
Arc
hive

 of
 S

ID

85

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 3, No. 3, August 2012), Pages: 85-96
www.jacr.iausari.ac.ir

Efficient Genetic Based Methods for Optimizing the
Reversible and Quantum Logic Circuits

Majid Mohammadi

International Center for Science, High Technology & Environmental Sciences, Kerman, Iran,
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

mohammadi@mail.uk.ac.ir

Received: 2012/05/15; Accepted: 2012/08/07

Abstract
Various synthesis methods have been proposed in the literature for reversible

and quantum logic circuits. However, there are few algorithms to optimize an
existing circuit with multiple constraints simultaneously. In this paper, some
heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum
cost, number of gates, location of garbage outputs, and delay, are proposed. The
proposed methods can optimize an existing circuit with a given truth table, including
don’t care values, for different aspects of optimality. The results show good
enhancements in the optimization of benchmark circuits compared to the previously
published methods.

Keywords: Optimization, Genetic algorithms, Reversible logic, Quantum circuit, Heuristic

method

1. Introduction

A circuit is reversible if and only if its inputs can be calculated from its outputs and
vice versa [1, 2]. Reversible logic is useful both in lossless classical computing and in
quantum computing, in which all ideal computations are inherently reversible [3].The
synthesis of reversible and quantum circuits differs significantly from the synthesis of
traditional irreversible circuits. A considerable amount of work has already been done
on the synthesis and optimization of reversible and quantum logic circuits [4-8].
Methods for automated reversible and quantum logic circuit synthesis, based on genetic
algorithms (GA) and evolutionary algorithms (EA),have also been developed [9-11]. In
these approaches, the global optimization characteristics of the algorithm are used to
synthesize reversible and quantum circuits to obtain near optimal circuits. In GA-based
synthesis methods, the optimization is a part of the synthesis process. They can also
synthesize incompletely-defined functions [12].

Optimizing an existing circuit is important because many synthesis methods do not
offer an optimum circuit in terms of quantum cost (QC) or other measures of reversible
or quantum circuits. In [7], a template matching method for optimization of circuits
including Toffoli gates is proposed; however, it finds only a local minimum for the
number of gates of the circuit. Exact synthesis method [8] based on the satisfiability
(SAT) technique can synthesize a reversible function using a locally minimal number of
Toffoli gates; however, it cannot handle multi-objective optimizations.

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

86

In this paper, heuristics applicable in GA-based algorithms, for optimizing an existing
reversible circuit in various aspects of optimality, considering the don’t care values, are
proposed. There are several figures of merit (FoMs) to evaluate, compare, and optimize
different logic designs[13]. In the proposed method, one can minimize the number of
gates (NoG), QC, number of garbage outputs (NGout), location of garbage outputs, and
delay.

The proposed method can also be used for a set of quantum circuits using V, V† and
CNOT gates. This set of gates is used in many papers to synthesize the quantum and
reversible logic circuits [12, 14, 15]. Our optimization algorithm can provide an
optimization for quantum circuits that are represented by truth tables. However, by
finding a proper measure to compare the outputs of the quantum circuits, we may
extend the algorithm to a wider range of quantum circuits. In this paper, our technique is
applicable to reversible or quantum circuits that contain gate libraries that are universal
for classical computation.

The structure of paper is as follows. In Section 2, the background about the reversible
and quantum circuits is presented. In Section 3, the main contribution of the paper, a set
of heuristics for optimizing reversible and quantum logic circuits, is presented. Section
4 illustrates the experimental evaluation of these approaches by applying them to
various benchmarks of reversible and quantum logic. The paper is concluded in Section
5.

