROC) analysis confirms the 
robustness of this new approach and exhibits an average sensitivity of about 98.0% 
(97.1%), specificity of about 93.3% (93.3%), positive predictivity of around 94.7% 
(89.3%), and accuracy of about 95.9% (94.7%) with ApEn0 to distinguish between 
normal and VT (VF) subjects. 

 
Keywords: Ventricular tachycardia, Ventricular fibrillation, Sequential spectrum, Symbolic 

dynamics 
 

 

1. Introduction 

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are life threatening 
cardiac arrhythmias [1]. Despite numerous recent advances in the field of medicine, 
Ventricular tachycardia/fibrillation (VT/VF) has been difficult to manage with in 
clinical practice and mortality rate has remained high. As a consequence the 
development of new noninvasive methods and measures of mortality risk in VT/VF, 
including sudden cardiac death, is still a major challenge. For this reason, a number of 
quantitative analysis techniques for ECG arrhythmia detection have been proposed [1-
3]. Besides this, there is a need to reach remote and under served communities with life 
saving healthcare. A reliable automated classification system combined with high-speed 
communication can resolve this issue. This work is an attempt to develop such an 
automated system to discriminate between normal and Ventricular 
tachycardia/fibrillation subjects. 

Physiological data more often show complex structures which can not be quantified 
or interpreted using linear methods. The classical nonlinear methods suffer from the 
disadvantage of dimensionality. Further, there are not enough samples in the time series 
to arrive at a reasonable estimate of the nonlinear measures. From this point of view it is 
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advisable to resort to methods which can quantify system dynamics even for short time 
series, like the symbolic dynamics. The prime advantages of symbolic dynamics are the 
following: If the fluctuations of the two data series are governed by different dynamics 
then the evolution of the symbolic sequences is not related. The resulting symbolic 
sequences histograms give a reconstruction of their respective histories and provide a 
visual representation of the dynamic patterns. In addition, they may be used as a basis to 
build statistics to compare the regions that show different dynamical properties and 
indicate which patterns are predominant. Thus methods of symbolic dynamics are 
useful approaches for classifying the underlying dynamics of a time series. Parameters 
of time domain and frequency domain often leave these dynamics out of consideration. 
Besides computational efficiency, symbolic methods are also robust when noise is 
present. The process of symbolization can be used to represent any possible variation 
over time, depending on the number of symbols and the sequence lengths used. This is a 
very powerful property because it does not make any assumptions about the nature of 
the signals/patterns (e.g., it works equally well for both linear and nonlinear 
phenomena). 

Symbolic time series analysis has found application for the past few decades in the 
field of complexity analysis, including astrophysics, geomagnetism, geophysics, 
classical mechanics, chemistry, medicine and biology, mechanical systems, fluid flow, 
plasma physics, robotics, communication, and linguistics [4]. To be specific, in 
medicine, various implementations of symbolic sequences have been used to 
characterize encephalography (EEG) signals to understand the interaction between brain 
structures during seizures [5]. Under mechanical systems, symbolic methods were 
applied to combustion data from internal combustion engines to study the onset of 
combustion instabilities [6] and in multiphase flow data-symbolization were found to be 
useful in characterizing and monitoring fluidized-bed measurement signals [7]. 
Symbolic dynamics, as an approach to investigate complex systems, has found profound 
use in the analysis of heart rate variability signals [8-12]. However, there is hardly any 
literature where sequential spectrum is applied for analysis of the first difference of raw 
ECG signals.  

