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Abstract 
In recent years, formal methods have been used as an important tool for 

performance evaluation and verification of a wide range of systems. In the view 
points of engineers and practitioners, however, there are still some major difficulties 
in using formal methods. In this paper, we introduce a new formal modeling 
language to fill the gaps between object-oriented programming languages (OOPLs) 
used by engineers and the formalisms used for evaluation and verification purposes. 
We propose the syntax and semantics of a new object-oriented modeling language 
for discrete-event systems called RayLang. We have designed the syntax of RayLang 
similar to OOPLs. In RayLang models, objects that are instantiated from classes, 
run concurrently and can communicate with each other by requesting services. 
Every object in RayLang models has some internal state variables and some service 
handlers for executing the requests of other objects. We have shown that Markovian 
RayLang models can be transformed into continuous-time Markov chains (CTMCs) 
and then can be solved by existing solution techniques. For modeling, discrete-event 
simulation and analytic solution of RayLang models, we have implemented these 
models in the PDETool framework. 

 
Keywords: Formal Modeling Language, Object-Oriented Modeling, Discrete-Event 

Systems, Performance and Dependability Evaluation 
 

 

1. Introduction 

In spite of the recent successful application of formal methods, there are still clear 
needs of further research to develop and design new formalisms. In many notations, it is 
not easy to understand the meaning and properties of the symbols and how they may 
and may not be manipulated, and to gain fluency in using them, to express new 
problems, solutions and proofs  [5]. The major problem is the difference in the 
abstraction level and the existing gap between the programming languages used by 
programmers and software engineers and the modeling languages used for performance 
evaluation and verification purposes. Most of the existing formalisms cannot be easily 
used by software engineers. On the other hand, languages used by software engineers 
cannot be used directly for performance and dependability evaluation purpose and are 
too informal or too heavy to be analyzed by a verification tool  [24]. 

The natural idea behind the object-oriented paradigm is to consider the system we 
intend to model, simulate or develop, as a collection of active objects which collaborate 
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with each other. The term active object denotes an autonomous entity equipped with its 
own behavior and some internal data which corresponds to the state of object and of 
course may change during its lifetime  [9]. 

The aim has been to introduce a new formal modeling language to fill the gaps 
between object-oriented programming languages (OOPLs) used by engineers and the 
formalisms used for performance evaluation and verification purposes. 

This paper presents the syntax and semantics of a new object-oriented modeling 
language for discrete-event systems called RayLang. Based on the above aim, we have 
designed the syntax of RayLang similar to OOPLs. In RayLang, objects that are 
instantiated from classes, run concurrently and can communicate with each other by 
requesting services. RayLang has a well-defined formal semantics and incorporates 
several ingredients of programming languages and light-weight notations. Every object 
in a RayLang model has some internal state variables and some service handlers for 
executing requests of other objects. The state space of RayLang models can be 
generated. We have shown that Markovian RayLang models can be transformed into 
continuous-time Markov chains (CTMCs) and then be solved by existing solution 
techniques. 

The remainder of this paper is organized as follows. Section 2 explains the 
motivations of this work. Section 3 briefly introduces the related works. In Section 4, 
the core language of RayLang and its syntax and semantics are presented. The analysis 
of RayLang models are discussed in Section 5. Two illustrative examples are given in 
Section 6. Section 7 compares RayLang with other formalisms. And finally, Section 8 
concludes the paper. 

2. Motivations 

The main motivation of proposing a new formalism has been to provide an object-
oriented language for modeling, performance evaluation and verification of stochastic 
discrete-event systems with a well-defined and easy to use syntax and semantics. The 
proposed formalism should have the basic necessary constructs in a programming 
language-like syntax (instead of using mathematical notation), which makes it easy to 
use for practitioners. Thus, the formalism will provide an effective and simple approach 
to model discrete-event systems. 

The intended formalism may also integrate model-based performance evaluation 
techniques,  model checking techniques and software engineering concepts. To model a 
discrete-event system using the new formalism, a modeler can exploit performance 
evaluation techniques based on the specified rewards using analytic solving techniques 
or discrete-event simulation. Having these features, makes the new formalism a light-
weight notation with a rigid semantics that tries to fill the gap between traditional 
formal methods and software engineering tools. 

3. Related Work 

In the literature, there has been a lot of effort to propose modeling languages for 
modeling concurrent and distributed systems. In this section, we will briefly review 
those models, which are closely related to the work presented in this paper. 

