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Abstract 
This paper proposes a novel hybrid algorithm namely APSO-BFO which 

combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive 
Particle Swarm Optimization (APSO) algorithm to determine the optimal PID 
parameters for control of nonlinear systems. To balance between exploration and 
exploitation, the proposed hybrid algorithm accomplishes global search over the 
whole search space through the APSO algorithm whereas the local search is 
performed by BFO algorithm. The proposed algorithm starts with APSO algorithm. 
In the proposed APSO, every particle dynamically adjusts inertia weight according 
to feedback taken from particles best memories. In this case, APSO algorithm is 
used to enhance global search ability and to increase convergence speed. When the 
change in fitness value is smaller than a predefined value, the searching process is 
switched to BFO to accelerate the search process and find an accurate solution. In 
this way, this hybrid algorithm may find an optimum solution more accurately. To 
demonstrate the effectiveness of the proposed algorithm, its results are compared 
with those obtained by Basic PSO (BPSO), Standard BFO (SBFO), BFO with PSO 
(PSO-BFO), BFO with GA (GA-BFO) and Differential Evolution with BFO (DE-
BFO). The numerical simulations are shown the potential of proposed algorithm. 

 
Keywords: Bacterial foraging optimization algorithm, Particle swarm optimization, PID 

controller, Genetic algorithm, Differential evolution 
 

 

1. Introduction 

Process control techniques in the industry have made great advances. Although 
various control approaches such as adaptive control and neural control have been 
studied during two past decades [1], but the most well-known controller is yet the 
proportional integral derivative (PID) controller [2-5].  

PID controller has been widely utilized in the industry because of its simple 
realization and robust performance within a wide range of operating conditions. 
Unfortunately, it has been quite difficult to properly tune the gains of PID controller 
since many industrial processes are often burdened with problems such as nonlinearities 
and time delays. The first method utilized the classical tuning rules proposed by Ziegler 
and Nichols (ZN). In general, it is often hard to determine the optimal PID parameters 
with the ZN formula in various industrial processes. One of shortage on this method is 
the necessary of the prior knowledge regarding plant model. Based on this, it is highly 
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desirable to increase the capabilities of PID controllers by the proper tuning of the 
controller parameters. Hence, many artificial intelligence (AI) techniques such as fuzzy 
systems have been employed to improve the PID controller performances for a wide 
range of processes whilst retaining their basic characteristics. Beside these methods, 
several heuristic optimization techniques such as genetic algorithm (GA) and particle 
swarm optimization (PSO) algorithm seem to be a promising alternative to traditional 
techniques [6-9]. These algorithms are currently gaining popularity in solving 
engineering optimization problems.  

Compared to GA, PSO takes less time for each function evaluation as it is free from 
the complex computation in genetic algorithm such as coding/decoding, crossover and 
mutation [10]. Because of the simple concept, easy implementation and rapidly 
converging towards an optimum, PSO has gained increasing popularity in recent years 
to solve effectively a plethora of problems in science and engineering [11-14].  

Although PSO has shown some significant advances by providing high speed of 
convergence in specific problems, but it does exhibit some drawbacks. These drawbacks 
are summarized as follows: 

1) It sometimes is easy to be trapped in local optima when facing to complex 
optimization problem. So it suffers from the premature convergence problem. 

2) The convergence rate decreased significantly in the later period of evolution; 
while reaching a near optimal solution, the algorithm stops optimizing, and 
therefore the accuracy of algorithm is limited [15].  

Motivated by the aforementioned before, this paper proposes a novel methodology 
by incorporating an adaptive particle swarm optimization (APSO) and bacterial foraging 
optimization (BFO) algorithm, namely APSO-BFO algorithm. The main goal of this 
paper is to illustrate that the integration of some features from both the PSO and the 
BFO, can prove very effective in tackling many nearly complex optimization problems 
on which both the basic algorithms execute poorly. Based on this, to overcome the first 
shortage, the APSO algorithm is utilized to enhance global search ability of PSO. 
Moreover, to avoid the second shortage of PSO, the proposed APSO is combined with 
BFO. To show the feasibility of the proposed APSO-BFO, in the beginning it is 
extensively compared with Basic PSO (BPSO), Standard BFO (SBFO), BFO with PSO 
(PSO-BFO), BFO with GA (GA-BFO) and Differential Evolution with BFO (DE-BFO) 
over a test suit of five well-known benchmark functions. Results depict that the 
proposed algorithm has better performance than others. Next, APSO-BFO algorithm is 
employed to determine optimal tuning of the PID controller parameters for control of 
nonlinear systems.  