2. Motivation

Several methods have been proposed for synthesis of reversible and quantum circuits.
Though, there are few algorithms for optimizing an existing circuit. Optimizing such a
circuit is important because many synthesis methods do not propose an optimum circuit
expressed by the figures of merit of reversible or quantum circuits. In [7], a method for
optimization of circuits including Toffoli gates is proposed; nevertheless, it offers only a
local minimum for the number of gates of the circuit. Exact synthesis method, proposed
in [8], can synthesize the reversible functions using a locally minimal number of Toffoli
gates; however, it cannot guarantee that other measures such as quantum cost of the
circuit are optimum. In the incompletely defined functions, the above methods cannot
use don’t care values in the optimization process. On the other hand, our GA-based
optimization and synthesis algorithm have several advantages respect to the other
existing algorithms:

1. Various universal or non-universal reversible logic gates can be used.
2. Many parameters of the circuit are controllable. For example, one may limit the

maximum gate size to two or three or limit the algorithm to use special types of
gates (also user defined gates).

3. Don’t care conditions and garbage outputs can be efficiently used to obtain an
optimized circuit.

4. Because of the population-based behavior of the GA in optimization, the results are
usually optimized based on the defined cost function.

5. Other optimality measures can be added to the cost function to optimize the circuit
with respect to those measures (e.g., delay of the circuit).

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 85-96

87

3. Background on reversible and quantum circuits and their figures of merit

A reversible logic function maps each possible input vector to a unique output vector.
Classical reversible logic gates can be implemented in various technologies, such as
CMOS, optical circuits, and nanotechnology based techniques. On the other hand,
quantum circuits, based on quantum computing theory, cannot be realized in traditional
CMOS technology [3]. A reversible or quantum gate has an equal number of inputs and
outputs. With n inputs, there exist 2n!reversiblen×n gates, where agate is n×n if it has n
inputs and n outputs [1]. The well-known 2×2 Feynman gate [15] operates as a
controlled NOT (CNOT). If the control input of a CNOT is set to ‘0’, then the gate acts
as a Buffer gate; otherwise, it acts as a NOT gate. The Feynman gate can be used as a
fan-out circuit to clone a logical signal. The Feynman, Toffoli [1], Fredkin [4], and
Peres [18] gates are well-known reversible gates, shown in Table 1. The Fredkin and
Toffoli gates are both universal, i.e., any logical reversible circuit can be implemented
using one of these gates. The Toffoli gate can be generalized to ann×n gate (TOFn)
with n-1 control inputs [1]. If all n-1 control inputs are ‘1,’ then the target output is the
NOT of the target input. In the same way, the Fredkin gate can be generalized to ann×n
gate [4].

Classical reversible logic gates act on binary digits or bits. Quantum gates, on the
other hand, act on quantum bits or qubits [3,15]. A qubit is a unit of quantum
information. All quantum gates are reversible. They are represented by unitary matrices.
The most common quantum gates operate on spaces of one or two qubits. These are the
primitive gates of quantum technology. Generally, an n-qubit quantum gate can be
described by a 2n×2nunitary matrix, with complex components and orthonormal rows.
Some examples of quantum gates are the Hadamard, Phase Shifter, V (√NOT),
Feynman, Toffoli, and Fredkin gates [3]. Some quantum gates, such as the Feynman,
Toffoli, and Fredkin gates, have counterparts in reversible logic circuits.

Table 1. Important reversible or quantum gates and their sizes, quantum costs, and delay

specifications.

Gate Size Reference QC Delay Symbol & Operation

Feynman 2×2 [15] 1 Δ
A

B

A

A B

Toffoli 3×3 [1] 5 4Δ
A

C

B

AB C

A

B

Fredkin 3×3 [4] 5 4Δ
A

A’B+AC

AB+A’CC

A

B

Peres 3×3 [18] 4 3Δ
A

A

AB C

B

C

A

B

One qubit
quantum 1×1 [15] 1 Δ 









1110

0100

UU
UU

V 1×1 [15] 1 Δ 







−

−+
1i
i1

2
i1

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

88

A quantum or reversible circuit is usually depicted using a series of connected gates,
on a number of parallel lines. These lines are the inputs/outputs of the circuit. This
method of representation of circuits is called the music line style [12].The fan-out of the
reversible logic gates is limited to one. That is, each output of a reversible logic gate can
drive only one input of another gate. This limitation, as well as the dissimilarity
between reversible and irreversible gates, makes the synthesis of reversible functions
more complicated than that of their irreversible counterparts. The synthesis of quantum
circuits is even more complicated than that of reversible circuits because of the unitary
matrix representation of quantum gates and the use of complex numbers.