Petri nets (PNs)  [23] which have been introduced for modeling concurrent and 
distributed systems are well-known models that have graphical representation in 
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addition to the formal definitions and structures. Due to their modeling power and 
simplicity, Petri nets have been extended with several features. Stochastic extensions of 
Petri nets, such as stochastic Petri nets (SPNs)  [21], generalized stochastic Petri nets 
(GSPNs)  [2] and stochastic activity networks (SANs)  [22] are the most famous models 
used in performance and dependability evaluation of systems. 

In addition, several high-level and object-oriented extensions of Petri nets have been 
introduced to make them more appropriate and easy to use. Coloured Petri nets (CPNs) 
 [14], stochastic well-formed nets (SWNs) and language for object-oriented Petri nets 
(LOOPN)  [17], object Petri nets (OPNs)  [16] and concurrent object-oriented Petri nets 
(CO-OPN)  [6] are the most useful examples of such extensions. 

Modeling, specification and evaluation language (MOSEL)  [3] is a description 
language which depicts a network like model with a controlled flow of tokens, 
expresses the two-dimensional network structure, the token flow-control mechanisms as 
well as the routing probabilities and the stochastic delay information in a one-
dimensional textual notation. 

Maude  [18] is a language based on rewriting logic with modules use rewrite theories, 
while computation with such modules corresponds to efficient deduction by rewriting. 
Real-time Maude  [8] is a language and tool supporting the formal specification and 
analysis of real-time and hybrid systems in timed modules and timed object-oriented 
modules, which can be transformed into equivalent Maude modules. 

Classical process algebras are abstract languages used for the specification and 
design of concurrent systems. The most widely known process algebras are the calculus 
of communicating systems (CCS)  [20] and communicating sequential processes (CSP) 
 [12]. There exist several timed and stochastic extensions of process algebra with the aim 
of performance evaluation. Performance evaluation process algebra (PEPA)  [11] 
extends the classical process algebra with the capacity of assigning rates to activities to 
quantify time and uncertainty, which are described in an abstract model of a system. 

The specification languageχ  [13] which is developed as a modeling and simulation 
tool for design of concurrent systems is inspired by CSP and the guarded command 
language (GCL). Similar to CSP, the behavior of system components is described by 
processes that communicate via channels. Communication inχ is synchronous, 
unidirectional and timeless and variables are typed. 

The modeling language MoDeST  [4] reasons about stochastic timed systems based 
on the stochastic timed automata (STA) formalism by combining the features of 
probabilistic GCL (pGCL), process algebras with TCSP-like synchronization over 
common actions, and other language constructs such as urgent actions, exception 
handling and process instantiation. 

The Actor model of computation was originally proposed by Hewitt  [10] and further 
developed by Agha  [1] into a concurrent object-based model. Actors are self-contained, 
concurrently interacting entities of a distributed computing system. They communicate 
via asynchronous message passing which is fair and can be dynamically created and the 
topology of actor system can change dynamically. Reactive objects language (Rebeca) 
 [25] is an actor-based language with a formal foundation supported by a front-end tool 
for the translation of models into the input languages (e.g. PROMELA) of the existing 
modelchecking tools (e.g. SPIN). 
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4. Definitions of RayLang 

RayLang is an object-oriented stochastic modeling language for discrete-event 
systems, i.e. systems which are in a state during some time interval, after which an 
atomic event might happen that changes the state of the system immediately. RayLang 
has two different settings:   
• Non-deterministic setting. In this setting, the events occur in a nondeterministic 

manner and no timing parameter is required. The application of this setting is on 
model checking.  

• Stochastic setting. In this setting, the time parameters are specified for the events, 
which indicate the completion time of the actions related to the events (which are 
called services here). The application of this setting is on performance and 
dependability evaluation.  
 The focus in this paper is only on the stochastic setting. For this purpose, we will 

firstly present the informal definition of RayLang. Then, the syntax and formal 
definitions and behavior of the model will be presented. 

An Informal Description of RayLang 
In RayLang, a model is composed of a finite set of reactive, self-contained and 

communicating objects, which are executed concurrently. An object is instantiated from 
a class, consisting of some state variables and services. A state variable has a type (such 
as, integer, short, Boolean,etc.) which defines the values that variable can hold and 
should have an initial value. A special kind of variables are called condition variables 
that are of type Boolean. References are another kind of variables which denote object 
acquaintances and can be used for object communication purpose. 