The remaining content of this paper is organized as follows: Section 2 introduces the 
BPSO and BFO algorithms shortly. In Section 3, the proposed algorithm referred to as 
APSO-BFO algorithm is described. The superiority of the proposed algorithm both in 
robustness and efficiency is verified over a few numerical benchmarks and a practical 
PID tuner design problem in section 4 and 5, respectively. Moreover, numerical 
simulations and comparisons are provided in these sections. Finally, section 6 
summarizes and draws conclusions. 

2. Preliminaries 

In this section, we briefly describe both BPSO and SBFO algorithms. 
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2.1 BPSO algorithm  
PSO is a very popular optimization algorithm these days and it draws inspiration 

from the group behavior of a bird flock. In PSO, multiple candidate solutions coexist 
and collaborate simultaneously. Each solution is referred as a ‘particle’. Each particle 
flies in the search space looking for the optimal position. As time passes through its 
quest, each particle adjusts its position according to its own experience and the 
experience of neighboring particles. 

In BPSO, the velocity and position updating rule is given by (Kennedy et al., 2001): 

( ) ( )t t t t t t
id id id id d idv v c r pbest x c r gbest x+ = + − + −1

1 1 2 2  (1) 

, .; ..,t t t
id id id i nx x v+ + == +1 1 1 2  (2) 

where 1c and 2c are constants named acceleration coefficients, respectively, 1r  and 2r  are 
two independent random numbers uniformly distributed in the range of [0, 1], 

min max[ , ]iV V V∈ − , where maxV is a problem-dependent constant defined in order to clamp 
the excessive roaming of particles and t

idpbest  is the best previous position along the dth 
dimension of ith particle in iteration t (memorized by every particle). Finally, t

idgbest is 
the best previous position among all the particles along the dth dimension in iteration t 
(memorized in a common repository).  

2.2 SBFO algorithm  
The BFO algorithm was first proposed by Passino [16] based on the search and 

optimal foraging strategies of the E. coli bacteria. Nowadays BFO has been successfully 
utilized in some optimal problems such as harmonic estimation [17], machine learning 
[18] and transmission loss reduction [19]. The idea in this algorithm was adopted from 
biological and physical living behavior of E. coli bacteria existing in human intestine. 
Chemotaxis is basically a behavior to earn a living that performs a type of optimization 
in which bacteria try to reach the nutrients and avoid noxious materials and find a way 
to exit the neutral and noxious nutrient environment. The bacterial swarm proceeds 
through four steps namely chemotaxis, swarming, reproduction and elimination-
dispersal. A brief description of each of these processes will be described. A detailed 
description can be traced in [16]. 
2.2.1 Chemotaxis 

This step simulates the movement of an E. coli bacterium in BFO algorithm. An E. 
coli can move in two different ways: It can swim for a period of time in the same 
direction or it may tumble, and alternate between these two modes of operation for the 
entire lifetime. The following equation represents this movement. 

( )( 1, , ) ( , , ) ( )
( ) ( )

i i
T

ij k l j k l C i
i i

θ θ ∆
+ = +

∆ ∆
 (3) 

where ( , , )i j k lθ indicated the position of ith bacterium at jth chemotaxis, kth 
reproduction, and lth elimination and dispersal, respectively. Moreover, ( )C i and ( )i∆

are the movement vector length and direction random vector, respectively. 
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2.2.2 Swarming  

The explanation of Chemotaxis step is for the cases while bacteria behaved 
separately, i.e. without producing signal for other bacteria, however there is an 
exchange of signals between the bacteria here (through absorbing materials). Hence, the 
group movement for all bacteria is defined as follows:  

( )

( )

1

2

1 1 1

2

1 1

( ( , , ), ( , , )) ( ( , , ), ( , , ))

( ( , , ), ( , , )) exp ( )

exp ( )

s
i i

cc gm cc gm
i

s s P
i i i
cc gm attract attract m mgm

i i m

s P
i

repellant repellant m mgm
i m

J j k l j k l j j k l j k l

j j k l j k l d

h

θ θ θ θ

θ θ ω θ θ

ω θ θ

=

= = =

= =

=

 
= = − − − + 

  
 