To optimize a reversible or quantum circuit, one can use various notions of optimality.
The number of gates, the quantum cost, the number of constant inputs, the number of
garbage outputs, and the delay are important constraints for the optimization problem.
The definitions and a brief review of these measures can be found in the literature [13]:

1.Number of gates (NoG): The number of reversible or quantum gates needed to realize a
circuit is the NoG of that circuit. Reversible or quantum circuits with similar gates (size
and type) can be compared using the NoG criterion.

2.Quantum cost (QC): The QC of a reversible or quantum logic circuit is the number of
primitive (1×1 or 2×2) reversible or quantum logic gates needed to implement the
circuit [15, 16]. The QC of 1×1 and 2×2 gates is considered to be a unit cost, regardless
of their internal structure. QC is widely used as a measure to evaluate a reversible
design. The QC of six well known reversible and quantum gates is depicted in Table 1.

3.Number of constant inputs (NCin): Constant inputs are inputs of a reversible or quantum
circuit with arbitrary constant values. Constant inputs are sometimes necessary for the
reversible realisation of an irreversible function. Since the values of constant inputs are
considered “don’t care”, they can be used to optimize a reversible function efficiently.

4.Number of garbage outputs (NGout): These are outputs whose values are not important.
Increasing the number of garbage outputs increases the information loss of a reversible
circuit.

5.Delay: The delay time is the number of stages in a quantum circuit. In this paper, the
definition and method proposed in [13] for calculating the delay is used. The delay of
1×1 and 2×2 gates is considered as a unit delay or Δ. Table 1 shows the delay of other
reversible or quantum gates respect to the unit delay.

4. Heuristics to optimize reversible and a set of quantum logic circuits

In this section, an algorithm and some heuristics to optimize a given quantum or
reversible circuit using the GA is proposed. The optimization will be more efficient if
the truth table of the function has don’t care conditions and don’t care outputs (garbage
outputs).Our proposed algorithm is comparable to the GA-synthesis algorithm in [12].
The GA-synthesis algorithm, which is explained in detail in [12], can handle the don’t
care values in the synthesis process. In this paper, a similar algorithm for optimization
purposes is proposed.

The proposed algorithm can be used for optimizing the quantum circuits including V,
V† and CNOT gates. This set of gates is used in literature to synthesize the quantum and
reversible logic circuits [12, 14, 15]. In optimization algorithm the quantum logic
function have to be represented by a truth table (including don’t care values).

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 85-96

89

4.1 Coding a circuit

Before using the GA to optimize a reversible or quantum circuit, it has to be coded as
a bit string, which is called a chromosome. To code a circuit, we have to select a
representation scheme for it. The music line style [12] is the most popular method to
show a reversible or quantum circuit. In this method an n-input/n-output circuit with m
gates is shown by n parallel lines with m gates on them. In this research, the music line
style for circuit representation is used.

Coding a circuit for synthesis, as shown in [12], is the same as coding it for
optimization. Fig.1.a shows the details of coding a gate. The first field encodes the gate,
which is assumed, for example, “00” for the generalized Toffoli gate. We define a
parameter, the maximum gate length (MGL),which is constant in the optimization
algorithm. This parameter is the maximum number of inputs or outputs of a gate in the
circuit. Next to the code field, the MGL is the number of fields that represent the
locations of the inputs/outputs of the gate on the parallel lines. Different combinations
of the locations of inputs comprise different gates in the circuit. In Fig.1.b, the locations
of the main input and a control input are the same. In this case, the algorithm ignores the
control input, and the resulting gate is a CNOT gate. Fig.1.c shows another
combination, in which all the inputs have the same location. In this case the result is a
NOT gate. Fig.1.d shows the case in which two control inputs have the same location,
resulting in a CNOT gate. Therefore, using this coding method, with a constant value of
MGL, other smaller gates can be generated in the optimization process. It is notable that
this coding scheme can redundantly encode the same gate in multiple ways (e.g. figure
1.b and 1.d).

