
Arc
hive

 of
 S

ID

19

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 3, No. 3, August 2012), Pages: 19-34
www.jacr.iausari.ac.ir

A High Performance Parallel IP Lookup Technique Using
Distributed Memory Organization and ISCB-Tree Data

Structure

Mahmoud Hasanloo1, Ali Movaghar2
(1) Department of Electrical and Computer Engineering, Zanjan Branch, Islamic Azad University,

 Zanjan, Iran
(2) Computer Engineering Department, Sharif University of Technology, Tehran, Iran

hasanlou@gmail.com; movaghar@sharif.edu

Received: 2012/05/10; Accepted: 2012/06/30

Abstract
The IP Lookup Process is a key bottleneck in routing due to the increase in

routing table size, increasing traffic and migration to IPv6 addresses. The IP
address lookup involves computation of the Longest Prefix Matching (LPM), which
existing solutions such as BSD Radix Tries, scale poorly when traffic in the router
increases or when employed for IPv6 address lookups. In this paper, we describe a
high performance parallel IP lookup mechanism based on distributed memory
organization that uses P processor for solving LPM problem. Since multiple
processors are used, the number of prefixes to be compared for each processor has
been reduced. In other words each processor needs to find LPM for a specific IP
address among N/P of prefixes. In order to reduce the number of memory access in
each processor which is a major bottleneck in IP lookup process, we use ISCB-Tree
data structure for the sake of storing the forwarding table in each processor. ISCB-
Tree is a B-Tree like data structure that reduces the height of prefix tree and
logarithmic growing manner with the increasing number of prefixes. By the using of
this data structure the number of memory access reduces sharply.

Keywords: IP lookup, Packet forwarding, ISCB-Tree, Router organization, Parallel

processing

1. Introduction

Due to exponential growth in the number of users (hosts) and applications of
internet, the network traffic is increasing daily. In order to satisfy users need we need
two main components in network. First is addressing and second one is high
performance core network. In the internet we should associate a unique IP address to
each host. With regard to numerous numbers of hosts, further IPv4 is not enough to
addressing. The addressing problem has been solved with the advent of IPv6 which is
128 bits in length. With IPv6 we can address 296 times more hosts than IPv4. But it
means many more and longer prefixes in backbone routers which we will discuss about
this problem later in this section.

The second problem is high performance core net-work for the sake of satisfying
increasing needs of users’ applications to faster downloads and uploads.

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

20

Core network consists of two main components: links and routers. Thereupon we
should use high speed links and faster routers. The former was satisfied by using of
fiber optics for now. But faster routers are still unsolved problem.

In the network layer a router has two main functions: routing and forwarding.
Routing is a process to construct a table which tells us in order to reach to a network
from which port a packet should be forwarded. This table which is called forwarding
table, stores myriads of tuples in the form of prefix/port format. The packet forwarding
process in a router involves finding the prefix in the forwarding table that provides the
longest match to the destination address of the packet to be routed.

When an IP router receives a packet, it must search for the best prefix in its
forwarding table that has the longest match when compared to the destination address in
the packet. The packet is then forwarded to the output link associated with that prefix.
Because number of existing prefixes in a routing table of a backbone router is about
400k and it is increasing daily, this process of finding the longest prefix match (LPM) is
one of the bottlenecks in the packet forwarding process. With regard to problems
resulted from using IPv6, more and longer prefixes in the forwarding table, this process
become more complicated even more.

For example, suppose a backbone router with capacity of 50Gbps which forwards IP
packets with typical length of 5kb. With a simple calculation (50 ∗109/5 ∗103), we find
this router should do IP lookup process 50 million times per second. In other words a
backbone router should search for LPM among 400k prefixes 50 million times per
second, which is a huge processing.

As we can imagine number of memory accesses has vital effects in this process. Thus
we should use a data structure which reduces number of memory accesses for a LPM
search. In the most of well-known database management systems (DBMS), B-Tree data
structure and its variations are used to store tuples. As we will see soon it is not proper
for storing prefixes however we can customize it for our usage. We propose an IP
lookup specific customized B-tree (ISCB-tree) to store prefix set.

With regard to mentioned simple example, we can inference a single processor
cannot do this amount of processing per second. So in this paper we propose a parallel
processing schema using P processors based on distributed memory organization which
uses ISCB-Tree data structure to store prefixes in order to do IP lookup faster and faster.

The rest of the paper is organized as follows. In section 2 we review some of the
major methods to IP lookup. Section 3 describes our lookup schemes. Sub-section 3.1
describes the ISCB-Tree data structure and its search, insert, and other procedures for
maintaining this data structure; Subsection 3.2 describes the partitioning mechanism of
routing table. Subsection 4.1 describes performance measurements in terms of queuing
theory and subsection 4.2 illustrates simulation results of our scheme. Finally, Section 5
concludes the paper.