Services model the behavior of an object change its state variables. Unlike methods in 
programming language, services have not any return value. There are two types of 
services: ordinary and immediate. Ordinary services are executed by passing an 
asynchronous message (called service request) to them. Each ordinary service has an 
unbounded buffer, identified as service queue, for arriving service requests. When a 
request at the head of a queue of an ordinary service is serviced, its service handler is 
invoked and the request message is deleted from the corresponding queue after a time 
based on the service probability distribution function (PDF). Each ordinary service 
could have a precondition which is a Boolean expression and acts as a guard for 
enabling/disabling the execution of service. If the precondition of an ordinary service is 
evaluated to true, it can be triggered by removing a request message from the top of its 
corresponding queue and results in an atomic execution of its body which cannot be 
interleaved by any other ordinary service execution. For an ordinary service, a user-
defined PDF must be specified which models the service execution time (the time that 
must be elapsed while the service is enabled until it finishes serving a request in its 
requests queue). 

On the other hand, immediate services do not have any service queue, but rather act 
like methods or functions in programming languages, i.e. when an immediate service is 
called (requested), it is executed immediately (synchronously). An immediate service 
could not have a precondition and is always enabled and can be executed immediately 
whenever it is called. Requesting an immediate service can be viewed as a synchronous 
(local or remote) method invocation. 

In a RayLang model, computation takes place by means of requesting services (a kind 
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of message passing) and the execution of services. An object can communicate and 
interact with other objects when it ``knows" their name, which are said to be their 
acquaintances. An object knows its acquaintances by having references to them. 

The Syntax of RayLang 
The Java-like syntax of RayLang classes (object templates), objects (class 

instantiations), and models (parallel composition of objects) in a BNF-like notation is 
presented in Figure 1. Note that the words in italic show terminals (such as language 
keywords, operators and identifiers). 

In each class, after declaring variables, some services will be defined. Service body 
instructions allow a probabilistic case (case) or some (remote or local, ordinary or 
immediate) service requests (servRequest), broadcast service requests (brdcstRequest), 
value assignments (assgmntStatement), conditional statements (condStatement) and 
sequential compositions. 

In service request statements, the ID of callee (object which receives the request) and 
the service name can be specified that are followed by actual parameters. If the callee is 
not specified (or keyword this is used), the caller and callee are the same which models 
a local service request. If the requested service is an ordinary service, this can be viewed 
as an asynchronous message passing that message contains the parameters passed to the 
corresponding service handler in callee which represents a request for service. This 
could be regarded as a method call (similar to conventional object-oriented 
programming languages) if the requested service is an immediate service. Sometimes, 
this can be used for object synchronization. 

 

Figure 1.The syntax of RayLang 

model   � (class)+  main  rewards 
class   � ‘class’ClassName‘{‘ (varDefinitions)? servDefinitions‘}’ 
varDefinitions  �varTypeVarName (‘,’VarName)* ‘;’ 
varType   �refVariableType | conditionVariableType | stateVariableType 
refVariableType  �ClassName 
condVariableType �‘condition’ 
stateVariableType �‘int’ | ‘short’ | ‘byte’ | ‘bool’ 
servDefinitions  � service+ 
service �(‘immediate’)? ‘service’ServiceName‘(‘(parameters)?‘)’ Dist? 
 ‘{‘ (precondition)? serviceBody‘}’ 
parameters  � parameter (‘,’ parameters )? 
parameter  �parTypeparName 
precondition  �‘precondition’ ‘:’booleanExpression 
Dist   �’:’ distributionFunction‘(‘ actualParameters‘) 
serviceBody  �caseStructre | ( statement ‘;’ )* 
caseStructute  �‘case’‘{‘ (option)+ ‘}’ 
option  �ProbValue‘:’ ( statement ‘;’ )+ 
statement  �assgmntStatement | ifStatement | serviceRequest | brdcstRequets 
   | case | varDef 
brdcstRequets  �className‘.’servName‘(‘ (actualParameters)? ‘)’ 
serviceRequest  � ((objectID | ‘this’) ‘.’ )? servName‘(‘ (actualParametes)? ‘)’ 
actualParam  � ( value | varName |‘this’)  {‘,’ ( value | varName | ‘this’) }* 
assgmntStatement �varName‘++’ | varName ‘--’ | varName‘=’ Expression 
ifStatement  �‘if’ ‘(‘ booleanExpresion ‘)’ ‘{‘statemensts‘}’ (‘else’ 
   ‘{‘statemensts‘}’ )? 

varDef   �varDefinitions 
main   �‘main’ ‘(‘ ‘)’ ‘{‘objectDef * ‘}’ 
objectDef  �classNameobjName‘(‘initializationParameters‘)’ ‘;’ 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi 
 
 

6 

Ordinary services could be exploited in broadcast service requests. A broadcast 
request statement ���������. ��	
�������(�, … , �) causes broadcasting a request 
message to the ordinary service serviceName of all objects in the model with type 
className where �, . . . , � are the parameters of the message. In this way, a request 
will be sent to an ordinary service of all objects with a special type defined in the 
model. 