00 10 01 00

Code Main in1 in2

00 10 00 00

0

1

2

0

1

2

00 10 10 00

Code Main in1 in2

00 10 10 10

0

1

2

0

1

2

(b)(a)

(d)(c)
Figure1. The method used for coding a reversible gate and different combinations of locations of

inputs: (a) distinct locations, (b) the locations of a main input and a control input are the same, (c) all
inputs have the same location, (d) all control inputs have the same location.

4.2 Error Function

In GA-based optimization methods, the algorithm is designed in such a way that it
maximizes a function called the fitness function. The algorithm can also be designed to
minimize a function, called the error function (EF). In the process of evaluating a
circuit, an error function is calculated, which can show our target of optimization. To
have an acceptable circuit, the Hamming distance (HD) of the desired truth table
(des_rowarray in Fig.2) and outputs of synthesized circuit (syn_row array), have to be
zero. If one impose the constraint EF = HD, the optimization algorithm finds only
acceptable circuits. To obtain an optimized circuit in terms of QC, the QC of the
synthesized circuit has to be added to the error function, i.e., the condition EF = HD +
QC must hold. The algorithm tries to minimize this EF, which results in a circuit with
minimum QC. The QC and HD are both integer values; thus, when a specific value for
EF is obtained, one cannot determine which of QC or HD is zero. If the HD is not zero,

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

90

then the circuit obtained is not acceptable for the desired truth table. To guarantee that
HD = 0, we normalize the QC of each synthesized circuit to QCN such that 0< QCN <
1. To normalize the QC, a maximum QC value (QC max) for all chromosomes is
obtained. In the algorithm, the maximum gate length (MGL) and number of gates
(NOG), and the gate library are specified. The gate library shows the type of gates used
in the synthesis or optimization process. For example, the CNOT, NOT, and Toffoli
gates (CNT library), V, V+, and CNOT gates (VVC library), or Fredkin gates may be
used as the gate library. In the GA-based algorithms, combinations of gate libraries are
also acceptable [12]. For example, we assume the CNT gate library. Considering the
MGL for the length of a generalized Toffoli gate (when MGL > 2), the QC of the gate is
given by Equation 1 [15].

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑀𝑀𝑀𝑀𝑀𝑀 − 3 (1)
The MGL parameter is the maximum value for the size of a gate in the synthesis or

optimization algorithm. Therefore, this cost (Equation 1) is the maximum possible value
for QC of the generalized Toffoli gate in the circuit. Given the NOG, the maximum QC
of the circuit is calculated as Equation 2.

𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝑁𝑁(2𝑀𝑀𝑀𝑀𝑀𝑀 − 3) (2)
Thus, the normalized QC for each chromosome is calculated using Equation 3.

𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄
𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑄𝑄𝑄𝑄
𝑁𝑁𝑁𝑁𝑁𝑁�2𝑀𝑀𝑀𝑀𝑀𝑀 −3�+1

 (3)

In this case (EF = HD + QCN), if the EF is less than 1, then the circuit is acceptable
for our truth table. Since the HD is an integer value, it can be multiplied by an integer
number to expand the range of QCN in the error function. For example, if 10*HD is
used, then QCN can vary in the open interval of]0,10[. Then, to have a valid circuit for
a given truth table, the EF must be less than 10. Multiplying the HD by an integer is
useful when you want to change the weights of the optimization measures in the
algorithm.

It is possible to also add the delay to the EF to obtain a circuit with minimum delay.
Again, the normalized delay (Delay N) is used in the EF expression (Equation 4).