2. Related Work

More sophisticated and efficient approaches have been introduced in several works in
which a suitable data structure named forwarding table, is constructed from the routing
table. Proposed methods for IP Lookup can be categorized based on their five
properties, platforms, data structures, processing methods, forwarding table partitioning
methods and caching.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

21

Based on platform, schemas can be classified in two br oad categories: Hardware
based methods [22, 4, 7, 11] which are almost very fast but are not as well scalable and
software based methods [14, 27, 24, 29] which typically is scalable but not as fast as
hardware based methods. We will focus on software based methods in this paper.

 Data structure is a vital component in a schema because it has main effect in number
of memory accesses for finding LPM. When we use a data structure we should notice to
its scalability as well as its depth. Almost each level of data structure indicates single
memory access. IP lookup methods, based on their used data structure for the sake of
forwarding table construction can be classified into three main categories: 1) Table
based [26]; 2) Trie-based [24, 19]; and 3) Tree-based algorithms [17, 15, 16].

Our mean from processing method is that does a method use parallel processing or
not? Most of old methods used single processor but with regard to growing forwarding
table size and prefixes length in IPv6 it seems there is no way other than using several
processors in a parallel manner to satisfy today routers’ needs.

Most of parallel processing methods partition forwarding table and distribute them
among several memory modules in order to reduce number of prefixes that LPM should
found among them. The partitioning schemas can be categorized in two broad classes:
1-those that associate a special memory module to each processor in which a segment of
forwarding table is stored. These schemas typically split forwarding table based on few
bits of prefixes and when a packet received in the router, the desirable processor is
indicated with regard to those bits. 2-Those that each processor can access all of
memory modules. These schemas typically use PRAM memories to handle several
requests from different processors.

Finally some works, for example [28], cache an LPM when it found in order to use it
for next packets of the same flow to speedup lookup process and in spite some others
[14] eliminated cache from their schema because of stolen tuples which may exist in
cache. Also some others exist which the cache is base of their schema[21].

Following we describe shortly some of done works in IP lookup fields in the past
decade. And finally in this section we will describe our schemas important properties to
show its effectiveness.

Presently many IP-Lookup mechanisms are proposed for IPv4 routers but most of
them cannot be scaled very well for IPv6. Data structure used by most of them [24, 26,
19] become very large when applied for IPv6, so the number of memory access for
these mechanisms grow exponentially. Data structures of some mechanisms [15, 16]
become very large for IPv6; however they cannot be as fast as we need today. For these
reasons researchers have become interested in using parallel processing for IP lookup
[11, 3, 9, 6, 5, 8]. A parallel IP lookup technique must perform two jobs in order to
increase lookup speed: 1) split forwarding table to some smaller sub-tables for reducing
the number of prefixes which lookup must be done among them; and 2) use several
processors for speeding up lookup process.

In [6] authors partition the routing table based on four bits, called ID bits, of prefixes
into sixteen section and associate a processor to each of them, then when a packet is
received, based on its destination address ID bits a processor is responsible to find LPM
for this packet. In this mechanism at most sixteen IP address can be looked up
simultaneously. In this technique each processor works on different set of prefixes but
not all of processors work at the same time, in the best case all of them work
simultaneously. We know that packet incoming has burst manner thus their incoming
distribution is not normal based on their ID bits. Also contriving of sixteen processors

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

22

on a board is not so simple, at least because of their heating problem and if want to use
several boards for processors then the speedup of this mechanism will be impressed
with the communication cost of processors.

In [27] authors proposed an IP lookup technique based on CREW PRAM. They sort
prefixes and split routing table into subsequences of equal length among P processor.
When a packet is received, its destination address broadcasts to all processors then each
of them compute LPM for this packet simultaneously and finally the main LPM is found
by comparing LPMs of all processors. The mechanism uses CREW PRAM memory in
order to establish a communication among processors in the broadcasting phase. As we
said previously memory access is a major bottleneck and time consuming action in the
IP lookup process and all trying to reduce the number of memory accesses. So
increasing the number of memory accesses by one is not an efficient way in order to
obtain destination address of packet since the number of memory accesses is less than
ten in traditional mechanisms.

In some other works like [11] authors propose partitioning of forwarding table and
some processors work simultaneously to find LPM for a packet, then the results are
compared together and the best one is chosen.