A (probabilistic) case statement (case) can be used for the execution of some 
alternatives and causes one of its corresponding choices to execute probabilistically. 
Case statements can only be used in ordinary services. After defining the classes, there 
is a part for specifying model configuration (main). This part is specified with the 
keyword main followed by the definition of the model configuration which is defined as 
a finite number of objects that must be created and then run concurrently. Each class 
definition has a constructor with a name same as the class. 

When an object is defined in main, a request is sent to its constructor to create an 
object with proper parameters. This constructor must assign the initial values for all 
local (state, condition and reference) variables and could only request local ordinary 
services (immediate, remote and broadcast service requests as well as case statements 
are not allowed in constructor). The Constructor must be defined as immediate services. 
After definition of all objects in main part of a model and thus immediate execution of 
their constructors, the model will be in its initial state. 

Some non-terminals (such as expressions and parameters of services) that are not 
given in the grammar are like as in programming languages (e.g. Java). Like 
programming languages, the model uses scope rules for using identifiers. An identifier 
(of a variable) declared in a class is ``known" in all services of that class. When an 
identifier in service parameters has the same name as an identifier in the class, the 
identifier in the class is ``hidden" and could be accessed only by the keyword this. 
Because the state and reference variables in an object are private, they could not be used 
or modified in other objects. Condition variables of an object could be used as read-only 
Boolean variables via the name of its object (by using its reference) in precondition or 
statements in service body of other objects. For the sake ofeasy modeling, the modeler 
can also use local variables in the body of services which do not affect the object's local 
configurations (state variables, reference variables,etc.). As in programming languages, 
local variables are created dynamically and are used onthe execution of a service and 
after that, the value of them will be destroyed and cannot be used in the next service 
execution. 
Semantics of RayLang 

In this subsection, the semantics of RayLang is presented. The variables defined in an 
object io  are typed (integer, boolean, char, condition, reference, etc.). We skip the detail 

of variable declarations as they are irrelevant to the purposes of this paper. We assume a 
finite set Variables of variables and a domain (type) Dom(x) for any variable x. We 
write Values to denote the set of all possible values for the variables, i.e.������ =
⋃ ���(�)�∈����� !"# . The initial value of each variable must be specified in the 
constructor. An object �� (with the unique identifier i) is a tuple 
< ��, %�	
�∗, �%�	
�∗, '� > where �� is the set of variables (state variables, condition 
variables and reference variables), %�	
�∗ = ⋃ %�	
�)�*)*+  is the set of all ordinary 

services %�	
�), and �%�	
�∗ = ⋃ �%�	
�,�*,*-  is the set of all immediate services 
�%�	
�, of object .� where J and K are the number of ordinary and immediate services, 
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respectively and j and k are called service identifier of the ordinary service %�	
�) and 

immediate service �%�	
�,. Each ordinary service %�	
�) is a tuple < /	�, ���0, 1�23 > 

where the %�	
�) . /	� is the precondition expression of the service %�	
�) (as described 
in syntax section), ���0(. ) is general probability distribution function which may have 
zero or more parameters and describes the time that the service needs to be executed 
while it is enabled, and 1�23 is a set of RayLang instructions. For an ordinary service, 
if the precondition is not specified explicitly, it will always be evaluated as true. Each 
ordinary service in an object has a queue which can be defined as a finite sequence of 
requests for that service. The service request queue of an object .�, defined by '�, is 
like a multi-queue consisting of all the queues of its ordinary services and including all 
the requests that have been sent to the ordinary services and have not been serviced yet. 
'∗ denotes the set of unbounded FIFO multi-queues that contains message requests of 
all (ordinary) services of all defined objects, i.e.'∗ = ⋃ '�∀�∈5  which '� is the 
unbounded FIFO multi-queue corresponding to services request queue of object .�. 
Let's '� be a set of all unbounded FIFO queues '� = ⋃ 6�)�*)*+ = {6��, … , 6�+}) where 

each queue 6�) contains requests of the ordinary service %�	
�) in object .�. For mapping 
each ordinary service of an object to one of these queues, function queue, 
6����: %�	
�) → 6�), is defined such that 6�) ∈ '�.For a model Ω, there exists a universal 
set I of all objects that are engaged in the model and |=| denotes the number of all 
defined objects in the system. 
The state space of the model (Γ) is defined as:  

Γ = ? (Γ� × Q�)
�*B*|5|

 

 where Γ�: ��	��C��� → ������ is the local state of the object io , an evaluation 

function that maps each local variable to a value of the appropriate type (∀� ∈
��	��C���, Γ� ∈ ���(�)), and Q� is the unbounded FIFO multi-queue of service 
requests for the object O� as mentioned before. However, all of these state need not be 
actually reachable. 