There are many ways symbolic dynamics can be used for analysis of time series and 
all of them require coding i.e. converting the time series into symbolic series. The 
differences in symbolic methods are usually in their coding procedure or used 
complexity indices. In this contribution we employ sequential spectrum [13] as the 
symbolic method and approximate entropy as a measure of complexity of the sequential 
spectrum [14-15] to classify ECG signals obtained from standard Holter recordings 
from PhysioNet database [16] into normal and VT/VF subjects. The rationale behind the 
application of sequential spectrum and approximate entropy measures is that both are 
suitable for short-term segments of the ECG signal. Receiver operating characteristic 
(ROC) plots were used to evaluate the ability of these complexity measures to 
discriminate normal from VT/VF subjects. Both the approximate entropy measures 
(ApEn0: approximate entropy of the binary occupancies of symbol ‘0’ and ApEn1: 
approximate entropy of the binary occupancies of symbol ‘1’) yielded excellent results. 
However, it is found that ApEn0 performs better than ApEn1 with an average sensitivity 
of about 98.0% (97.1%), specificity of about 93.3% (93.3%), positive predictivity of 
around 94.7% (89.3%), and accuracy of about 95.9% (94.7%) to distinguish between 
normal and VT (VF) subjects. 
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2. Methods and materials 

We first explain the ECG data used and then the symbolic dynamics of the time series. 
 
2.1 ECG records 

All the ECG records used are from the benchmark PhysioNet databases [16]. The 
work involved 18 ECG records from normal sinus rhythm (NSR) database (nsrdb) and 
ECG records of 35 subjects who experienced episodes of sustained ventricular 
tachycardia, ventricular flutter and ventricular fibrillation (VT/VF) from Creighton 
University ventricular tachyarrhythmia database (cudb). The NSR database includes 5 
men, aged 26 to 45 years, and 13 women, aged 20 to 50 years. The age and gender of 
subjects in VT/VF database are not available. For sake of comparison and validation, 
the NSR database was divided into two groups, first with 9 ECG records (Normal-1) 
and second, also, with 9 ECG records (Normal-2).  Likewise, the VT/VF database was 
divided into two groups, first with 15 ECG records (VT/VF-1) and second also with 15 
ECG records (VT/VF-2). From each record the modified limb lead II was only 
considered for analysis. The resolution is 200 samples per mV for nsrdb and 400 
samples per mV for cudb. The sampling frequency of normal sinus rhythm signal from 
NSR is 128 Hz and that of VT/VF signal from cudb is 250 Hz. Since the sampling 
frequency does influence upon the calculated indices it is necessary to have the same 
sampling frequency for all the records. For this reason ECG signals from NSR database 
are first re-sampled at 250 Hz. Then each record is divided into segments of equal time 
duration (14 sec), with 3500 samples/ segment in both normal sinus rhythm and VT/VF 
database. A total of 1000 segments from normal sinus rhythm and from VT/VF data 
base, each, are analyzed. All the records are normalized before analysis. Also all the 
signals from both database are filtered using an 8-point moving average filter to remove 
high-frequency noise. 
 
2.2 Symbolic Dynamics and Sequential spectrum 

The application of symbolic analysis requires coarse grained representation of the 
signal, which is explained below.  
 

Static and dynamic transformations. Symbolic  dynamics,  as  an approach  to  
investigate  complex  systems,  facilitates  the analysis  of  dynamic  aspects of  the  
signal of interest.  The  concept  of symbolic  dynamics  is  based  on  a  coarse-graining  
of  the  dynamics [5].  That is the range of original observations or the range of some 
transform of the original observations such as the first difference between the 
consecutive values, is partitioned into a finite number of regions and each region is 
associated with a specific symbolic value so that each observation or the difference 
between successive values is uniquely mapped to a particular symbol depending on the 
region into which it falls. The former mapping is called static transformation and the 
latter dynamic transformation. As a simple example of static transformation a binary 
partition will lead to two symbols, ‘0’ and ‘1’.  If an observation xi is below a specific 
threshold, xth, then we associate it with a ‘0’ and otherwise we symbolize it with a ‘1’, 
as shown in the eqn. below. 

𝑆𝑆𝑖𝑖 =  � 0       𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 <  𝑥𝑥𝑡𝑡ℎ
 1       𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥  𝑥𝑥𝑡𝑡ℎ

� (1) 
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The threshold xth is usually the mean or the median of the time series. Details of the 
dynamic transformation are given in the beginning of Sec. 2.2.2 below. 

