
Arc
hive

 of
 S

ID

75

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 3, No. 2, May 2012), Pages: 75-84
www.jacr.iausari.ac.ir

A Formal Petri Net Based Model for Antivirus Update
Agent System

Ali Poyan* , Zeynab Bahrami

School of Computer and IT Engineering, Shahrood University of Technology, Shahrood, Iran
apouyan@shahroodut.ac.ir; zbahrami@gmail.com

Received: 2012/02/02; Accepted: 2012/05/20

Abstract
In this paper, a formal model for antivirus update agent system is presented

based on mobile agent technology and predicate/transition Petri nets. The mobile
agent system contains two mobile agents called DCA and UNA. It sends out agents
to update antivirus on client computers in a network. Each agent takes on a
specified responsibility. First, DCA roams through the network and check the last
date of updating of antivirus on client computers. Then, by passing the list of
unupdated client computers to UNA, next migration is started. The mobile agent
system is modeled with logical agent mobility method (LAM) using Petri nets. Each
agent is modeled with a predicate/transition Petri net. In this model, the antivirus
updating system consists of a set of components to identify different locations and a
set of connectors to specify the interactions among the components. Connectors and
components are modeled with PrT Nets.

Keywords: mobile agents, antivirus update agent system, logical agent mobility

1. Introduction

Agent paradigm is considered as a promising option for system and service
architecture of the next generation networks. It is because agents are conceptually and
intrinsically communication and cooperation oriented [1]. Mobile agents are software
abstractions of executing programs [2] that can migrate from machine to machine across
a heterogeneous network representing users in various tasks [3]. The use of mobile
agents can bring several advantages such as reducing network traffic, improving locality
of reference, asynchronous and decentralized execution, load balancing, dynamic
adaptation, allowing the user to disconnect from the network when agents are
performing a task and flexible maintenance. There are plenty of applications that benefit
from mobile agent paradigm such as E-commerce, distributed information retrieval,
workflow management, monitoring, and automated software installation.

The major advantages of mobile agents are flexibility and high performance, which

are mainly achieved by dynamic transformation from remote call (access) into local
performing (accessing code and data). Generally speaking, the strengths of mobile
agents can be summarized in: latency reduction and bandwidth conservation, dynamic
load balancing, support for disconnected operation and support for dynamic deployment
in mobile computing environments [4][5].

www.SID.ir

Arc
hive

 of
 S

ID

A Formal Petri Net Based Model for Antivirus… A. Poyan, Z. Bahrami

76

The rest of this paper is organized as follows: Section 2 describes the antivirus

update agent system. Section 3 gives a brief introduction to Predicate/ Transition Petri
nets. Section 4 describes the logical agent mobility method. Section 5 formally models
the antivirus update agent system with logical agent mobility method. In section 6, we
conclude this work and discuss the future work.

2. Antivirus Update Agent System

Antivirus update agent system (AUAS), which is proposed in this paper, is a kind of
automated software installation that benefits from the application of mobile agents.
Mobile agents have several advantages in automated software installation. By migrating
to a client computer, an agent can invoke resource operations locally, eliminating the
network transfer of intermediate data. By migrating to various client computers within a
network, an agent can continue executing even if the network link goes down. The main
tasks for mobile agents in AUAS are to update antivirus and detect new and unknown
viruses on client computers in a networked environment. Basically, the act of updating
antivirus contains two stages: update signature database and update executable code.
Sending out only updated files from previously installed versions, instead of complete
update files, will maintain network traffic and avoid congestion in the network routes.
But updating executable code typically replaces complete modules of an antivirus
scanner. Therefore the antivirus engine needs to have the functionality to register,
remove, update and add modules of its own. However, Mobile agent system contains
two mobile agents: Date-Check-Agent (DCA) and Update-Newsig-Agent (UNA). DCA
and UNA reside in the server, as shown in Figure 1.

Figure 1. Tasks of mobile agents

Task of DCA is to roam through the network and check the last date of updating of

antivirus (the most recent) on client computer. The UNA is responsible for updating
signature database and executable code of antivirus engine. It also detects new or
unknown viruses that their signatures don’t exist in the signature database of antivirus,
yet and send them to server for reporting to antivirus provider company. First DCA
visits every client computer, and check the last date of updating of antivirus. If the
antivirus has not been updated, it inserts the client name as a record into its Queue (1).
Next, it migrates to another client computer within the computer network. Finally, if all