Now, we can define the behavior of a model Ω as a labeled transition system 
< Γ, E,→, FG > where:   
• Γ = ∏ (Γ� × Q�)�*B*|5|  is the set of states as said earlier where ΓB is the set of possible 

values for internal object's (state, condition and reference) variables and QB is an 
unbounded FIFO multi-queue of the service request in the object OB,  

• E = ⋃ %�	
�)�*B*|5|  is the set of labels that are all possible ordinary service request 

that can be executed in Ω , where %�	
�) ∈ E means the execution of a request for 

service %�	
�) in object .�,  
• →⊆ Γ × E × Γ is the set of transition relations on Γ where 21 γγ l  iff F�, FJ ∈ Γ  and 

� = %�	
�) ∈ E is an enabled transition which means ∃L: 	 = ℎ��2(F�. 6�)), r is the 

request for the ordinary service %�	
�) on head of the queue and the precondition 

%�	
�). /	� of the service is evaluated as true and FJ results from F� by l  as follows:   
� Performing the actual transition from the state 1γ  to the state2γ  (by the service 

%�	
�)) needs time 0 which depends on the probability distribution function of 
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the service (%�	
�). ���0) in the state 1γ  and the real execution will be completed 
when time 0 is elapsed in which the service remains enabled. As we assume that 
the weight and the priority of all services are equal in the time 0, if there exist 
multiple enabled services that are scheduled for execution, one of them is chosen 
for execution with equal probability.  

� The request message is removed from the head of F�. 6�), i.e.FJ. 6�) =
0���(F�. 6�)). This causes assigning the values of the formal parameters to the 
real parameters, too.  

� An ordinary service execution that is caused by request 	 leads the execution of 
service %�	
�) of the object io  as a sequence of instructions as an atomic 

operation as follows:   
o If the ordinary service is a multi-option service (i.e. the service has a 

probabilistic case statement in its top level of statements), each case option 
(internal statements of the option) leads in an atomic operation with the 
probability  defined as the option's probability. If not, the execution of the 
service leads to unique outcome state,  

o The execution of an ordinary statement (e.g. assignment statements, 
conditional statements, etc.) in %�	
�) may change the value of some 
variables in object io ,  

o The execution of each statement: 
((0ℎ��|�CL��0=�)? . ��	
����(��0���/�	���? ) 

where servName is an ordinary service, changes the service request 
queue 6)O

�P  where �P is the object identifier of objectID and is same as � 
when local service request (without specifying any objectID or with 
keyword this) is used and 6)O

�P ∈ '�P is the queue corresponding to 

ordinary service servName when L′ is the service identifier, 
o Execution of each ordinary service broadcast request statement 

(className.servName(actualParams?)), changes all service request queues 
6)O
�P  where �P is object identifier of all objects with type className, �P ∈

{0|1 ≤ 0 ≤ |=|⋀���(�U) = ���������}, and for each �P, LP will be the 
service identifier of servName in object i'o . Immediate services could not be 

used in broadcast requests,  
o Execution of each immediate service request statement  

((0ℎ��|�CL��0=�). ��	
����(��0���/�	���? ) 
(where the corresponding servName is an immediate service), causes the 
execution of �%�	
�P

)P (like a method call in programming language) where �′ 
is the object identifier of objectID and is same as � when local service request 
(without specifying any objectID or with keyword this) is used and this 
causes atomic execution of some statements, respectively.   

• FG is the initial state of the model. Variables must be initialized to their default 
values according to their types in constructors, and 'G is defined such that in the 
beginning of the model, for all �, constructor of object .� is executed. It is obvious 
that FG ∈ Γ. 
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5. Analysis of RayLang Models 

RayLang is a language for modeling discrete-event systems. The state space of 
RayLang models can be generated by model execution in which every ordinary service 
can be viewed as an event and the value of object variables in addition to the content of 
service queues represent the state of the model (as mentioned earlier). The state space of 
the model can be considered as a labeled transition system which could be used in the 
analysis process. The initial state of the model is the situation where only the 
constructors of all objects have been executed. In each state, some ordinary services 
may be enabled, i.e. there exist at least one request in their request queue and their 
preconditions evaluated to true. The execution of each enabled ordinary service causes a 
transition to another state (if the modeler uses probabilistic case statement in a service, 
the execution of the service results in probabilistic transitions into different states). 
Generating the state space can be done in a depth-first or breadth-first order. Using the 
defined semantics, if the state space of the model starting from the initial state is finite, 
we can define the reachability graph as a labeled directed graph based on the 
reachability set (the set of all reachable states). This reachability graph can be used for 
model checking. If all ordinary services of a model have exponential PDFs, the 
reachability graph can also be transformed into a continues-time Markov-chain 
(CTMC), which can be used for analytic solution of the model. 