Thus the original observations are transformed into a series of same length but the 
elements are only a few different symbols (letters from the same alphabet), the 
transformation being termed symbolization. A general rule of thumb is the partitions 
must be such that the individual occurrence of each symbol is equiprobable with all 
other symbols or the measurement range covered by each region is equal. This is done 
to bring out ready differences between random and nonrandom symbol sequences. The 
transformations into symbols have to be chosen context dependent. For this reason, we 
use complexity measures on the basis of such context-dependent transformations, which 
have a close connection to physiological phenomena and are relatively easy to interpret. 
This way the study of dynamics simplifies to the description of symbol sequences. 
Some  detailed  information  is  lost  in  the  process  but  the coarse and robust 
properties of the dynamic  behavior  is preserved and can  be  analyzed  [5]. 

Mono-sequences, Binary Occupancy and Sequential spectrum of ECG signals. 
In this study, we use dynamic transformation approach for the symbolic dynamics [6]. 
Such a differenced symbolization scheme is relatively insensitive to extreme noise 
spikes in the data. In this approach arithmetic differences between adjacent data points 
of the ECG signal define the symbolic values. We symbolize the positive difference as a 
‘1’ and the negative difference as a ‘0’ as shown in the eqn. below.  

𝑆𝑆𝑖𝑖 =  � 1    𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 ≥ 0
 0    𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 < 0 

� (2) 

After symbolization the next step is to partition the symbol sequence into windows of 
width W symbols each. It is sliding window technique and if the shift is smaller than W, 
then the consecutive windows overlap. The next step is the construction of temporal 
patterns in each window, by the identification of short ordered sequences of only one 
type of symbol (0 or 1), termed tuples or mono-sequences, from the symbol series by 
gathering groups of symbols in the temporal order. The mono-sequence Nx0 (or Nx1), is 
a homogeneous sub-sequence containing N (N=1, 2, …, W), only one type of symbol 
S=0 (or 1). The lengths of the mono-sequences correspond to their respective 
frequencies. Next the tuples [NxS], i.e. mono-sequences of length N are counted in the j-
th window. Thus we evaluate the cardinality, Lj [NxS], for all possible values of N, and 
arrive at the distribution of cardinalities in the j-th window. From the cardinalities we 
compute the respective binary occupancies, Oj [NxS], for the mono-sequences [NxS] in 
the window j as given by the eqn. (3) below. 
𝑂𝑂𝑗𝑗 [𝑁𝑁𝑥𝑥𝑆𝑆] =  𝐿𝐿𝑗𝑗 [𝑁𝑁𝑥𝑥𝑆𝑆]. 𝑁𝑁

𝑊𝑊
               (𝑁𝑁 = 1, 2, … ,𝑊𝑊) (3) 

Each plot of binary occupancies, Oj [NxS] with (S=0 or S=1), Vs the length of the 
mono-sequences, N, constitutes Sequential-spectrum for the window j. Thus, the binary 
occupancies characterize the distribution of monotonic intervals of length N, in the 
analyzed time series: decreasing intervals for S=0 and increasing intervals for S=1. 
Though this distribution is referred to as spectrum, this is neither a transformation to 
frequency domain nor the inverse transform does exist. The shape, distribution and 
width of the sequential spectrum contain information about the analyzed time series. 