𝐸𝐸𝐸𝐸 = 𝛼𝛼.𝐻𝐻𝐻𝐻 + 𝛽𝛽.𝑄𝑄𝑄𝑄𝑄𝑄 + 𝛾𝛾.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (4)
The definition of delay in [13] is used to calculate the delay of each gate or circuit. To

calculate the Delay N parameter, the maximum delay (Max Delay)has to be calculated.
In [13],it is shown that the unit delay of a gate is less than or equal to its QC. The delay
of a circuit is also less than or equal to the sum of the delays of each of the gates in the
circuit. Therefore, the Equation 5 and Equation 6 can be used for Max Delay for the
normalized delay.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 (5)

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 +1

 (6)

In Equation 6, the QCmaxis used instead of Max Delay. This also reduces the
calculation time of the evaluation section of the optimization algorithm. The values of
QCN and Delay N are both less than one. In Equation 4, α, β, and γ are constants that

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 85-96

91

specify the weight of each measure in the optimization process. To guarantee that the
obtained circuit satisfies HD = 0, the coefficients α, β, and γ have to satisfy Equation 7.

𝛼𝛼 > 𝛽𝛽 + 𝛾𝛾 (7)
The condition EF < α is checked to determine whether the circuit is acceptable or not.

Between two circuits with EF < α, the circuit with the lower EF value is chosen.
4.3 The optimization algorithm

Figure 2 shows the optimization algorithm. First, in Line 1, a population of µ
chromosomes is constructed. Each chromosome encodes a complete reversible or
quantum circuit. All except the first of the chromosomes are initialized randomly in
start of the algorithm (Line 2). Afterwards, in Line 3, the first chromosome is initialized
with an existing circuit, which is a valid answer to the given truth table. Don’t care
values have to be specified, e.g., by ‘x’ characters, in the truth table. The while loop,
Line 5, is the beginning of the genetic optimization algorithm. In this loop, λ new
chromosomes are produced by using crossover and mutation operators. The crossover
operator selects two chromosomes randomly and exchanges some of their
corresponding segments. The mutation operator applies random changes to the selected
chromosome, with a specific probability, by randomly inverting some of its bits.

Line 8 is the start of the loop that evaluates all λ+µ chromosomes. Evaluation is based
on an error function, which was explained in the previous section. For the optimum
usage of don’t cares in the optimization process, the heuristic methods proposed in [12]
are used. Lines 12 and 13 show how we discount the values of don’t care conditions
(Line 12) and garbage outputs (Line 13) to obtain an optimized circuit for the care
values. In Line 20, the algorithm selects µ better chromosomes to produce the new
population. To select µ better chromosomes from a set of µ+λ chromosomes, one can
sort them by ascending EF and select the first µ chromosomes. After the optimization
loop, those circuits are acceptable for the desired truth table in that their EF’s are less
than α. Since the first chromosome was initiated as the existing circuit, its EF is always
less than α. If the optimization loop finds a circuit with a smaller EF value, it replaces
the first chromosome by the new one. Therefore, the chromosome[0] is always the best
circuit of the population with the minimum value of EF.
4.4 Minimising the number of gates using Buffer gates

The number of gates (NOG) used in the optimization process is a constant value. In
this situation, the optimization algorithm could not find answers with gate counts lower
than NOG. To allow the algorithm to change the number of gates, the Buffer gate is
added to the gate library. A Buffer gate is a 1×1 gate whose output is equal to its input.
The more Buffer gates a circuit contains, the fewer main gates it contains. Therefore,
the optimization algorithm can also minimize the NOG of a given circuit by maximising
the number of Buffer gates in the circuit. It is important to note that minimum value of
NOG is not necessarily the minimum value of QC. The QC of a circuit depends on the
NOG and on the size of the gates in the circuit. The QC of a gate increases
exponentially with the size of the gates. Therefore, using a small value for MGL can
decrease the QC of the circuit efficiently.

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

92

Figure2. The proposed optimization algorithm based on GA

4.5 Optimal location of garbage outputs

In general, garbage outputs and constant inputs are necessary for the reversible
implementation of an irreversible function. The minimum number of garbage outputs
and constant inputs can be calculated by the Maslow formula [17], shown in Equation 8;
in which η is the maximum number of repetitions of output patterns.