In [21] authors present a cache-based IP lookup technique. They cache prefixes
rather than full IP address when a lookup is done. In this schema prefixes are divided
into two categories: 1-non-cacheable prefixes and 2 -cacheable prefixes. Non -cacheable
prefixes are those that encompass other prefixes and remaining prefixes are cacheable.
In order to increase number of cacheable prefixes, Kasnavi and et. al. expanded prefixes
shorter than 16 bits in length. When an IP address matches with a cacheable prefix, it
will cache in TCAM memory, otherwise full IP address will be cached. They cache
prefixes with hope that it will match incoming packets destination address with regard
to locality in internet traffic. Trie is used in this schema as a data structure in which
prefixes are stored.

 Authors of [28] introduced a parallel architecture for IP lookup. They used tire data
structure to store prefixes, then trie is partitioned into disjoint sub -tries using initial bits
of prefixes. They use an e fficient algorithm to distribute sub-tries among memory
modules such as they have nearly equal content. The other important technique which
they used is early caching, which allows the destination IP address of a flow to be
cached before its next-hop information is retrieved. When a matching is done, the result
is used to forward all of the existing packets in the system for the same flow.

Authors of [18] assume each prefix as a range such as [b r, er] and store BRs at leaf
nodes of B-Tree like data structure as keys. They have a rule about prefix storing which
tells Store a prefix r at a node or leaf key V if and only if the span of V is contained in
[br, er] but the span of the parent of V is not contained in [br, er]. The search algorithm is
much like B-Tree search. They tried to reduce update time in beside of fast lookup time
by using M-way Tree data structure.

A heap like data structure is built in [10], in which the longest existing prefix become
the root and others fill out remaining nodes such that longer prefixes stay in upper
layers. When an IP packet is received, search process began from the root and the first
matching prefix will be the longest one because of the mentioned used concept in data
structure construction.

Chang in [29] expanded all prefixes to n bits and store them in a hypercube to
simulate binomial spanning tree. To find LPM it has a trie like manner in other words it
find LPM by getting bits of destination address and go ahead among hypercube nodes.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

23

First of all authors of [23] sort prefixes based on their integer values. Then, prefixes
are categorized based on n first bits, which n is the longest common substring among
prefixes, and these bits are stored in an index table. This process continually is applied
on remaining bits of prefixes until a multi-level index tables are achieved.

An efficient algorithm is presented in [13] to construct shape-shifting trie (SST) data
structure. SST is a trie based data structure in which each node has at most k nodes of
trie. They try to construct this data structure with minimum height which is improve
worst-case lookup time.

In [12] a parallel architecture with the client-server model is presented in which one
processor receives all incoming packets and by two first bytes of their destination IP
address locates the LPM region boundary in the prefix table which is stored in a shared
memory module. Then it sends this boundaries and destination IP address to one of the
processors. Finally the receiver processor does the binary search among sorted prefixes
with regard to received boundaries and destination address.

The current work is different with all others in the following manner:
• A parallel architecture is used in which all processors can work simultaneously

to lookup destination addresses of several packets concurrently.
• An efficient data structure (ISCB-Tree) based on famous B-Tree is proposed for

the sake of prefix table construction which stores prefixes such that the height of
the tree is small for large number of prefixes and its scalable very well. This
reducesnumber of memory accessessharply which is the most time consuming
element of the lookup process.

• The ISCB-Tree is partitioned simply to several parts and each of them stored in
a multiple simple SRAM memory modules instead of PRAMs. This reduces the
cost of memory management subsystem of the router and increases effective
memory access time.

• In addition the above strengths, early caching technique which originally was
proposed in [28] are used. By using this technique the number of IP address
which should be looked up is reduced and finally overall speed of lookup
process is increased.

3. The Proposed Scheme

Our proposed router has two main components: 1) data structure which used to
construct forwarding table, in order to improve lookup process by reducing the number
of memory accesses, and 2) parallel architecture which splits forwarding table into sub-
tables and assign a processor to each of them. Splitting of forwarding table reduces the
number of prefixes that the search algorithm should look among them to find LPM of an
incoming IP packet.
3.1 Data Structure

As we know in almost well-known database management systems (DBMS), which
they are symbol of data storing and retrieving, B-tree [25] and its variations are used in
order to speedup data manipulation operations. So in the current work this valuable
experiment is regarded and preferred to use B-Tree data structure in order to construct
forwarding table which contains huge number of prefixes and needs very fast search for
IP lookup operation.