Approximate Entropy (ApEn). Approximate entropy (ApEn) is a measure of 
irregularity in the data without any a priori knowledge of the system generating them 
[14]. ApEn is scale invariant and model independent, evaluates both dominant and 
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subordinant patterns in the data, and discriminates series for which clear feature 
recognition is difficult. It is immune to low level noise and robust to meaningful 
information with a reasonable number of data points. Large values of ApEn indicate 
more complexity or irregularity in the data and vice versa. In the following a short 
description of the formal implementation of the ApEn is given, for further details see 
[15].  Given a time series with M data points, x(1), x(2),…, x(M). To compute ApEn m-
dimensional vector sequences, pm(i), are constructed from data series like [pm(1), pm(2), 
…, pm(M-m+1)], where 1≤  i  ≤ M -m+1. If the distance between two vectors pm(i) and 
pm(j) is defined as | pm(i) - pm(j)|, then 

Ci
m(d) = [Number of vectors such that | pm(i) - pm(j)| < d]/(M-m+1), where m 

specifies the pattern length and d defines the criterion of similarity.   Ci
m(d) is 

considered as the mean of the fraction of patterns of length m that resemble the pattern 
of the same length that begins at index i. ApEn is computed using the eqn. (4) below. 
Let    Ф𝑚𝑚 (𝑑𝑑) =  ∑ ln(𝐶𝐶𝑖𝑖𝑚𝑚𝑀𝑀−𝑚𝑚+1

𝑖𝑖=1 (𝑑𝑑))/(𝑀𝑀−𝑚𝑚 + 1))                         
and   Ф𝑚𝑚+1(𝑑𝑑) =  ∑ ln(𝐶𝐶𝑖𝑖𝑚𝑚+1(𝑑𝑑)/(𝑀𝑀−𝑚𝑚)𝑀𝑀−𝑚𝑚

𝑖𝑖=1 ) 
then    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚,𝑑𝑑,𝑀𝑀) =  Ф𝑚𝑚(𝑑𝑑) −  Ф𝑚𝑚+1(𝑑𝑑)     𝑖𝑖𝑓𝑓𝑓𝑓 𝑚𝑚 ≥ 1 
where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(0,𝑑𝑑,𝑀𝑀) =  −Ф1(𝑑𝑑) (4) 

Pincus and Goldberger [15] have shown that with m=2, d= 10−25%  of the s tandard 

deviation of the M  data points/ samples (100-900 data points) will lead to statistically 
reliable and reproducible results. In this study, we use m=2, d=0.0025 and M=3500. 
This is the key to a measure of irregularity: small values of ApEn indicate regularity and 
large values imply substantial fluctuations or irregularity in the time series. 

Approximate Entropy of Binary Occupancies and t-tests. We define the 
approximate entropies, ApEn0 and ApEn1, of the binary occupancies, O[Nx0] and 
O[Nx1], respectively, in the sequential spectra. ApEn0 and ApEn1 are computed for each 
of the sequential-spectrum for the window or ECG segment in the normal and VT/VF 
groups. In this work we use approximate entropies, ApEn0 and ApEn1, and show that 
each one is capable of distinguishing between normal and VT/VF subjects. To assess 
the use of these parameters individual and pair-wise significance tests (Student’s t-tests) 
are performed. To compare the regularity of the fluctuation functions between the 
normal and VT/VF groups we also compute the mean and standard deviation of the 
difference between the corresponding approximate entropies, ApEn0 and ApEn1, of the 
two groups. Parameters are regarded as statistically significant if p < 0.05. 

Receiver Operating Characteristic (ROC) Analysis and C-statistic. As mentioned 
above, individual and pair-wise significance tests (Student’s t-tests) are used to evaluate 
the statistical differences between the approximate entropy values, ApEn0 and ApEn1, 
of the binary occupancies, O[Nx0] and O[Nx1] respectively, for normal and VT/VF 
groups. If significant differences between groups are found, then the ability of the non-
linear analysis method to discriminate normal from VT/VF subjects is evaluated using 
receiver operating characteristic (ROC) plots in terms of C-statistics. ROC curves are 
obtained by plotting sensitivity values (which represent the proportion of the patients 
with diagnosis of VT/VF who test positive) along the y axis against the corresponding 
(1-specificity) values (which represent the proportion of the correctly identified normal 
subjects) for all the available cutoff points along the x axis. Accuracy is a related 
parameter that quantifies the total number of subjects (both normal and VT/VF) 
precisely classified. The area under ROC curve (AUC), also called C-statistic, 
measures this discrimination, that is, the ability of the test to correctly classify those 
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with and without the disease and is regarded as an index of diagnostic accuracy. The 
optimum threshold is the cut-off point in which the highest accuracy (minimal false 
negative and false positive results) is obtained. This can be determined from the ROC 
curve as the closet value to the left top point (corresponding to 100% sensitivity and 
100% specificity). A C-statistic value of 0.5 indicates that the test results are better than 
those obtained by chance, where as a value of 1.0 indicates a perfectly sensitive and 
specific test. 