Analytical approaches usually suffer from the state space explosion problem. When 
the state space of a model is very large or larger than to be handled, discrete-event 
simulation techniques can be used to analyze RayLang models. A simulation path is a 
(random) path between some states starting from the initial state. Each event in the path 
is the (atomic) execution of an enabled ordinary service. 

Reward Specification in RayLang Models 
For evaluation of a RayLang model, the modeler must define some reward variables 

which are specific measures of system behavior based on his/her interests. Rewards that 
are supported here are based on  [19]  which defines a unified approach to the 
specification of performance, dependability and performability. A reward variable is a 
set of one or more functions (with type double) which return reward value and are 
defined on a state or transition between states in the model, i.e. there are two types of 
reward functions: impulse reward functions and rate reward functions that specify 
impulse and rate rewards, respectively. Rate rewards are used to define rewards based 
on the time in each state and the corresponding function defines the measurement that 
the reward should evaluate. The impulse reward functions that define impulse rewards 
are evaluated when the specified ordinary service of an object in the model is executed. 
For each reward, type of rewards must be defined which determines when, in system 
time, the reward functions must be evaluated and includes steadyState, instanceOfTime, 
intervalOfTime and averagedIntervalOfTime as presented in the syntax of reward 
specification (Figure 2). 
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Figure 2.The syntax of the reward specification in RayLang models 

Implementation of RayLang in PDETool 
PDETool is a multi-formalism modeling tool which provides features for 

construction and translation of models into the XML-based input language of an SDES-
based simulation engine, called SimGine  [15] . PDETool is easily extensible to support 
a wide range of graphical and non-graphical formalisms. Furthermore, it facilitates the 
construction, animation and analysis of models. A formalism can be implemented in 
PDETool if a mapping can be provided to the input language of SimGine. 

We have implemented RayLang in PDETool by developing a translator, which 
converts RayLang models into the input language of SimGine. It makes modelers 
enable to evaluate RayLang models using discrete-event simulation technique. If all 
events' delay functions are exponentially distributed, the tool can also be used to 
analytically solve the model. In this direction, the model is transformed into a CTMC by 
generating reduced reachability graph, which can be used in both transient and steady-
state analysis based on the specified reward variables. 

The translation of RayLang model into the input language of SimGine is performed 
by a two passes LL(K) parser. In a nutshell, this process is as follows. Objects' states and 
services are flattened in the first step of translation. For each object, internal state-
variables will be translated into the model's state variable. Each ordinary service is 
mapped into an event in addition to a queue (as a state-variable) which contains the 
service's requests. All immediate services are translated into auxiliary functions, which 
can be called during model execution and has a special parameter objectID to determine 
the object in which the service is called. 

6. Illustrative Examples 

In this section, we present two examples to illustrate the syntax and semantics of 
RayLang. 

Example 1. A Client-Server Model 
Consider a client-server system, presented in Figure 3, which has a server that serves 

some clients. Each client sends a request to the server in the service sendReq (with 
exponential rate 1) and waits for the server to respond it. The server has a queue 
(corresponding to a service saysrvReq) contains all received requests that is not served 
yet. The process of requesting and generating a proper response take a time which is 
distributed exponentially. The generated response sent to the client, which generates the 
corresponding request and after that, the client rcvRsp is executed after 3.0 time units. 
   

rewards   �’rewards’‘{‘(reward)* ‘}’ 
reward    �rewardID‘;’rewardType‘{‘rateReward? 

(impulseReward)*  ‘}’ 
impulseReward �‘-’ ‘execute’‘(‘ObjID‘.’OrdinaryService ‘)’ ‘{‘ Body‘}’ 

rateReward  �’-‘ ‘if’  ‘{‘ booleanExpresion? ‘}’ ‘{‘ Body ‘}’ 
rewardType  �steadyState | instanceOfTime|intervalOfTime|
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class Client{ 

 Server theServer; 

 immediate service Client(Server theServer){ 

  this.theServer=theServer; 

  arrive(); 

 } 

 service arrive():Exp(1){ 

  theServer.enterInQueue(); 

    arrive(); 

 } 

} 

class Server{ 

 immediate service Server(){ } 

 service enterInQueue():Exp(5){ 

  serv(); 

} 

 immediate service serv(){} 

} 

main(){ 

 Server s();  Client c(s); 

} 

rewards{ 

 numberOfWaitedCustomers:steadyState{ 

  -if(true){return s.enterInQueue#;} 

 } 
} 

Figure 3.A client-server model in RayLang 

There are two classes, Client and Server, which are templates of the buffer and some 
clients. Each client has a reference s to the object server for interacting with it. The 
server interacts with its clients via a reference which is passed to the service rcvReq by 
the parameter c with of the type of client. 