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

24

Table1. A sample forwarding table

Prefix Port
00110* 3
0011* 2
10110* 1
10111* 1
1001* 1
10011* 2

101100* 3
101101* 4

1110* 2
0110* 2

Figure1. B-Tree of prefixesin table1

3.1.1 Using B-Tree data structure to construct forwarding table

A B-tree is a data structure that maintains an ordered set of data elements and allows
efficient operations to find, delete, insert, and browse them. In this discussion, each
piece of data stored in a B-tree will be called a ”key”, because each key is unique and
can occur in the B-tree in only one location.

A B-tree consists of “node” records containing the keys, and pointers that link the
nodes of the B-tree together. Every B-tree is of some “order n”, meaning nodes contain
from n to 2n keys, and nodes are thereby always at least half full of keys. Keys are kept
in sorted order within each node. A corresponding list of pointers is effectively
interspersed between keys to indicate where to search for a key if it isn’t in the current
node. A node containing k keys always also contains k+1 pointers.

 For the sake of B-Tree construction, a comparing method is neededto identify the
relative position of each prefix in the set of prefixes. So the following definition is used
which is most like dictionary compare method.

Definition 1: Prefix Comparison: Suppose A = a1..anandB = b1..bm are two prefixes. If
m=n then numerical values of prefixes are compared to determine which prefix is
bigger. Otherwise, suppose m < n; numerical values of A = a1..amandB = b1..bm are
compared. Prefix with larger value is considered to be larger. If A = a1..amandB = b1..bm
are identical, then, prefix A considered as a larger one because it’s longer than B. Table
1 shows an example forwarding table and in figure 1 we can see corresponding B-tree.
Following with an example it will be shown why B-tree cannot be used in IP lookup
methods. Suppose a packet received to the router with destination IP address 00111100
(For simplicity, in this example the IP address length is assumed to be eight bits). Now

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

25

the search method compare this value with prefixes in the root node and navigate us to
the left side namely node 2. The IP address does not match with prefix 00110* which is
the only key in the node 2 and also is greater than it, so search will be continued from
node 5. There is no matching prefix and router will decide to send the received packet to
the default gateway(e.g via port 1). Whereas we have prefix 0011* in node 4 which
matches with this address and it indicates that this packet should be forwarded via port
2.

This problem occurs because there exist two prefixes 0011* and 00110* which the
former is prefix of t he later. We should attend that if there is 00111* exists instead of
00110* yet this problem exists from other direction. We have following definitions for
this situation.

Definition 2: Enclosure: A string S is called an enclosure if there exists at least one data
string A, such that S is a prefix of A. A is called an enclosed data element. For example
0011 is an enclosure of 00110.

Definition 3: Disjoint prefixes: for any two different prefixes A and B, we say Aand B are
disjoint if and only if A is not enclosure of B and vice versa.
3.1.2 IP lookup Specific Customized B-Tree (ISCB-Tree)

Just like traditional B-Tree in ISCB-Tree each node has K keys and K+1 pointers in
each node. While in B-Tree all keys are similar in ISCB-Tree there exists two types of
keys. Each key field type in this tree is either typical or special type.

If enclosure prefixes stay in upper layers than the enclosed prefixes, this problem will
be solved. Authors of [14] used this solution in construction of their B-Tree and called
resulted Tree as DMP-Tree. But DMP-Tree has following restrictions:

• DMP-tree does not guarantee minimum node utilization.
• It is not possible to guarantee that the final tree is balanced.

Typical key type (type T) is used for disjoint prefixes storing and has not any other
thing than B-Tree keys. But special key types (type S) are used to store enclosure
prefixes. It has an additional pointer which point to another ISCB-Tree.This tree
contains enclosed prefixes of that enclosure prefix. Following main operations of ISCB-
Tree are described.

A. Search:search method begins from the root node and compares incoming IP
address with pre-fixes in the node to find Pi, such that Pi< IP <= Pi+1. Three states may
occur in the search result.

1. PiandPi+1 don’t match IP address then the pointer between Pi and Pi+1 is followed
to the next level node.

2. IfPiorPi+1 match IP address and it is an S type key then this matching is saved and
its pointer is followed to sub-ISCB-tree with hope that a longer matching may be
found in this sub-tree.

3. PiorPi+1 match IP address and it is a T type key, this is the LPM.

This process continues until an LPM found or following pointer becomes null (A leaf
or a terminated tree path). In the latter case the packet will be forwarded through default
route.
B. Insertion: insertion is the most important part of the building process of ISCB-tree.
First of all the search method initiated to find the proper location of new prefix. In the
search algorithm two states may occur as follow:

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

26

1. The new prefix is a disjoint or enclosed prefix. In this case search algorithm
navigates us to a leaf node which the new prefix should be inserted. The new
prefix is inserted in the proper position at the current node. If the node is full
then it should be divided into two new nodes with half full capacity.