− − 
  

∑

∑ ∑ ∑

∑ ∑

 (4) 

where ( ( , , ))ccJ j k lθ is the cost function value to be added to the actual cost function 
(to be minimized) to present a time varying cost function in jth chemotactic, kth 
reproduction, and lth elimination stage, gmθ is the location of the global minimum 
bacterium. Moreover, mgmθ represents the mth parameter of the global minimum 
bacteria, S is the total number of bacteria, P is the number of variables to be optimized, 
which are present in every bacterium 1 =[ , . . . ]TPθ θ θ is a point in the P dimensional 
search domain. Finally, ,  ,attract attractrepellantd h ω  and repellantω are different parameters that 
should be chosen appropriately.  
2.2.3 Reproduction 

After cN chemotactic steps, the reproduction step is taken. Suppose that reN be the 
number of reproduction steps and the number of population members denoted by S be a 

positive even integer number. The least healthy bacteria (
2r
SS = ) ultimately die while 

each of the rS healthier bacteria (those yielding higher value of fitness function) asexually 
split into two bacteria which are placed in the same location. So, the number of bacteria is 
alwaysS . Using this strategy, the swarm size remains constant. 
2.2.4 Elimination and Dispersal   

Although swimming prepares the environment for local foraging and speeds up 
convergence in the reproduction process, but only by swimming and reproduction, a 
large space cannot be adequate for searching the global optimal solution. In BFO, the 
dispersal event occurs after a definite number of the reproduction processes. First, a 
bacterium with regard to a Ped  prearranged probability is chosen to move and disperse 
to another position in the environment. These events can effectively prevent trapping in 
the local optima. Second, Ped  is defined for each bacterium which is the probability of 
elimination and dispersal while Ned presents the number of elimination and dispersal 
event. Moreover, it is assume that the frequency of reproduction is more than the 
elimination and dispersal event and the frequency of the moving steps is more than the 
frequency of the reproduction steps. As a result, many regeneration steps take place 
before elimination and dispersion. Furthermore, many movement steps occur before 
reproduction [20].  
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3. The Proposed Hybrid APSO-BFO Algorithm 

3.1 APSO Algorithm 
Although PSO is an optimization algorithm that proves to be efficient, 

straightforward and robust, but if no care is taken the velocities perhaps attain large 
values, particularly when particles are far away from local and global bests. Inertia 
weight plays the role of balancing the global search and local search abilities of the 
swarm. Empirical studies of PSO with inertia weight have shown that a relatively large 
inertia weight have more global search ability while a relatively small inertia weight 
results in a faster convergence. Consequently, to eliminate this drawback, some 
empirical and theoretical studies were proposed [7][20]. Nevertheless these algorithms 
improve the performance of PSO, they can not truly reflect the actual search process 
without any feedback taken from how far particle’s fitness are from the estimated (or 
real) optimal value, when the real optimal value is known in advance.  

To overcome this drawback, Modares et. al [20] proposed a novel Adaptive PSO 
(APSO). In the proposed APSO algorithm, to incorporate the difference between 
particles into PSO, the inertia weight is variable with the number of particles. To truly 
reflect the actual search process, the inertia weight is also set according to feedback 
taken from particles best memories. Due to these reasons, in this algorithm, the inertia 
weight is dynamically adapted for every particle by considering a measure called 
Adjacency Index (AI), which characterizes the nearness of individual fitness to the real 
optimal solution. Based on this index, every particle could decide how to adjust the 
values of inertia weight. For this purpose, the velocity updating rules in the proposed 
APSO is given by 

)()( 2211
1 t

i
ttt

i
t
i

t
i

t
i

t
i

t
i xgbestrcxpbestrcvv −+−+=+ ω  (5) 

In Eq. (5), 1
1

( AI )1

t
i t

e i
ω

α −=
− ×+

where α  is a positive constant in the range (0,1]. 

Compared with that in BPSO, the velocity updating given in Eq. (3) has two different 
characteristics:  

1) To incorporate the difference between particles into BPSO, so that it can 
simulate a more precise biological model, the inertia weight is variable with the 
number of particles. 