Objects' definition is followed by classes. Each object has a type and proper 
initialization parameters, which are passed to the constructor of that object. Here, a 
server and four clients are defined. After initializing all objects by executing their 
constructors, the model would be in its initial state. The impulse reward variable 
reward1 is specified to investigate how many requests are served between time 10 and 
20 in the server. 

Example 2.A Readers and Writers Model 
As the second example, we modify the last example to model probabilistic cases and 

mutual exclusion. Assume that there exist a buffer and some customers that access to 
the buffer for reading from/writing to it. Multiple readers can read from the buffer 
simultaneously but a writer could write into it only if there is no readers or writers (any 
customers generally). Figure 4 shows a RayLang model for this problem. 

There are two classes, buffer and customer, which are templates of the buffer and 
some customers. The state variables readers and writer in object buffer represent the 
number of simultaneous readers and writer in the buffer (writer is always equal to zero 
or one). Condition variables customerExist and writerExist will be true if any customers 
(readers or writer) and any writer exist in the buffer, respectively. 

At the beginning, each object customer will have a request for executing accessBuffer 
to access the buffer. This will cause to try reading from/writing to the buffer with 
probability 0.9/0.1 which is done by using a probabilistic case statement. Generating 
such a request is performed during the time exponentially distributed with rate 1. The 
object buffer serves the requests of customers. A service startRead can be executed if 
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the buffer is not performing a write request and a service startWrite can be started only 
if the buffer is not performing any other (read/write) request. Executing a service 
startRead/startWrite and finishRead/finishWrite show that the buffer starts to perform a 
read/write request and finishes performing a read/write request, respectively. Start 
process of the request takes place as early as possible (the PDF of the service is 
deterministic with the parameter zero and it will be done whenever it is enabled). The 
immediate service getResult in each customer object is performed when the request of 
the object in the buffer is served and change the state of customer from waiting into 
active. 

In reward specification part, avgNR is defined as a rate reward which is intended to 
evaluate the steady state average number of requests exist for reading in request queue 
of service startRead in object b. It uses operator #  which means the number of requests 
in the service queue. This property can also be evaluated by reward avgNR2 which 
examine the property using variable readers in object b that explicitly models (counts) 
the number of read requests. The average number of the write operation, the average 
number of requests waiting for a read operation and write operation can be evaluated by 
rewards avgNW, avgNWR and avgNWW, respectively. The simulation results with 99% 
of confidence level within the confidence interval 0.1 compared to the analytic results 
(both obtained using PDETool) are presented in Table 1. 
 

class customer{ 

 buffer b; 

 immediate service customer(buffer b){ 

   this.b=b; 

   accessbuffer(); 

 } 

 service accessbuffer():Exp(2){ 

  case{ 

   0.9: b.startread(this); 

   0.1: b.startwrite(this); 

  } 

 } 

 immediate service release(){ 

  accessbuffer(); 

 } 

} 

 

class buffer{ 

 int readers, writer; 

 condition icustomers, iwriter; 

 immediate service buffer (){ 

  readers=0; 

  writer=0;  

  icustomers=false; 

  iwriter=false; 

 } 

 service startread(customer 

c):Deterministic(0){ 

  precondition: not iwriter; 

  readers++; 

  icustomers=true; 

  finishread(c); 

 } 

} 

 service startwrite(customer c):Deterministic(0){ 

  precondition: not icustomers; 

  writer++; 

  iwriter=true; 

  icustomers=true; 

  finishwrite(c); 

 } 

 service finishread(customer c):Exp(1){ 

  readers--; 

  if (readers==0){icustomers=false;} 

  c.release(); 

 } 

 service finishwrite(customer c):Exp(1){ 

  writer--; 

  iwriter=false; 

  icustomers=false; 

  c.release(); 

 } 

} 

 

main(){ 

 buffer b(); 

 customer c1(b),c2(b),c3(b),c4(b); 

} 

 

rewards{ 

 avgNR:steadyState {  -if(true){return b.finishread#;} 

} 

 avgNW:steadyState {  -if(true){return 

b.finishwrite#;} } 

 avgNR2:steadyState {  -if(true){return b.readers;} } 

 avgNW2:steadyState {  -if(true){return b.writer;}} 

 avgNWR:steadyState {  -if(true){return 

b.startread#;} } 

 avgNWW:steadyState { -if(true){return 

b.startwrite#;}  

} 

Figure 4.A Readers-Writers model in RayLang 
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Table 1.Evaluation of rewards in Readers-Writers modelusing PDETool 