2. The new prefix may be enclosure of some of other prefixes. In t his case, any
enclosed prefix along the path is removed (by delete algorithm) and added to
sub-tree of the new S-type key. Also all sub trees of the first detected enclosed
prefixshould be searched for the sake of finding other probable enclosed prefixes
which may exist.

In the latter case insertion time is proportional to the number of enclosed prefixes
which exist in the mentioned sub-tree. In order to reduce this time one of the following
solutions can be used:

1. Sort prefixes before construction algorithm is begun.
2. Classify existing prefixes and detect all disjoint, enclosure and enclosed

prefixes.

C. Deletion: The delete algorithm is very similar to the insert, just a little more
complicated. It also requires that we use the basic ideas from the search algorithm to
locate the proper leaf, then remove (in this case) the item, and readjust the keys in the
leaf.

However the deletion candidate key may be T or S type key. If the key is T type
simply remove it from the node else in addition to prefix deletion we should insert
(using insert algorithm) sub-tree enclosure or disjoint keys again in the tree. Now it is
possible that the leaf is less than half full. It must work with its siblings to restore the
structure of the tree. If it has a sibling with extra keys, a key can be moved from one
leaf to the next (with the appropriate changes in the parent node).

On the other hand, if the sibling doesn’t have any keys to spare, then the two nodes
must be merged. This will obviously require that the parent node give up a key (since it
no longer has to distinguish between the two leaves). This might make the parent too
small as well, and necessitate further consolidation up the chain.

The following example shows the building process of ISCB-Tree using data items in
table 1. In this example branching factor is set to three, it means that each node at most
contains two data elements and has three children. Also there is an assumption that data
items will be added to the tree with the same order shown in the table 1.

Figure2. ISCB-Tree of prefix of table1

Initially tree is empty then the first item, 00110 is added to the first and the root node
of the tree. When the second item namely 0011wants to added to the tree, it’s

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

27

recognized that this is an enclosure of the first item. So 0011 is added to the tree as an
S-type key and 00110 is added to its sub-tree. Now is the turn of third item named
10110 to be added, since it is a disjoint prefix, simply is added to the node. Inserting the
fourth prefix, 10111, causes overflow and the node must be split. The median, 10110, is
chosen as the splitting point. Figure 2 illustrates the final ISCB -Tree created for items
of table 1.

Now by an example the search algorithm will be clarified. Suppose as B-tree
example a packet arrived and its destination address is 00111100. Algorithm takes the
root node, node 1, and compares its elements with this address. This address is smaller
than the first element, 0110, so it follows the left most link and reaches the second level
in the tree to node 2. In the second level, this address is match with the only existing
element namely 0011. But this key is an S-type key. So the algorithm saves this
matching and follows the sub-tree link of this element and reaches to node 2′. In the
sub-tree it does not match with the 00110 so algorithm takes the saved element, 0011, as
LPM for this address. As it can be seen in table 1, it is a true choice.

The most important strengths of the ISCB-Tree can be summarized as follow:
1. The height of tree is as small as possible with regard to node utilization and tree

balancing which are properties of B-Tree. So the number of memory accesses
needed to find an LPM is much fewer than traditional used data structures like
trie.

2. The first found prefix is the LPM if the key is not S-type key.
3. The main tree balancing is guaranteed as in B-Tree

4 Search method is very simple
3.2 Parallel Architecture

Our proposed Multiprocessor based router contains up to N processors and N
memory modules. Each memory module is assigned to a processor. A sample structure
with 8 processors is illustrated in figure 3. As it can be seen in this figure the
architecture consists of flow table, queue table, index table, processors and memory
modules. In the following each of these components will be described.

As shown in the previous sub-section the set of prefixes are stored in an ISCB-Tree.
In this mechanism, the ISCB-Tree is partitioned into sub-trees and each of them stored
in a separate memory module. Suppose the used branching factor for the ISCB-Tree is
eight (seven key per node), so it has eight sub-trees in root node. In this architecture,
one can use eight memory modules and store each of sub-trees in one of them. It’s
remarkable that root node prefixes are stored again in the sub-trees.

An index table is built by using root node prefixes and use d in order to detect which
search engine (a memory module with its assigned processor called search engine)
should do the IP lookup process for an incoming packet. These prefixes are expanded by
adding zeros to their tail to make them as long as possible (32 bits for IPv4 and 128 bit
for IPv6). Then they stored in the index table with ascending order (the order which
they was stored in the root node of ISCB-Tree).