2) To truly reflect the actual search process, the inertia weight is set according to 
feedback taken from particles best memories. 

During the search mechanism, the particles face different finesses; as a result they 
get different values of AI and then inertia weight. While the fitness of a particle is far 
away from the real global optimal, AI for this particle has a small value (a low 
adjacency) and the value of inertia weight will be large resulting strong global search 
abilities and locate the promising search areas. Meanwhile, the fitness of a particle 
achieves near the real global optimal, AI for this particle has a big value (a high 
adjacency) and inertia weight will be set small, depending on the nearness of its best 
fitness to the optimal value, to facilitate a finer local explorations and so accelerate 
convergence. 
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3.2 The Proposed Hybrid Algorithm 
Based on above mentioned, BPSO may converges to local optimal solutions whereas 

BFO dependent on random direction which slows down the optimal solution process. 
Hence, in the proposed APSO-BFO algorithm, it is tried to benefit from the advantages 
of these two algorithms. In the process of optimization, APSO-BFO algorithm combines 
local search method (through self experience) with global search (through neighboring 
experience) method, attempting to balance exploration and exploitation. The proposed 
hybrid algorithm performs local search through the chemotactic movement operation of 
BFO whereas the APSO accomplishes the global search over the entire search space. 
Moreover, in APSO-BFO, after undergoing a chemo-tactic step, the APSO mutates 
every bacterium. In this stage, the bacterium is stochastically attracted towards the 
globally best position found so far in the whole population at current time and also 
towards its previous heading direction. The procedure for the proposed algorithm can be 
summarized as follows: 

Step 1: Initialize parameters.  
Step 2: Update the fitness value of the ith bacterium in the jth chemo-taxis and kth 

reproduction loop, the position vector of the best position found by all 
bacteria and the fitness of the best position found so far. 

Step 3: Reproduction loop. 
Step 4: Chemotaxis loop with mutation by APSO algorithm. 
Step 5: The least healthy bacteria with highest fitness function values die and the 

other half of bacteria population with the best values split. 
Step 6: If k is less than the number of reproduction steps, go to step 1.  
Step 7: Elimination-dispersal. 

4. Experimental and Evaluation Performance  

To test the performance of the proposed APSO-BFO algorithm, five well-known 
benchmark functions is utilized as shown in table 1, and its results are compared to the 
performance of other algorithms such as BPSO, SBFO, GA-BFO  [21], PSO-BFO [22], 
and DE-BFO [23]. In Table 1, n denotes the number of dimensions. The first 
benchmark function is unimodal in the sense that has only one optimum whereas the 
others are multimodal in the sense that many local optima with only one global 
optimum. All benchmark functions excluding Shekel's Foxholes function ( 6f ) have the 
global minimum at the origin whereas for 6f , the global minimum is at (-31.95,-31.95) 
and 6 (-31.95, -31.95) 0.998f ≈ . The information of test functions is summarized in table 2. 
The performance of aforementioned algorithms is evaluated along two dimensions: 1) 
the quality of optimum solution. Due to this reason, the mean and the standard deviation 
of the best-of-run values are considered, 2) the number of runs to find the optimum 
solution. In order to this, a threshold value must be defined as a stopping criterion. 
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Table 1. Test functions used 

Function Mathematical representation 

Rosenbrock 
 

2 2 2
1 1

1
( ) 100( ) ( 1)

n

i i i
i

f X x x x+
=

 = − + − ∑


 

Rastrigin 
 

2
2

1
( ) 10cos(2 ) 10

n

i i
i

f X x xπ
=

 = − + ∑


 

Griewank 
 

2
3

1 1

1( ) cos( ) 1
4000

nn
i

i
i i

xf X x
i= =

= − +∑ ∏


 

Ackley 
 2

4
1 1

1 1( ) 20exp 0.2 exp cos 2 20
500 500

n n

i i
i i

f X x x eπ
= =

   
= − − − + +       

∑ ∑


 

 
Shekel's 
Foxholes 
 

1

5 2
2 61

1

1 1( )
500 ( )

n

j
i ij

i

f X
j x a

−

=

=

 
 
 = +
 + −  

∑
∑


 

n represents the number of dimensions. 
Table 2. Description of the test functions  

Function Trait Search space Initial rang Global optimum 

1f  Unimodal [ ]30, 30 n
−  [15, 30]n  1(1) 0f =


 