NGoutmin = log2η (8)

To design a circuit with minimum NGout, one can calculate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 by Equation 8
and add this number of garbage outputs to the function. Additionally, sometimes it is
necessary to add constant inputs to the function. It is important to note that the
minimum number of garbage outputs and constant inputs is not necessarily the best
choice. To optimize, for example, the QC of a circuit, more garbage outputs and
constant inputs may result in a better circuit [12]. Actually, there are optimum values
for NGout and NCinfor a reversible function, depending on the complexity of the
function [12].

Another problem with garbage outputs is identifying the locations of garbage outputs
with respect to the inputs in the truth table of the function. The locations of garbage

// In this algorithm, number of gates (NOG), maximum gate length (MGL), an existing circuit, truth table of the
// circuit with don’t care conditions, garbage outputs, and gate library are known.

1) CreateChromosome[i] (0≤ i <µ) ; //each chromosome is a Quantum or Reversible circuit
2) Initialize Chromosome[i] with random numbers for (1≤ i <µ) ;

3) Initialize the Chromosome[0] as the initial existing circuit ;
4) Calculate QCmax ;

5) While (max_iteration)
6) {

7) Generate λ newChromosomes using Crossover and Mutation operators ;
8) For all of λ+μ Chromosome[i]//Evaluation loop

9) {
10) For row[j] of truth table

11) {
12) If row [j]isnot “don’t care condition”then// row [j] = ‘x’ means don’t care condition

13) HD = HD + Abs (Hamm ((des_row [j] & mask), (syn_row [j] & mask)));
14) //mask bits are ‘1’ for a care outputs and ‘0’ for a don’t care outputs

15) }
16) Calculate QCN for Chromosome [i]; // QCN = QC / QCmax

17) Calculate DelayN for Chromosome [i]; // DelayN = Delay/QCmax
18) EF[i] = α.HD + β.QCN + γ.DelayN; // α, β, and γ are constant weighting factors

19) }//End of evaluation loop
20) Select μ better Chromosome for reproduction// better circuits have less EF

21) } // End of while
22) Print Chromosome[0]

23) END

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 85-96

93

outputs can highly affect the QC of the synthesized circuit. Therefore, the best locations
for garbage outputs in the truth table can result in the best circuit. To find the best
locations for garbage outputs, we add Swap gates to each chromosome in the algorithm.
Number of Swap gates is n/2for an n×n circuit, to change the location of garbage
outputs. Thus, the algorithm is allowed to add the Swap gates anywhere in the circuit.
However, it is easier to add these gates on the input or the output side of the circuit.
Since the Swap gates can be moved to either sides of the circuit (Fig.3), adding them to
one side is sufficient to change the locations of the garbage outputs. In the optimization
process, when the algorithm tries to optimize the circuit, it also finds the optimum
location of the garbage outputs.

A0

A1

A2

A3

Q0

Q1

Q2

Q3

A0

A1

A2

A3

Q0

Q1

Q2

Q3

A0

A1

A2

A3

Q0

Q1

Q2

Q3
Figure3. Using Swap gates to change the location of garbage outputs: (a) Swap gates are anywhere in

the circuit, (b) Swap gates are moved to the input side, (c) Swap gates are moved to the output side.

5. Experimental evaluation

This section presents experimental results for the presented methods. Fig.4 shows, for
instance, the optimized circuits for the benchmark 4gt5 function. It is a four input
function that determines whether the number defined by the binary encoding of the
input, “bcde”, is greater than five. Fig.4.a is the best circuit found in [8], which is
implemented using four gates and has a QC of 28. Fig.4.b is the optimized circuit using
the proposed algorithm and the CNT gate library. It uses three gates with a QC of 11.
This figure also shows that the best location of the f output is the fourth line of the
circuit (from the top), on the b input line. Using a different gate library, the generalized
Fredkin gates, an optimized circuit with only two gates and a QC of 10 is obtained.
Finally, using a mixed gate library, allowing an arbitrary gate selection, the function is
implemented with one Peres and one Fredkin gate, with a QC of 9. Using the VVC
quantum gate library, a circuit with a QC of 7 is found (Fig.4.e).