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 2, May 2012) 75-84

77

client computers have been visited and checked, DCA will return to server with results
as a list of unupdated client computers (2). Server uses these results to specify the
traveling itinerary for UNA mobile agent. Then, server assigns mobile agent UNA to
travel across specified client computers in order to update (3) and detect new and
unknown viruses, respectively (4). After all specified client computers update and detect
for new viruses, UNA returns to server with results as new signatures (5). Finally,
server will report the new signatures that UNA has returned, to antivirus provider in
order to examine the signatures and find the opposition algorithm, if needed. To present
our proposed model of the mobile agent system we use Logical Agent Mobility (LAM)
method based on a class of Petri nets called predicate transition (PrT) nets. In the rest of
this paper, we first give a brief introduction to PrT nets and LAM method for modeling
agent mobility. Then, we demonstrate the scenario of updating antivirus within a
network using LAM model.

3. Predicate/Transition Petri Nets

Here for quick reference we give a brief definition of predicate/transition Petri nets,
which will be referred to as PrT nets in this paper. PrT nets are a subclass of high level
Petri nets [6]. The reader is referred to [7][8] for a more detailed version of PrT nets. A
Predicate Transition Petri net is a seven tuple),,,,,,(Pr 0MLFTPT ϕΣ= , Where

},...,,{ 21 mpppP = is a finite set of predicates (first order places),
},...,,{ 21 ntttT = is a finite set of transitions),(φφ ≠∪=∩ TPTP ,

)()(PTTPF ×∪×⊆ is a set of arcs.),,(FTP forms a directed net. No connections
between two predicates or two transitions. Σ is a structure consisting of some sorts of
individuals (constants) together with some operations and relations.

 L is a labeling function on arcs. is a mapping from a set of inscription formulae
to transitions. The inscription on transition Tt ∈ ,)(tϕ , is a logical formula built from
variables and the individuals, operations, and relations in structure Σ; Variables
occurring free in a formula have to occur at an adjacent input arc of the transition.

,...}2,1,0{:0 →PM is the initial or current marking, which defines number of tokens per
predicate. Alternatively, the initial marking can be defined as)(00 pMM

Pp

∈

= .

A marking is an arrangement of tokens (elements subject to change) in predicate,
representing state. An initial marking represent the initial state. The marking of a
predicate under a certain state is a set of instead of a formal sum of tokens. These nets
are more or less like first-order logic programs. From the perspective of formal
verification, the reachability analysis of these PrT nets is made more efficient. It should
be emphasized that transitions are the active components and predicates and tokens are
passive. A transition is enabled if each of the input predicate contains tokens. An
enabled transition may fire (an event happens) removing one token from each input
predicate and depositing one token in each of its output predicates. And a firing
sequence is a sequences <t0, t1, …, tn> such that it can enabled and fired in m0, t1 is
enabled and fires in m1, etc.

Each agent is modeled with a PrT net, called agent net. The interface, the behavior,

and the state of an agent are modeled by some input/output predicates for

www.SID.ir

Arc
hive

 of
 S

ID

A Formal Petri Net Based Model for Antivirus… A. Poyan, Z. Bahrami

78

incoming/outgoing messages, the transitions, and the predicates of the agent net,
respectively. Particularly, a concrete state of the agent is a marking of the agent net.
More precisely, an agent net is a PrT net, to which an input predicate is associated for
incoming messages and an output predicate is associated for outgoing messages. For a
more detailed discussion the reader is referred to [9]. We use AN for agent nets and

xAN . to denote the element ANx ∈ for a specific agent, throughout this paper. Tokens
in Petri nets are passive, whereas agents are active. To bridge the gap between tokens
and agents, a two layer approach has been proposed. Thus, we will allow an agent net to
be packed up as part of a token in another PrT net (a system net in next section).

4. Logical Agent Mobility Model

A logical agent mobility (LAM) model specifies a mobile agent system as a set of
components (COMP) and a set of (external) connectors (CONN). In deed, a LAM
model addresses the behavior of the mobile agents and their interactions in a multi agent
system. In this section we give a brief description about LAM. For a rigorous discussion
about logical agent modeling please refer to [9] and [10], and for a discussion about
agent-oriented software modeling the reader is referred to [11]. Different component
identifies different locations for mobile agents. The connectors specify the interactions
among the components. A component is a structure, which is made up of an
environmental part and an internal connector, both represented with PrT nets. A
connector is defined as a PrT net structure to model the connections among certain
components. An agent can migrate from one component to another by transition firing
at runtime because the whole agent net is used as part of a structured token in the PrT
nets modeling components and connectors. Therefore, the migration results in the
change of agent location. When an agent is being transferred, no transition in the agent
net is enabled. The internal connector of a component is responsible for the dynamic
connection of the environmental part with a changing number of mobile agents.