2f  Multimodal [ ]5.12, 5.12 n
−  [2.56, 5.12]n  2 (0) 0f =


 

3f  Multimodal [ ]600, 600 n
−  [300, 600]n  3 (0) 0f =


 

4f  Multimodal [ ]30, 30 n
−  [15, 30]n  4 (0) 0f =


 

5f  Multimodal 2[ 65.536, 65.536]−  2[0, 65.536]  5 ( 31.95, 31.95) 0.998f − − =  

 
To perform fair comparison, the same computational effort is used in all of the 

algorithms. Thereby, the same population size is considered as 40, for all algorithms. In 
BPSO, we set 1 2 2c c= =  and  maxV  and  minV  are equal to the length of the search space. 
The inertia weight is also given 0.8. In BFO, we take 40,S =  4,sN =  50cN = , 1,edN =  

4,rdN =  0.25,edP =  0.1,attractd =  0.2,attractω = 10repellantω =  and 0.1repellanth = . The crossover 

probability cP and the mutation probability mP in GA are given 8.0  and 1.0 , respectively. 
To evaluate the efficiency of the proposed APSO-BFO algorithm, it is compared on 
different dimensions sizes ( )n of 15, 30, 45 and 60 with 25 independent runs. The 
number of iterations opted as a measure of computational time whereas different 
maximum numbers of fitness function evaluations were utilized according to the 
complexity of problem.   

Simulation results are given in Tables 3-5. Table 3 represents the quality of the 
optimum solution of the algorithms by the mean and the standard deviation of best-of-
run values whereas every algorithm is run up to a predetermined maximum number of 
fitness function evaluations. Comparative results indicated that the proposed PSO has 
good global search ability. During almost every run, the proposed algorithm can find the 
optimum of the complex test functions.  

Table 4 represents the number of runs that managed to find the optimum solution 
within a prescribed threshold. For all benchmarks except Shekel's Foxholes function 
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( 6f ), a threshold of 410− is considered as stopping criterion while for 6f , it was fixed at 
0.998. Also, the maximum number of fitness function evaluations is set to 5000 if the 
algorithm can not reach to the threshold. Simulation results indicated the superiority of 
the proposed algorithm over the aforementioned algorithms. The results indicate in how 
many fitness function evaluations, the convergence of the solution or success is met. It 
is obvious that, the proposed algorithm spends extremely more fitness function 
evaluations to reach a predefined threshold as compared with other algorithms. 
Therefore, it can be concluded that APSO-BFO algorithm is superior to aforementioned 
algorithms in terms of accuracy. 

5. Application of APSO-BFO for Optimal Control 

The proposed APSO-BFO algorithm has a much more accuracy and faster 
convergence speed than aforementioned algorithms. Because of this, the proposed 
algorithm is applied to obtain optimal parameters of PID controller of nonlinear system.  

5.1 Overview of PID Controller  
The PID controller is the standard tool for industrial automation. The flexibility of 

the controller makes it possible to use PID control in many applications. The discrete 
control law of PID controller is  

( ) ( 1) [ ( ) ( 1)] [ ( ) ( 1)]
2

1
[ ( ) 2 ( 1) ( 2)]

= − + − − + + − +

− − + −

s
p i

d
s

T
u k u k K e k e k K e k e k

K e k e k e k
T

 (6) 

where pK , iK  and dK  are proportional gain, integral gain and derivative gain, 
respectively, e  is the error signal between the desired output ry  and actual output y , u
is the PID control force, and sT is the sampling period.   
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Table 3. Convergence data for the benchmark functions 

Name Dim. 
Max. 
Fitness 
Evaluations 

Mean best value (Standard deviation) 

SBFO GA-BFO DE-BFO BPSO PSO-BFO APSO-BFO 

f1 

15 45 10×  26.6904 
(2.163) 

2.5029 
(0.5409) 

3.2103 310−×  
(4.028 210−× ) 

14.222 
(3.570) 

0.4831 
(0.0738) 

2.2103 310−×  
(0.328 210−× ) 

30 510  58.215 
(14.33) 

22.4033 
(1.4890) 

0.26722 
(5.746 210−× ) 

46.141 
(9.646) 

15.4708 
(2.6530) 

0.2251 
(6.493 310−× ) 

45 55 10×  96.872 
(26.135) 