3. Results and Discussion 

To test for statistical significance of sequential spectrum approach, first we analyze 
the ECG data from normal and VT/VF subjects of Group-I and show that approximate 
entropy of the binary occupancies, ApEn0, alone is sufficient to distinguish between 
normal and VT/VF subjects. Next, we validate our approach conducting another case 
study on normal and VT/VF subjects from Group-II. ApEn0 is analyzed from segments 
of 3500 samples and averaged to obtain mean values for the entire recording period. 
The sampling frequency of NSR database is 128 Hz and that of VT/VF database is 250 
Hz. Since the sampling frequency does influence upon the calculated indices it is 
necessary to have the same sampling frequency for all the records. For this reason ECG 
signals from NSR database are first re-sampled at 250 Hz. For sake of comparison and 
validation, as mentioned earlier, the normal sinus rhythm database (NSR) was divided 
into two groups, first with 9 ECG records (Normal-1) and second with 9 ECG records 
(Normal-2).  Likewise, the VT/VF database was divided into two 
groups, first with 10 ECG records (VT/VF-1) and second also with 10 ECG records 
(VT/VF-2). Then each record is divided into segments of equal time duration (14 sec), 
with 3500 samples/ segment in both normal sinus rhythm and VT/VF database. A total 
of 1000 segments from normal sinus rhythm and from VT/VF data base, each, are 
analyzed. Sequential spectrum analysis is applied to these segments from both the 
groups to decide whether a particular segment belongs to normal, or VT/VF group. 
Dynamic transformation as given in Eq. (1) is first applied on each segment to arrive at 
a symbol string with a range of two possible symbols {0, 1} (binary symbolization) and 
binary occupancies, Oj [NxS] with (S=0 or S=1) are computed. This is repeated for all 
the segments (all values of j) and a plot of average binary occupancies Vs the length of 
the mono-sequences is made. 