Definition 1. A LAM model),(CONNCOMP=Λ is specified by a finite set of

components),...},,(),,,{(222111 ICNSNCMICNSNCMCOMP= and a finite
set of connectors ,...},{ 21 CNCNCONN = , where iCM is the location of component i,

iSN is the system net and iICN is the internal connector net.

The system net will be defined later in this section. Agents are distributed in

components by means of packing agents up as parts of tokens in system nets and
connector nets. The environmental part of a component provides facilities for agent
mobility (e.g., execution place, activation, and deactivation) and an internal interface for
dynamic connection with a group of agents through the internal connector. We model
the environmental part of a component with a system net, as specified in the following.

Definition 2. A system net SN=(P, T, F, Σ, L, ,pex-in, pex-out, pin-in, pin-out, M0) for

component CM is specified as a PrT net (P, T, F, Σ, L, , M0), an external input
predicate pex-in and an external output predicate pex-out, an internal input predicate pin-in,
and an internal output predicate pin-out.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 2, May 2012) 75-84

79

The structure of a system net belongs to certain components with their associated
connector nets can be composed into a PrT structure. Agent mobility (transfer) can be
simulated in system nets by transition firings. This is because these net structures and
their states can be packed up as parts of token in PrT nets. In a system net structure, if a
transition is enabled (activated) an agent (modeled as part of a token), migrates from an
input predicate to an output predicate. A sequence of transition firings will move the
agent from one component to the other through the component net structure [9].

5. Formal Model for AUAS

In this section we describe the formal model for antivirus update agent system based
on LAM model and predicate/transition Petri nets. An antivirus is installed on every
client computer in the network, and every day, server assigns the mobile agents to
update the Antivirus on the client computers and returns with the results. Specifically,
there are three machines, namely, CM1, CM2, and CM3, where CM1 is the server and
CM2 and CM3 are the client computers, which their antivirus software should be
updated. We use LAM model to formally specify this scenario. The LAM model for this
scenario can be defined as (COMP, CONN), where COMP ={(CM1, SN1, ICN1) , (CM2,
SN2,ICN3) , (CM3, SN3, ICN3)}, CONN={CN}, and CN is the connector among CM1,
CM2, and CM3. CM2 and CM3 provide a service agent for updating antivirus and
detecting unknown viruses and checking the last date of updating of antivirus on the
client computer. Figure 2, shows the system net SN for this scenario.

Figure 2. The system net (SN) for updating antivirus

The system nets for CM2 and CM3 are similar to SN but do not have transition t2 and

its associated arcs and labels. CM2 and CM3 provide a service agent for updating
signature database and updating executable code of antivirus engine and detecting
unknown viruses which are modeled by transitions t3, t4 and t5, respectively. They also

www.SID.ir

Arc
hive

 of
 S

ID

A Formal Petri Net Based Model for Antivirus… A. Poyan, Z. Bahrami

80

provide another service agent for checking the last date of updating of antivirus which is
modeled by transition t1. Because, t4 has to start its task after updating signature
database, it should wait until it receives an acknowledgement (Ack) from t3 and then
starts to detect unknown viruses. When the task of detecting virus finished, it employs
structure <FND, newsigs> to represent replies for reporting, where newsigs contains
new signature that t3 has found. SN1 is also similar to SN, but does not have t1, t3, t4, t5,
p1, p2, p3 and their associated arcs and arc labels. CM1 also provides a service agent for
passing list of the clients that their antivirus need to be updated, from agent DCA to
agent UNA. Figure 3 shows the PrT net for connector CN, which builds the connections
among CM1, CM2, and CM3.

Figure 3. Prt net for connector CN

The internal connector nets ICNi (i = 1, 2, 3) is shown in Figure 4.

Figure 4. Prt net for internal connector (ICN)

Figure 5, shows the agent net AN for mobile agent DCA (AN1), which may generate

three types of messages as output: requests of migration (t3), checking date (t4) and
passing unupdated client names (t5). One of t3's predicate, p2, specifies the traveling
itinerary of agent DCA. Predicate p3 specifies the system date.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 2, May 2012) 75-84

81

Figure 5. Agent net AN for mobile agent DCA

Transition t1 receives an affirmative result of updating status from CM2 (CM3) and

save the name of current component into predicate p1. Transition t2 handles negative
answers (means current component has updated antivirus). Note that AN1 has only one
type of incoming messages: i.e., feedback if client antivirus is updated or not.