To show the efficiency of the proposed algorithm and heuristics, we have used them
to optimize some benchmarks of reversible and quantum circuits. Table 2 shows the
results for optimizing the QC. The results are compared with those of the methods
proposed in [8]. The definitions and truth tables of the functions are presented in [19].
In some circuits, ex. rows 5 to 8, there are no improvements in the QC; however, in
other benchmarks the improvement is more than 60 percent.

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

94

0

b

c

d

e

g

f

g

g

g

1

b

c

d

e

g

f

g

g

g

0

b

c

d

e

g

f

g

g

g

0

b

c

d

e

g

f

g

g

g

(a) (b) (c) (d)

0

b

c

d

e

g

f

g

g

g

V V V†

V V† V

(e)

Figure4. Proposed circuits for the 4gt5 benchmark: (a) circuit synthesized in [8], (b) optimized circuit
using NCT gate library, (c) optimized circuit using generalized Fredkin gate library, (d) optimized

circuit using a mixed gate library, (e) optimized circuit using a quantum VVP gate library.

In the same manner, the optimization algorithm can be used for finding a circuit with

a minimum delay. In some cases the algorithm can also minimize both the QC and the
delay simultaneously. For example, the 4gt5 of Fig.4.e is a circuit with minimum QC of
7 and minimum delay of 7Δ.

Table 2.Results of optimization of reversible and quantum benchmarks and comparisons with [8].

Improvement This Research
QC

Ref. [8]
QC Benchmark row

15% 11 13 Mod5mils 1
44% 5 9 Ham3 2
25% 6 8 Ex-1 3
3% 29 30 Aj-el1 4
0% 2 2 Graycode3 5
0% 3 3 Graycode4 6
0% 4 4 Graycode5 7
0% 5 5 Graycode6 8
36% 9 14 3_17 9
0% 11 11 Mod5d1 10
45% 11 20 Mod5d2 11
50% 6 12 Rd32 12
16.7% 15 18 Decod24 13
48% 28 54 4gt4 14
75% 7 28 4gt5 15
65% 13 37 4gt10 16
28% 5 7 4gt11 17
61% 16 41 4gt12 18
20% 12 15 4gt13 19
33% 6 9 4mod5 20
37% 24 38 4mod7 21
42% 14 24 One-two-three 22
58% 14 33 Mini_alu 23
50% 11 22 alu 24

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 3, August 2012) 85-96

95

The most important drawback of GA-based algorithms compared to other
mathematical methods in both synthesis and optimization is the time of convergence.
Because of the vast range of the searching area, the algorithm may not converge for
circuits bigger than about 8×8. However, the convergence time efficiently decreases if
the desired truth table includes a large number of don’t care values (don’t care
conditions and garbage outputs).

6. conclusions

Although there are various methods to synthesize the reversible and quantum logic
circuits, there are few methods to optimize an existing circuit. In this paper, an
algorithm and some heuristics to optimize reversible and quantum logic circuits were
proposed. The heuristics were used in a genetic algorithm-based optimization method.
In the proposed algorithm, they don’t care values were efficiently used. We proposed a
new coding method to encode a generalized n×n controlled gate such that all gates
smaller than a predefined size can be generated. Contributions including the definition
of a proper error function and various aspects of optimality are offered. A method to
allow the optimization algorithm to minimize the number of gates, using Buffer gates,
was also proposed. An important problem involving garbage outputs, namely the
optimal location of garbage outputs respect to inputs, was considered, and a new
method using Swap gates was proposed. The proposed algorithm and heuristics were
applied to benchmarks of reversible and quantum logic circuits. The results show good
enhancements in the optimization of benchmark circuits compared to the previously
published papers.