Now destination address of an incoming packet can be compared with values of
index table to determine the proper search engine. For example if destination address is
greater than the index[0] and less than the index[1] values, the proper search engine for
this IP is number 1 (with the start number 0). When the search engine is determined, the
packets destination address will save in a slot of flow table in ascending order. Also the
packet will store in the same slot of the queue table.

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

28

Figure3. Parallel Architecture of our Schema

Flow and queue tables are used to incorporate a caching method. Similar to our

caching method was introduced in [28] and called early caching. But our schema much
like to caching method of solution that was explained for reader-writer problem in [1].
However this caching method is also called early caching.

When an IP packet received at the router, its destination address will be searched in
the flow table. If it does not exist then the destination address registered in this table and
go to a proper search engine to find LPM. As it mentioned previously the desired search
engine is determined by using the index table. But if the IP address exists in flow table,
it means that a packet of the same flow reached to the router and went to a search engine
before this one. So it does not need do the same LPM search for the new packet.
Therefore packet will go to the queue table and wait for its predecessor to find LPM.
Queue table is a 2-D array which stores packets of each active flow in a row.

By the receiving an IP address in a search engine, the processor will begin search
algorithm to find LPM for that address in its own memory module. As soon as LPM is
found, processor 1) removes index from flow table; and 2) forward s all of the waiting
packets of that flow in the queue table. Indexes are removed from flow table as soon as
possible in order to avoid stale entries.
The main strengths of this structure are as follow:

1. Reducing the number of prefixes which should be searched to find LPM of an IP
address by factor of 1/N (N is the number of search engines)

2. N IP address can be simultaneously searched.
3. This structure uses cheap equipment. In other words SRAM memory modules

can be used instead of TCAM memories which most of parallel architectures
used.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

29

4. Early caching speed up packet forwarding while we avoid stale cache entries
which may occur in almost previously proposed caching architectures.

4. Performance Measurement

In this section first we model our proposed mechanism by M/M/1 q ueue and solve
the model in order to illustrate performance of proposed mechanism in terms of input
rate, service rate, and etc. parameters. Then in subsection 4.2 we report simulation
results that show the performance of our mechanism in terms of number of memory
access.
4.1 Queuing System Analysis

We useM/M/1 queuing model in order to model IP lookup parallel architecture. We
see this multiprocessorsystem as N single processor subsystem. By assuming the normal
distribution of packet incoming for all sub-Branching Factor systems, the mean arrival
rate of each subsystem is 1/N of the mean arrival rate of multiprocessor system with N
processors.

We assume that the arrival process of the incoming IP addresses is in Poisson
distribution with a mean arrival rate as λ0. The mean service rate for the incoming IP
addresses in each processor is considered to be µ0. So the overall arrival rate is λ=N*λ0
and overall service rate is µ=N*µ0.

Using the queuing theory to solve the model performance measures, such as the
utilization factor (ρ), probability of the search engines queue to be empty (P0),
probability of being K IP address in router (PK), probability that an incoming IP address
has to wait in the queue (PQ), average number of IP addresses waiting in the queue to be
processed (NQ), and mean response time (T) were found.

• Utilization factor
o Utilization factor for each search engine: ρ0 = λ0

μ0

o Overall utilization factor: ρ = N∗λ0
N∗μ0

= ρ0
• The probability that the system is idle: P0 = 1 − ρ
• The probability of presence of K IP packet in router: Pk = (1 − ρ)ρk
• The probability that an incoming packet has to wait in queue: PQ = 1 − P0 −

 P1 = ρ2 + 2ρ
• The average number of packets in router: NQ = ρ

1− ρ

• Mean response time: T = 1
μ− λ

4.2 simulation Results

At first a set of simulations were conducted in order to obtain optimal branching
factor for ISCB-Tree when data items are IPv6 prefixes, then another set of simulations
were conducted to determine efficiency of our parallel algorithm with increase in
number of prefixes existing in forwarding table.

Simulation results, figure 4, show that the optimal branching factor is between six to
nine in which the height of tree reduces to between six and eight. After this point height
of the tree does not reduces so much with increasing of branching factor. As we can see
in in figure 4 the height of ISCB-Tree growths in logarithmic manner with respect to the

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

30

number of prefixes, so our algorithm can be scaled very well with growing the size of
the forwarding tables.

When a node of tree becomes large, processor cannot read whole of the node in one
memory access so increasing of branching factor may causes more than one memory
access for reading of a node. Our simulation results show that the branching factor of
eight is the optimal for most of data sets. So we use this branching factor in all other
simulations.