Fig.1(a) shows a comparison of averaged sequential spectra of the binary 
occupancies, O[Nx0] for normal and VT subjects from group-I and Fig.1(b) shows a 
comparison of sequence spectra of the binary occupancies, O[Nx1] for the same normal 
and VT subjects from group-I. It is found from Figs. 1(a) and 1(b) that the sequential 
spectra corresponding to O[Nx0] and O[Nx1] for VT subjects show a broader width 
compared to those of normal subjects. All binary occupancies for the range n= 1 to 9 
contribute significantly in the normal case than those for VT. However, all other binary 
occupancies contribute significantly in the VT case than those for normal. 
Fig.2(a) shows a comparison of averaged sequential spectra of the binary occupancies, 
O[Nx0] for normal and VF subjects from group-I and Fig.2(b) shows a comparison of 
sequence spectra of the binary occupancies, O[Nx1] for the same normal and VF 
subjects from group-I. It is found from Figs. 2(a) and 2(b) that the sequential spectra 
corresponding to O[Nx0] and O[Nx1] for VF subjects show a broader width compared 
to those of normal subjects. All binary occupancies for the range n= 1 to 11 contribute 
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significantly in the normal case than those for VF. However, all other binary 
occupancies contribute significantly in the VF case than those for normal.  
The distribution of approximate entropies ApEn0 and ApEn1 for the normal, VT and VF 
groups (Group-I) are shown using Box-whiskers plots in Figs. 3(a) and 3(b), 
respectively. In Fig. 3(a) for ApEn0, the boxes (inter-quartile range) of normal and 
VT/VF subjects are non-overlapping. In Fig. 3(b) for ApEn1, the boxes (inter-quartile 
range) of normal and VT/VF subjects are non-overlapping. These plots show that either 
ApEn0 or ApEn1 is sufficient to distinguish between normal and VT/VF subjects. The 
results of statistical analysis of non-paired Student’s t-test for normal, VT and VF 
groups of Group-I are depicted in Table 1. All values are expressed as mean ± Standard 
Deviation (median) [95% Confidence Interval]. For normal subjects, we find the 
following approximate entropies (mean ± S.D.): ApEn0 = 0.0580± 0.0515 and ApEn1 = 
0.0921± 0.0787 respectively. For VT subjects we find the following approximate 
entropies (mean ± S.D.): ApEn0 = 0.1903± 0.1265 and ApEn1 = 0.2006± 0.1211, both 
different from normal. For VF subjects we find the following approximate entropies 
(mean ± S.D.): ApEn0 = 0.1819±0.1301 and ApEn1 = 0.1859±0.1290, both different 
from normal. These distributions show that either ApEn0 or ApEn1 alone is sufficient to 
distinguish between normal and VT/VF subjects. It can be observed that all the three 
classes show a larger value of ApEn1 as compared to that of ApEn0. This implies a 
reduced regularity in binary occupancies 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

A new approach to detect Life threatening… Ch. Kamath 
 
 

20 

 
 

Figure 1. Comparison of sequential spectra of normal and VT subjects from Group-I. (a) for binary 
occupancies O[Nx0] (b) for binary occupancies O[Nx1]. 
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Figure 2. Comparison of sequential spectra of normal and VF subjects from Group-I. (a) for binary 

occupancies O[Nx0] (b) for binary occupancies O[Nx1]. 
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Figure 3. The distribution of approximate entropies (a) ApEn0 and (b) ApEn1 using Box-whiskers 
plots (without outliers) for normal, VT and VF subjects from Group-I. 
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Figure 4. ROC curve for ApEn0 (solid line) and ApEn1 (dotted line) (a) between normal and VT and 
(b) between normal and VF. The diagonal line (dash-dot line) from 0,0 to 1,1 represents ROC curve 

that can not discriminate between normal and VT/VF from Group-I. 
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Figure 5. ROC curve for ApEn0 (solid line) and ApEn1 (dotted line) (a) between normal and VT and 
(b) between normal and VF. The diagonal line (dash-dot line) from 0,0 to 1,1 represents ROC curve 

that can not discriminate between normal and VT/VF from Group-II. 

 
O[Nx1] compared to O[Nx0]. It is also found that ApEn0 and ApEn1 for VT/VF 

group are always larger than the respective values of the normal group, the former being 
significantly larger. This implies an decrease in the regularity of binary occupancies 
O[Nx0] and O[Nx1] in the VT/VF group compared to normal group. Of course, 
experimental studies are necessary to confirm the mechanisms behind the decrease in 
the regularity of binary occupancies of VT/VF subjects. 
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Table 1. Descriptive results of sequence spectrum analysis for Group-I. All values are expressed as 
mean ± SD (median) [95% CI].  (non-paired Student’s t-test; p < 0.0001) 

Subject ApEn0 ApEn1 
Normal 0.0160± 0.0165  

(0.005375) 
[0.0140    0.0181] 

0.0277±0.0250 
(0.02617) 
[0.0245    0.0309] 

VT 0.1856± 0.1261 
 (0.1485) 
[0.1711    0.2001] 

0.1927±0.1209 (0.1790) 
[0.1788    0.2066] 

VF 0.1789±0.1303 
(0.1416) 
[0.1569    0.2009] 