Reward ID   Simulation result   Variance   Analytic result 
avgNR  2.5715   0.0274   2.5344  
avgNW  0.0978   0.0067   0.0998 

avgNR2   2.5715   0.0274   2.5344 
avgNW2   0.0978   0.0067   0.0998 
avgNRW  0.1622   0.0133   0.0164 
avgNWW  0.6618   0.0158   0.7060 

7. Comparisons 

In contrast to most modeling formalisms, such as Petri nets and process algebras, in 
which the modelers deal with some low-level primitives (e.g. transitions, places, tokens 
and channels etc.), in RayLang, the important primitives such as objects, variables and 
services are high-level. This makes RayLang appropriate for modeling systems with a 
proper abstraction level. Now, we compare RayLang with Rebeca, which is the most 
similar formalism. Then, we compare RayLang, with some other existing models. 

RayLang vs. Rebeca 
As mentioned in Section 2, Rebeca is an actor-based language for modeling 

concurrent and distributed systems. If we ignore stochastic (timing) concept of 
RayLang, it has some conceptual and syntactic similarity with Rebeca. Even, one may 
think RayLang as an (stochastic) extension of Rebeca with deep modifications. In 
RayLang, we have objects, services and references instead of rebecs, massage servers 
and known objects in Rebeca, respectively. The major differences between these two 
languages can be explained as follows:   

• In Rebeca, each rebec has its own message queue and its internal message servers 
and all requests for the rebec come into this queue. For the request on the head of the 
queue, the rebec executes the proper message server. But in RayLang as an object-
oriented modeling language, each service can be considered as an active thread 
which has its own request queue that contains the requests sent for the corresponding 
service.  

• RayLang has two types of services: ordinary services and immediate services. In 
contrast of Rebeca in which all communications take place by asynchronous message 
passing and a message server may be executed when a request exists on top of the 
rebec's queue, in RayLang, ordinary services could be executed if there exists a 
request in its request queue and its precondition is enabled. Immediate services act 
like (synchronous remote or local) method calls in programming language and 
execute immediately whenever they are called.  

• RayLang supports additional useful modeling facilities (like broadcast service 
requests and dynamic objects relationship) which may help modeling realistic 
systems like service-oriented systems and computer networks. 

Comparison with Other Formalisms 
A comparison between RayLang and other existing related formalisms is presented in 

Table 2. 
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Table 2.A Comparison of RayLang with Other Related Models 

Criteria 
Model 

χ 
[13] 

SPNL 
[26] 

OSAN 
[27]  

LOOPN 
[17] 

MoDeST 
[4] 

CSP/CCS 
[12][20] 

Rebeca  
[25] RayLang 

Similarity with 
programming 
languages  

× × × × �   �  � 

Object-
based/oriented  

� � � � � × � � 

Synch./asynch. 
comm. 

�/× -/- -/-  -/- -/- ×/�  �/� �/�  

Having non-
deterministic 
extension  

� × � × � � � � 

Having probabilistic 
extension 

× × �  × � × × � 

Having 
timed/stochastic 
extension 

� � � � � × × � 

Model checking 
tool support  

� × � × × � � � 

Performance 
evaluation tool 
support  

� � � � � × × � 

8. Conclusions 

In this paper, we introduced an object-oriented modeling language called RayLang 
for stochastic discrete-event systems and formally defined its syntax and semantics. 
Object-oriented modeling can help modelers through encapsulated constructs. On the 
other hand, model-based performance and dependability evaluation and formal 
verification can be used to design more dependable systems. In RayLang, there are 
active objects (which are instantiated from classes) run concurrently and communicate 
with each other by requesting services. Each object has its internal variables and thus its 
internal states. After defining classes and objects, the modeler can evaluate interested 
measures specified by some reward variables. 

The stochastic setting of RayLang models, which we discussed in this paper, can be 
used for performance and dependability evaluation of stochastic discrete-event systems. 
The non-deterministic setting of the language can be used for modeling and verification 
of discrete-event systems via model checking techniques of the model against some 
specified properties. 

We have implemented RayLang within the PDETool by developing a translator 
which maps RayLang models into the input language of the tool's simulation engine, 
called SimGine. Numerical analysis of RayLang models (where the model satisfies 
Markovian properties) can be exploited by generating the state space of the model in the 
tool and solving the obtained CTMC. 

Currently, we allow simple data types. More object-oriented properties (e.g. 
inheritance) and supporting rich data types can be added to the language in future 
extensions of RayLang. 
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