5.0508 
(1.2996) 

0.0449 
(0.332 210−× ) 

83.629 
(14.533) 

27.9890 
(4.3379) 

0.0238 
(0.112 310−× ) 

60 610  154.702 
(40.160) 

25.4421 
(0.2275) 

0.91221 
(0.04346) 

122.241 
(67.721) 

52.2628 
(8.3391) 

0.8991 
(0.0298) 

f2 

15 45 10×  6.9284 
(2.091) 

36.7382 10−×  
(0.0001) 

36.7382 10−×  
(0.0001) 

3.3479 
(0.292) 

0.0830 
(0.00929) 

36.7382 10−×  
(0.0000) 

30 510  17.0389 
(4.822) 

0.04582 
44.579 10−×  

36.7382 10−×  
(0.0001) 

12.7369 
(0.779) 

10.2257 
(0.2405) 

36.7382 10−×  
(0.0001) 

45 55 10×  30.9923 
(7.8272) 

0.1730 
47.1050 10−×  

6.503 310−×  
(4.221 210−× ) 

24.8279 
(1.8190) 

13.5031 
(3.9235) 

9.9763 510−×  
(4.055 210−× ) 

60 610  45.8235 
(9.6222) 

0.0833 
(0.1152) 

8.3627 410−×  
(2.635 310−× ) 

36.3341 
(6.2909) 

18.3619 
(5.7726) 

5.7001 410−×  
(2.225 310−× ) 

f3 

15 45 10×  0.2811 
(0.0212) 

36.7382 10−×
(0.0000) 

36.7382 10−×  
(0.0000) 

0.0363 
(0.00531) 

0.0531 
(0.0277) 

36.7382 10−×  
(0.0000) 

30 510  0.3731 
(0.0446) 

0.0391 
(0.0423) 

36.7382 10−×  
(0.0000) 

0.1344 
(0.1071) 

0.0703 
(0.0111) 

36.7382 10−×  
(0.0000) 

45 55 10×  0.6352 
(0.0519) 

0.1715 
(0.0712) 

3.0071 410−×  
(1.832 510−× ) 

0.1966 
(0.1161) 

0.1349 
(0.0138) 

2.111 410−×  
(9.728 610−× ) 

60 610  0.8322 
(0.073) 

0.5021 
(0.5430) 

3.2876 310−×  
(1.536 310−× ) 

0.7588 
(0.3431) 

0.2539 
(0.0283) 

2.801 310−×  
(1.009 310−× ) 

f4 

15 45 10×  0.9333 
(0.0285) 

0.0751 
(0.3083) 

36.7381 10−×  
(0.0000) 

0.5819 
(0.0540) 

0.08249 
(0.0007) 

36.7382 10−×  
(0.0000) 

30 510  4.3244 
(1.8870) 

0.3615 
(0.0921) 

36.7382 10−×  
(0.0000) 

0.8577 
(0.0409) 

0.5919 
(0.0357) 

36.7382 10−×  
(0.0000) 

45 55 10×  12.4562 
(3.4333) 

1.3179 
(0.1303) 

1.8171 410−×  
(1.958 710−× ) 

1.8982 
(0.1949) 

0.9379 
(0.1329) 

1.8091 510−×  
(1.880 710−× ) 

60 610  8.3245 
(1.6141) 

1.1840 
(0.7630) 

2.2627 410−×  
(6.347 510−× ) 

2.4061 
(0.4508) 

1.8769 
(0.538) 

2.0987 410−×  
(9.347 610−× ) 

f5 2 45 10×  0.999866 
(0.00215) 

3.6791 
( 61430 10−× ) 

0.99980 
(0.0000) 

0.999829 
(0.00166) 

0.999800 
(0.0000) 

0.99980 
(0.0000) 
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Table 4. Number of runs converging to the prescribed threshold 

 
Function Dim. 