0.1811±0.1307 
(0.1363) 
[0.1590    0.2031] 

 
We also perform the Student’s t-test for paired data. The results are tabulated in 

Tables 2 and 3. Parameters are regarded as statistically significant if p < 0.05. The 
values of test statistic and p-value reveal that both the approximate entropies ApEn0 and 
ApEn1 for both the groups are statistically significant. Next, the ability of the ApEn0 and 
ApEn1 to discriminate normal from VT/VF subjects (Group-I) is evaluated using 
receiver operating characteristic (ROC) plots, which are shown in Fig. 4(a) for normal 
and VT and in Fig. 4(b) for normal and VF respectively, with ApEn0 (shown  
 

Table 2. p-values and tstat (test statistic ) values of paired t-test for ApEn0 and ApEn1 of normal and 
VT subjects from Group-I. 

Parameter ApEn0-VT ApEn1-VT 
ApEn0-normal p= 0; 

tstat = -20.6824 
 

ApEn1-normal  p= 0; 
tstat = -20.7837 

 

Table 3. p-values and tstat (test statistic ) values of paired t-test for ApEn0 and ApEn1 of normal and 
VF subjects from Group-I. 

Parameter ApEn0-VF ApEn1-VF 
ApEn0-normal p= 0; 

tstat = -19.1237 
 

ApEn1-normal  p= 0; 
tstat = -17.6403 

 
by solid line) and ApEn1 (shown by dotted line). It is found, from both the figures 

that, ApEn0 performs better than ApEn1. For the case of ApEn0, in Fig. 4(a), it is found 
that the area under the curve (AUC) is 0.98566 with sensitivity = 98.0%, specificity = 
93.3%, positive predictivity = 94.7%, and accuracy = 95.9%. For the case of ApEn1, in 
Fig. 4(a), it is found that the area under the curve (AUC) is 0.96587 with sensitivity = 
88.1%, specificity = 92.1%, positive predictivity = 86.3%, and accuracy = 89.9%. For 
the case of ApEn0, in Fig. 4(b), it is found that the area under the curve (AUC) is found 
to be 0.98936 with sensitivity = 97.1%, specificity = 93.3%, positive predictivity = 
89.3%, and accuracy = 94.7%. For the case of ApEn1, in Fig. 4(b), it is found that the 
area under the curve (AUC) is 0.96016 with sensitivity = 89.8%, specificity = 91.7%, 
positive predictivity = 86.0%, and accuracy = 91.0%. The above results substantiate our 
finding that ApEn0 outperforms ApEn1 and that ApEn0 alone is sufficient to distinguish 
between normal and VT/VF subjects. 
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Finally, we validate our approach conducting another case study on normal and 
VT/VF subjects from Group-II. The results of statistical analysis of non-paired 
Student’s t-test for normal and VT/VF groups of Group-II are depicted in Table. 4. All 
values are expressed as mean ± Standard Deviation (median) [95% Confidence 
Interval]. For normal subjects, we find the following approximate entropies (mean ± 
S.D.): ApEn0 = 0.1187±0.0153 and ApEn1 = 0.1756±0.0289 respectively. For VT/VF 
subjects we find the following approximate entropies (mean ± S.D.): ApEn0 = 
0.0824±0.0121 and ApEn1 = 0.1042±0.0167, both different from normal. These 
distributions show that either ApEn0 or ApEn1 alone is sufficient to distinguish between 
normal and VT/VF subjects. We also perform the Student’s t-test for paired data. The 
results are tabulated in Tables 5 and 6. Parameters are regarded as statistically 
significant if p < 0.05. The values of test statistic and p-value reveal that both the 
approximate entropies ApEn0 and ApEn1 for both the groups are statistically significant. 
Next, the ability of the ApEn0 and ApEn1 to discriminate normal from VT/VF subjects 
(Group-II) is evaluated using receiver operating characteristic (ROC) plots, which are 
shown in Fig. 5(a) for normal and VT and in Fig. 5(b) for normal and VF respectively, 
with ApEn0 (shown by solid line) and ApEn1 (shown by dotted line). It is found, from 
both the figures that, ApEn0 performs better than ApEn1. For the case of ApEn0, in Fig. 
5(a), it is found that the area under the curve (AUC) is 0.92899 with sensitivity = 
83.7%, specificity = 88.3%, positive predictivity = 90.7%, and accuracy = 85.7%. For 
the case of ApEn1, in Fig. 5(a), it is found that the area under the curve (AUC) is 
0.89303 with sensitivity = 88.3%, specificity = 76.3%, positive predictivity = 83.5%, 
and accuracy = 83.2%. For the case of ApEn0, in Fig. 5(b), it is found that the area under 
the curve (AUC) is found to be 0.96836 with sensitivity = 90.6%, specificity = 99.2%, 
positive predictivity = 98.0%, and accuracy = 96.5%. For the case of ApEn1, in Fig. 
5(b), it is found that the area under the curve (AUC) is 0.88683 with sensitivity = 
76.4%, specificity = 83.8%, positive predictivity = 67.5%, and accuracy = 81.5%. The 
above results again substantiate our finding that ApEn0 outperforms ApEn1 and that 
ApEn0 alone is sufficient to distinguish between normal and VT/VF subjects. The 
difference in accuracy and other measures of Group-II can be attributed to age 
differences, and differing male-to-female ratios between groups I and II. 
 