Figure4. ISCB Maximum Height

Figure5. Statistics of Enclosure, Enclosed and Disjoint Prefixes

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

31

Analysis of routing tables where downloaded from [2] shows that about half of
prefixes are enclosed prefixes, figure 5, when they are moved to sub-trees, the height of
main tree becomes as small as four levels with branching factor eight for 130k of
prefixes. Also number of enclosed prefixes per enclosure is between 1 and 1262 which
distribution of them depicted in figure 6. As it can be seen in this figure more than 81%
of enclosure prefixes have less than eight prefixes which mean most of sub-trees have
only single level.

Figure6. Distribution of Enclosed Prefixes

Figure7. Speedup of Parallel Architecture

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

32

We simulate our proposed method with 100k, 400K and 700k of prefixes. We
download some routing table from [2] and based on distributions of current prefixes,
generate some others in order to achieve the 700k of prefixes. When we construct
ISCB-Tree and divide it based on the root node into eight categories each of them has
87k ± 6k of prefixes.

Our simulation results show that with branching factor eight and a data set of size
90k for each processor (and 700k in overall) the average number of memory access is
reduced to 4.1 since with single processor this number is about 7.4. This number of
memory access in our mechanism is much better than the current algorithms.

A good measure for analyzing the performance of a parallel algorithm is speedup.
Speedup is defined as the running time of sequential algorithm and the running time of
parallel algorithm.

In order to determining the efficiency of our method we ran several simulations with
different size of data sets. Figure 7 shows the speedup of our proposed mechanism. As
we can see in this figure by increasing the number of prefixes, the speedup becomes
more sensible.

5. Conclusions

We simulate our proposed method with 100k, 400K and 600k of prefixes. We
download some routing table from [2] and based on distributions of current prefixes,
generate some others in order to achieve the 700k of prefixes. When we construct
ISCB-Tree and divide it based on the root node into eight categories each of them has
97k ± 6k of prefixes.

The major time consuming step in lookup process is finding LPM. In order to obtain
better performance in this step we must try to reduce the number of memory accesses
which is the major bottleneck in lookup process.

In this paper we presented a new data structure called IP lookup Specific B-tree
(ISCB-tree) based on the most well-known B-Tree data structure. ISCB-Tree is used to
construct forwarding table besides using of B-tree strengths. ISCB-Tree reduces number
of memory accesses sharply since the height of the tree has the main effect on number
of memory accesses for an LPM search. The height of ISCB-Tree growths in
logarithmic manner with respect to the number of prefixes, so our algorithm can be
scaled very well with growing the size of the forwarding tables.

Also in this paper we proposed a parallel architecture that partition forwarding table
among N processors, which N is optional but it’s better to be chosen same as branching
factor of ISCB-Tree. By this partitioning, we store each sub-tree in a memory module
and assign a processor to each of them. We call this package search engine which
contains a sub-tree, a memory module and a processor.

When an IP packet received in the router, its destination address will be searched in a
flow table. If exists an entry for that destination address in the flow table, this packet
goes to the queue table and waits for search result for its descendant. Else destination
address will be inserted to the flow table and by using an index table the appropriate
search engine is determined for this packet. Then the selected search engine finds LPM
for the given address and forwards all packets for this destination which are waiting in
the queue table.

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 19-34

33

We have also simulated our proposed mechanism using the real forwarding tables
that its results show that our mechanism has better performance in comparing with
present parallel mechanisms.

It must be noted that our mechanism obtains this performance using few processors.
Also we must notify that contriving big number of processor, like sixteen of processors,
on a small board is not a simple task, so the mechanisms that use big number of
processors are not highly practical.

6. References

[1] A. Silberschatz, P. B. Galvin, G. Gagne, Operating System Con-cepts,John Wiley & Sons, 7th
edition, 2004.

[2] BGP reports, http://bgp.potaroo.net/, july 2011.
[3] G. Bongiovanni, P. Penna, XOR-based schemes for fast parallel IP lookups, Proceedings of the

5th Conference on Algorithms and Complexity 2003 (CIAC ??03).
[4] H. Mohammadi, N. Yazdani, Robatmili, B., and Nourani, M., HASIL: Hardware Assisted

Software-based IP Lookup for Large Routing Tables, Proceeding of the 11th IEEE Interna-tional
conference on networks 2003 (ICON 03).

[5] J. Wang, K. Nahrstedt, Parallel IP Packet Forwarding for To-morrows IP Routers, Proceedings
Of IEEE Workshop on High Performance Switching and Routing 2001 (HPSR ??01).

[6] K. Venkatesh, S. Aravind, R. Ganapath, T. Srinivasan, A High Performance Parallel IP Lookup
Technique Using Distributed Memory Organization, Proceedings of the International Confer-
ence on Information Technology: Coding and Computing 2004 (ITCC 04).