 
Number of runs 
SBFO GA-BFO DE-BFO BPSO PSO-BFO APSO-BFO 

 
1f  

15 5 10 17 10 15 9 
30 0 0 12 0 12 13 
45 0 0 6 0 5 16 
60 0 0 3 0 4 10 

 
2f  

15 0 25 25 25 25 25 
30 0 10 25 30 24 25 
45 12 17 25 14 25 25 
60 6 2 25 0 25 25 

 
3f  

15 25 25 25 30 25 25 
30 10 12 25 15 21 25 
45 9 14 15 6 12 15 
60 4 9 17 8 16 17 

 
4f  

15 16 15 25 13 30 25 
30 18 12 25 12 20 25 
45 9 9 19 5 20 22 
60 6 3 11 2 11 15 

5f  2 15 16 25 25 25 25 

 
How to solve these three gains to meet the required performance is the most key in 

the PID control system. For simplification, let T
dip

T
n KKK ],,[],...,,[ 21 == θθθθ  be control 

gain vector. In the control process, three PID control gains ( pK , iK , dK ) are calculated 
by the proposed algorithm such that the defined fitness function, defined as the Sum of 
Square of Errors (SSE), is minimized. In the PID controller design, the fitness function 
is modified by 

2 2

1 1

SSE ( ) ( ( ) ( ))
N N

r
k k

e k y k y k
= =

= = −∑ ∑  (7) 

5.2 Design of PID Controller 
To evaluate the feasibility of the proposed algorithm, it is employed to determine 

optimal tuning of the PID controller parameters for control of nonlinear systems. In this 
example, we verify of the design approach on the tracking control of a Duffing forced 
oscillation system. It is noticeable that the system is chaotic without control. The 
dynamic equation of the system is as follows [24]:  

1 2
3

2 2 10.1 12cos( )

x x
x x x t u

=

= − − + +




 (8) 

In Eq. (8), u denotes the control input calculated by PID controller. The parameters 
were chosen based on values represented in Section 4. It is noticeable that in this case, 
the dimension of search space P is 3. In this simulation, the control objective is to wish 
that the plant output y is regulated to the desired output sin( ).ry t=  The search space for 
PID gains is defined by 

min 0pK = , max 100=pK , min 0dK = , max 10=dK , min 0iK = , max 10=iK  
Table 5 shows the results obtained for PID Controller parameters for BFO, BPSO, 

GA-BFO, DE-BFO, PSO-BFO and APSO-BFO algorithms. Results depict that the 
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proposed algorithm has better performance than others. Moreover, Table 6 represents 
the performance comparison the aforementioned algorithm by worst, mean, best and 
standard deviation of SSE results during 30 runs for each algorithm. Results show that 
the proposed algorithm has satisfactory performance. The output response of system is 
depicted in Fig. 1. It is clearly obvious that the proposed algorithm has superior 
features, including fast tuning and accuracy. Fast tuning of optimal PID controller 
parameters yields high-quality solutions.  

 
Table 5. Obtained parameters of PID controller for Duffing system 

PID Parameters pK  iK  dK  

BFO 50.8411 1.9289 2.0057 

GA-BFO 49.8282 1.0305 2.101 

DE-BFO 52.5436 1.4044 1.0426 

BPSO 52.5780 1.4728 1.4350 

PSO-BFO 51.8543 1.4845 1.3535 

APSO-BFO 50.6733 1.4838 1.3510 

 
Table 6. Performance comparison of PID controller for Duffing system 

Criterion Worst Mean Best Standard deviation 
BFO 1.5967 1.2008 1.9194 0.1688 
GA-BFO 1.0468 1.0169 1.0097 0.0994 
DE-BFO 1.0209 0.9887 0.5051 0.0583 
BPSO 1.5616 1.1304 0.9540 0.1305 
PSO-BFO 0.1989 0.1090 0.0081 0.0456 
APSO-BFO 0.1545 0.0914 0.0018 0.0088 

 

 
Figure 1. The output response of Duffing system after applying PID controller by APSO-BFO 

algorithm 

6. Conclusion 

This paper proposed a novel heuristic algorithm by integrating APSO and BFO, 
namely APSO-BFO algorithm. The main advantages of the proposed algorithm are to 
overcome the inherent problems of both the BPSO and BFO. The proposed hybrid 
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algorithm performs local search through the chemotactic movement operation of BFO 
whereas the APSO accomplishes the global search over the entire search space. The 
superiority of the proposed algorithm both in robustness and efficiency was verified 
over a few numerical benchmarks and a practical PID tuner design problem. The results 
clearly reveal the effectiveness of the proposed algorithm in more robust and accurate 
than BPSO, SBFO, PSO-BFO, GA-BFO and DE-BFO. 
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