Figure 6, shows the agent net AN for mobile agent UNA (AN2), which may output
two types of messages: requests of migration (t2) and updating Antivirus (t3). And it has
two types of incoming messages: receive new signatures (t4) and unupdated client
names (t1). And Transition t1 puts these names into predicate p2, and in this manner, p2
(like p1 in DCA agent) specifies the traveling itinerary of agent UNA(AN2). Predicate p3
specifies which signatures and modules should be sent for updating. Transition t4
receives new signatures and puts them into predicate p1.

Figure 6. Agent net for mobile agent UNA

Now, we illustrate how the whole model works. Suppose in the initial state,

AN1.M0(p2) = {< CM2 >,< CM3 >,< CM1 >}

www.SID.ir

Arc
hive

 of
 S

ID

A Formal Petri Net Based Model for Antivirus… A. Poyan, Z. Bahrami

82

specifies the agent is going to visit CM2, CM3 and CM1 (for return).

AN1.M0(p3) = {< CM2, current_date >, < CM3, current_date >}

AN1.M0(p4) = {<¢>}

SN1.M0(pw) = {< AN1,AN(P, T, F, Σ, L, , M0) >,< AN2,AN(P, T, F, Σ, L, , M0) >}

Agents AN1 (DCA) and AN2 (UNA) are originally located at CM1. SN2.M0(p1) and

SN3.M0(p1) contain virus signatures and SN2.M0(p3) and SN3.M0(p3) contain executable
code of AV engine.

AN2.M0(p3) contains new signatures and new modules for updating Antivirus:

AN2.M0(p4) = {<¢>}

Other predicates in AN1, AN2, SNi (i =1, 2, 3), ICNi (i =1, 2, 3), and CN do not have

any token. Therefore, at the beginning, no transition at the system level is enabled.
However, AN1(DCA) is running on CM1(SN1). The only enabled transition in AN1 is t3,
by substitution < dl = CM2 >. That is, AN1 request to move to CM2, token will pass
through AN1.pout, ICN1, SN1.pin-in, and reach SN1.pex-out (the token is <AN1, CM2, AN1,
GOTO, AN > at this point). Thus, transition CN.t1-2 in connector CN is enabled. The
firing of CN.t1-2 puts token < CM1, AN1, AN1,GOTO; AN > into SN2.pex-in. during
migration, the agent is inactive. As soon as agent arrives at SN2, SN2.te may activate the
agent AN1. Thus, the agent restarts. The only enabled transition is t4 for checking the
last date of updating. Through ICN2, the message will reach SN2.pin-in, which enables
SN2.t1 to check the date. Then, the result will go through SN2.pin-out, ICN2 and, finally,
reach AN1.pin, which enables exactly one of transitions t1 (if reply is YES) or t2 (if reply
is NO) in AN1.

Suppose the reply is YES (means CM2 has unupdated antivirus) and only t1 is

enabled in AN1, then the firing of t1 puts a token <¢> in p4, and enables t3 for next round
of migration and also save the current component name in p1. Likewise, agent AN1 will
move to and check the last date of updating of CM3 and, the result will reach AN1.pin,
suppose reply is NO (means CM3 has updated antivirus) and only t2 is enabled in AN1.
Firing of t2 deposits a token <¢> in p4, and enables t3 for next round of migration (going
back to CM1). Upon the arrival of token at SN1.pex-in, the SN1.te may activate the agent
AN1. The only enabled transition in AN1 is t5. Firing of t5 puts unupdated clients list in
AN1.pout. Through ICN1, the list will reach SN1.pin-in, which enables SN1.t2. Firing of
SN1.t2 may activate the agent AN2, and through ICN1, pass the list to AN2. The list
specifies the traveling itinerary of agent AN2 (UNA). Consequently, whereas only CM2
has unupdated antivirus, the traveling itinerary is:

AN2.M0(p2) = {< CM2 >,< CM1 >}

It means that AN2 is going to visit CM2 and CM1 (for return). Likewise, agent AN2

move to CM2. Upon the arrival of token < CM1, AN2, AN2, GOTO, AN > at SN2.pex-in,
the SN2.te may activate the agent. Firing of AN2.t3 and through ICN2, new signatures
and modules will reach SN2.pin-in, which enables SN2.t3 and SN2.t4, which in turn update

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 2, May 2012) 75-84

83

executable code of antivirus engine and signature database, respectively. After finishing
the task of SN2.t3, the SN2.t3 puts token <ack> in SN2.p4, which enables SN2.t4 for
detecting unknown viruses (for this task SN2.t4, use SN2.p4 that contains behavior
signature database).