[7] K. Zheng, C. Hu, H. Lu, B. Liu, An Ultra High Throughput and Power Efficient T CAM Based IP
Lookup Engine, Proceedings of IEEE INFOCOM 2004.

[8] K. Zheng, H. Lu, B. Liu, A Parallel IP Lookup Algorithm for Terabit Router, Proceedings of
IEEE ICCT 2003.

[9] L. Hyesook, L. Bomi, A New Pipelined Binary Search Architec-ture for IP Address Lookup,
Proceedings of IEEE HPSR 2004.

[10] L. Wuu, T. Liu and K.Chen, A longest prefix first search tree for IP lookup, Elsevier, Journal of
Computer Networks 51, pages 3354-3367, 2007.

[11] M. Akhbarizadeh, M. Nourani, An IP Packet Forwarding Tech-nique Based on Partitioned
Lookup Table, Proceedings of IEEE ICC 2002.

[12] M. Hasanloo, M. Fathi, A. Amiri, A High Performance Parallel IPLookup Technique Based
onMultiprocessor Organization and CREW PRAM, Second Asia International Conference on
Modelling& Simulation 2008.

[13] M. Pan, H. Lu, Build shape-shifting tries for fast IP lookup in O(n) time, Computer
Communications 30, pages 3787-3795, 2007.

[14] N. Yazdani, H. Mohammadi, ”DMP-Tree: Dynamic M-way Prefix Tree Data Structure for String
Matching”, Article in press, Elsevier Computers & Electrical Engineering,Volume 36, Issue 5,
September 2010, Pages 818-834.

[15] N. Yazdani, H. Mohammadi, DMP-Tree: Dynamic M-way Pre-fix Tree Data Structure for String
Matching, Elsevier journal of Electrical Engineering and Computer Science 2007.

[16] N. Yazdani, H. Mohammadi, IP Lookup in Software for Large Routing Tables Using DMP-Tree
Data Structure, Proceeding of the 9th Asia Pacific Conference on Communications 2003 (APCC
03).

[17] N. Yazdani, P. Min, Fast and Salable Schemes for IP Lookup Problem, Proceeding of IEEE
Conference on High Performance Switching and Routing 2000 (HPSR 2000).

[18] P. Warkhede, S. Suri, G. Varghese, Multiway range trees: scal-able IP lookup with fast updates,
Elsevier, Computer Networks 44, pages 289-303, 2004.

[19] P. Yilmaz, A. Belenkiy, N. Uzun, A Trie-based Algorithm for IP Lookup Problem, Proceedings
Of ACM SIGCOMM 1997.

[20] R. Bayer, C. McCreight, Organization and Maintenance of Large Ordered Indexes, Acta,
Informatica 1,3, 1972.

[21] S. Kasnavi, P. Berube, V. Gaudet, J. Amaral, A cache-based internet protocol address lookup
architecture, Journal of Com-puter Networks 52, pages 303-326, 2008.

www.SID.ir

Arc
hive

 of
 S

ID

A High Performance Parallel IP Lookup … M. Hasanloo, A. Movaghar

34

[22] S. Kaxiras, G. Keramidas, IPStash: a Power-Efficient Mem-ory Architecture for IP-lookup,
Proceedings of the 36th In-ternational Symposium on Microarchitecture 2003 (MICRO-36 2003)

[23] S. Leu, R. Chang, A fast and scalable IPv4 and IPv6 ad-dress lookup algorithm, Elsevier,
Computer Communications 29, pages 36020-3036, 2006.

[24] S. Sahni,K. Kim,Efficient Construction Of Variable -Stride Multibit Tries For IP Lookup,
Proceedings IEEE Symposium on Applications and the Internet 2002 (SAINT 02).

[25] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Univ. Press,
2001.

[26] T. Srinivasan, M. Sandhya, N. Srikrishna, An Efficient Parallel IP Lookup Tec hnique using
CREW based Multiprocessor Or-ganization, Proceedings of the 4th Annual Communication Net-
works and Services Research Conference 2006 (CNSR06).

[27] W. Chen, C. Tsai, A Fast and Scalable IP Lookup Scheme for High Speed Networks,
Proceedings of the 7th IEEE Interna-tional Conference on Networks 1999.

[28] W. Jiang, V. Prasanna, Sequence-preserving parallel IP lookup using multiple SRAM-based
pipelines, Elsevier, Journal of Dis-tributed Computing 69, pages 778-789,2009.

[29] Y. Chang, Simple and fast IP lookup using binomial spanning trees, Elsevier, Journal of
Computer Networks 28, pages 529-539, 2005.

www.SID.ir