Table 4. Descriptive results of sequence spectrum analysis for Group-II. All values are expressed as 
mean ± SD (median) [95% CI].  (non-paired Student’s t-test; p < 0.0001) 

Subject ApEn0 ApEn1 
Normal 0.0226±0.0198  

(0.0267) 
[0.0201    0.0251] 

0.0479±0.0452 
(0.0389) 
[0.1681    0.1830] 

VT 0.1383±0.1263  
(0.1073) 
[0.1245    0.1521] 

0.1698±0.1456 
(0.1210) 
[0.1540    0.1857] 

VF 0.1852±0.1323 
(0.1497) 
[0.1597    0.2106] 

0.2043±0.1590 
(0.1538) 
[0.1737    0.2349] 
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Table 5. p-values and tstat (test statistic ) values of paired t-test for ApEn0 and ApEn1 of normal and 
VT subjects from Group-II. 

Parameter ApEn0-VT ApEn1-VT 
ApEn0-normal p= 0; 

tstat = -14.0562 
 

ApEn1-normal  p= 0; 
tstat = -12.5369 

 
Table 6. p-values and tstat (test statistic ) values of paired t-test for ApEn0 and ApEn1 of normal and 

VF subjects from Group-II. 

Parameter ApEn0-VF ApEn1-VF 
ApEn0-normal p= 0; 

tstat = -18.6023 
 

ApEn1-normal  p= 0; 
tstat = -14.0283 

 

4. Conclusion 

We apply sequential spectrum analysis to the first difference of nonstationary raw 
ECG time series from normal and VT/VF subjects. We show that this approach can 
identify the monotonicity in the ECG signals and tell us how long such periods are, 
when the signal is increasing or decreasing. The quantified approximate entropies of the 
binary occupancies of the sequential spectrum are found to have potential in 
discriminating normal and VT/VF subjects and thus can significantly add to the 
prognostic value of traditional cardiac analysis. These approximate entropies can easily 
be analyzed from ambulatory ECG recordings without time consuming preprocessing 
and hence, may have practical implications for risk stratification. The nonlinear 
methods applied to time series usually demand more computations and a long ECG 
episode duration. Acquiring long records just for screening purpose is not amenable. 
Although the ECG data we use contains both 30 minutes and 20 hours duration records, 
our method uses short-term segments, of the order of 14 sec duration. Hence the method 
is suitable for screening large population in a short time. 
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