Consequently, the reply (new signatures) will go through SN2.pin-out, ICN2 and,
finally, it reaches AN2.pin, which enables AN2.t4 for saving new signatures in AN2.p1. It
puts a token <¢> in p4, and enables t2 for next round of migration (go back to CM1). The
sequence of firings is as follows:

AN1.t3, ICN1.tO-A1, SN1.tg, CN.t1-2, SN2.te, AN1.t4, ICN2.tO-A1, SN2.t1, ICN2.tI-A1,

AN1.t1, AN1.t3, ICN2.tO-A1, SN2.tg, CN.t2-3, SN3.te, AN1.t4, ICN3.tO-A1, SN3.t1, ICN3.tI-A1,
AN1.t2, AN1.t3, ICN3.tO-A1, SN3.tg, CN.t3-1, SN1.te, AN1.t5, ICN1.tO-A1, SN1.t2, ICN1.tI-A2,
AN2.t1, AN2.t2, ICN1.tO-A2, SN1.tg, CN.t1-2, SN2.te, AN2.t3, ICN2.tO-A2, SN2.t5, SN2.t3,
SN2.t4, ICN2.tI-A2, AN2.t4, AN2.t2, ICN2.tO-A2, SN2.tg, CN.t2-1, SN1.te.

6. Conclusion

In this paper, we presented an antivirus update agent system based on mobile agent
technology and PrT nets. We introduced two mobile agents; DCA and UNA. The tasks
of agents are checking the update status of client computers, updating antivirus and
finally detecting unknown signatures. These are for reporting to antivirus provider for
applying different algorithm on new signatures to find the methods of opposition to new
viruses. This ultimately leads to upgrade the antivirus program.

For modeling this agent system we benefit from logical agent method. A mobile
agent system considered as a set of connectors and a set of components. Agent
connectors and components are modeled with PrT nets which are called agent connector
net and system net, respectively. The mobile agent modeling is an efficient way for
analysis of automated software installing like antivirus update agent. Because resource
operations can be locally implemented. This will reduce the network traffic,
significantly. Moreover, mobile agents can operate asynchronously and less
independent of the network. It is more stable than client-server based applications.

7. References

[1] S.N. Gujar, G.R. Bamnote, R.S. Apare, M.A. Pund and S.R. Gupta, “Mobile Agent Based
Distribute System Computing in Network,” International Journal of Recent Trends in
Engineering, vol. 2, no. 4, November 2009.

[2] M.R. Genesereth and S.P. Ketchpel, “Software Agents,” Comm. ACM, vol. 37, no. 7, pp. 48-53,
1994.

[3] A. Fuggetta, G. Picco and G. Vigna, “Understanding Code Mobility,” IEEE Trans. Software
Eng., vol. 24, no. 5, pp. 342-361, May 1998.

[4] R.S. Gray, G. Cybenko, D. Kotz and D. Rus, “Mobile Agents: Motivation and State of the Art,”
Handbook of Agent Technology, J. Bradshaw, ed., 2001.

[5] C.G. Harrison, D.M. Chess and A. Kershenbaum, “Mobile Agents: Are They a Good Idea?” IBM
Research Report, 1995.

[6] H.J. Genrich, “Predicate/Transition Nets”, In: High level Petri Nets. Theory and Application. K.
Jensen and G. Rozenberg, eds., pp. 3-43, 1991.

[7] H.J. Genrich, “Predicate/Transition Nets”, Petri Nets: Central Models and Their Properties, W.
Reisig, and G. Rozenberg, eds., pp. 207-247, 1987.

[8] H.J. Genrich and K. Lautenbach, “System Modeling with High Level Petri Nets,” Theoretical
Computer Science, vol. 13, pp. 109-136, 1981.

www.SID.ir

Arc
hive

 of
 S

ID

A Formal Petri Net Based Model for Antivirus… A. Poyan, Z. Bahrami

84

[9] D. Xu, J. Yin, Y. Deng and J. Ding, “A Formal Architectural Model for Logical Agent
Mobility,” IEEE Trans. Software Eng., vol. 29, no. 1, pp. 31-45, January 2003.

[10] M. Kohler, D. Moldt and H. Rolke, “Modeling Mobility and Mobile Agents Using Nets Within
Nets”, Proc. Of Int. Conf. on Application and Theory of Petri Nets, LNCS, vol. 2769, pp. 121-
139, June 2003.

[11] H. Xu and S.M. Shatz, “A Framework for Model Based Design of Agent-Oriented Software”,
IEEE Trans. Software Eng., vol. 29, no. 1, pp. 15-30, Jan. 2003.

www.SID.ir