Acknowledgement: This work was supported by: Iran National Science Foundation (INSF).

7. References

[1] Toffoli, T.: Reversible computing. In: Tech memo MIT/LCS /TM-151, MIT Lab for Computer
Science (1980).

[2] Landauer, R.: Irreversibility and heat generation in the computing processes. In: IBM J. Res.
Develop. July 1961.

[3] Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. In: Oxford
University Press. Jan 2007eBook-LinG, ISBN 0-19-857000-7

[4] Fredkin, E., Toffoli, T.: Conservative logic. In: Int. J. Theo. Phys., 21 (1982) 219.
[5] Gupta, P., Agrawal, A., Jha, N.K.: An Algorithm for Synthesis of Reversible Logic circuits. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 25,
Number 11, November 2006, 2317-2330

[6] Kerntopf, P.: A New Heuristic Algorithm for Reversible Logic Synthesis. In: Annual ACM IEEE
Design Automation Conference Proceedings of the 41st annual conference on Design automation
San Diego, CA, USA, 2004, Pages: 834 – 837, ISBN:1-58113-828-8

[7] Miller, D.M., Dueck, G.W., Maslov, D.: A transformation based algorithm for reversible logic
synthesis. In: Proceedings of the 40th Design Automation Conference, Anaheim, CA, pp. 318–
323 (2003)

[8] Große, D., Wille, R., Dueck, G.W., Drechsler, R., “Exact Multiple-Control Toffoli Network
Synthesis With SAT Techniques”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, VOL. 28, NO. 5, MAY 2009.

[9] Lukac, M.; Perkowski, M., Evolving quantum circuits using genetic algorithm, In Proceedings of
the 2002 NASA/DoD Conference on Evolvable Hardware, 2002.

[10] Lukac, M., Perkowski, M., Gol, H.: Evolutionary Approach to Quantum and Reversible Circuits
Synthesis. In: Artificial Intelligence Review, Vol. 20, Issue 3-4, December 2003, 361–417

www.SID.ir

Arc
hive

 of
 S

ID

Efficient Genetic Based Methods for … M. Mohammadi

96

[11] Khan, M.H.A.; Perkowski, M., Genetic algorithm based synthesis of multi-output ternary
functions using quantum cascade of generalized ternary gates, In Proceedings of the 2004
Congress on Evolutionary Computation, 2004.

[12] Mohamadi, M. Eshghi, M.: Heuristic Methods to use don’t cares in automated design of
reversible and quantum logic circuits. In: Quantum Information Processing Journal, Springer,
Volume 7,Issue 4 (August 2008) pp.175 - 192.

[13] Mohammadi, M. Eshghi, M. “On figures of merit in reversible and quantum logic designs”,
Quantum Information Processing Journal, Springer, Volume 8, Issue 4 (August 2009) pp.297 -
318.

[14] Mohammadi, M., Eshghi, M., “Behavioral Model of V and V+ Gates to Implement the reversible
Circuits Using Quantum Gates”, IEEE TENCON08 conference, Heydarabad, India, November
18-21, 2008.

[15] Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. In: Phys. Rev. A 52
(5) (1995) 3457–3467.

[16] Lee, S., Lee, S.J., Kim, T., Jae-Seung Lee, Biamonte, J., Perkowski, M.: The Cost of Quantum
Gate Primitives. In: Journal of Multi-valued Logic and Soft Computing, 12(5–6) 2006.

[17] Maslov, D., Dueck, G.W.: Garbage in reversible design of multiple output functions. In: 6th
International Symposium on Representations and Methodology of Future Computing
Technologies, pages 162-170, March 2003.

[18] Peres, A.: Reversible Logic and Quantum Computers. In: Physical Review, 1985, A 32: 3266–
3276.

[19] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib: An online resource for
reversible functions and reversible circuits,” in Int. Symp. Multi-Valued Logic, 2008, pp. 220–
225. [Online]. Available: http://www.revlib.org

www.SID.ir

