
Arc
hive

 of
 S

ID

1

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 3, No. 4, November 2012), Pages: 1-16
www.jacr.iausari.ac.ir

Modeling and Evaluation of Stochastic Discrete-Event

Systems with RayLang Formalism

Ali Khalili, Mohammad Abdollahi Azgomi�

School of Computer Engineering,
Iran University of Science and Technology, Tehran, Iran

Khalili.ir@gmail.com; azgomi@iust.ac.ir

Received: 2012/07/24; Accepted: 2012/09/13

Abstract
In recent years, formal methods have been used as an important tool for

performance evaluation and verification of a wide range of systems. In the view
points of engineers and practitioners, however, there are still some major difficulties
in using formal methods. In this paper, we introduce a new formal modeling
language to fill the gaps between object-oriented programming languages (OOPLs)
used by engineers and the formalisms used for evaluation and verification purposes.
We propose the syntax and semantics of a new object-oriented modeling language
for discrete-event systems called RayLang. We have designed the syntax of RayLang
similar to OOPLs. In RayLang models, objects that are instantiated from classes,
run concurrently and can communicate with each other by requesting services.
Every object in RayLang models has some internal state variables and some service
handlers for executing the requests of other objects. We have shown that Markovian
RayLang models can be transformed into continuous-time Markov chains (CTMCs)
and then can be solved by existing solution techniques. For modeling, discrete-event
simulation and analytic solution of RayLang models, we have implemented these
models in the PDETool framework.

Keywords: Formal Modeling Language, Object-Oriented Modeling, Discrete-Event

Systems, Performance and Dependability Evaluation

1. Introduction

In spite of the recent successful application of formal methods, there are still clear
needs of further research to develop and design new formalisms. In many notations, it is
not easy to understand the meaning and properties of the symbols and how they may
and may not be manipulated, and to gain fluency in using them, to express new
problems, solutions and proofs [5]. The major problem is the difference in the
abstraction level and the existing gap between the programming languages used by
programmers and software engineers and the modeling languages used for performance
evaluation and verification purposes. Most of the existing formalisms cannot be easily
used by software engineers. On the other hand, languages used by software engineers
cannot be used directly for performance and dependability evaluation purpose and are
too informal or too heavy to be analyzed by a verification tool [24].

The natural idea behind the object-oriented paradigm is to consider the system we
intend to model, simulate or develop, as a collection of active objects which collaborate

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

2

with each other. The term active object denotes an autonomous entity equipped with its
own behavior and some internal data which corresponds to the state of object and of
course may change during its lifetime [9].

The aim has been to introduce a new formal modeling language to fill the gaps
between object-oriented programming languages (OOPLs) used by engineers and the
formalisms used for performance evaluation and verification purposes.

This paper presents the syntax and semantics of a new object-oriented modeling
language for discrete-event systems called RayLang. Based on the above aim, we have
designed the syntax of RayLang similar to OOPLs. In RayLang, objects that are
instantiated from classes, run concurrently and can communicate with each other by
requesting services. RayLang has a well-defined formal semantics and incorporates
several ingredients of programming languages and light-weight notations. Every object
in a RayLang model has some internal state variables and some service handlers for
executing requests of other objects. The state space of RayLang models can be
generated. We have shown that Markovian RayLang models can be transformed into
continuous-time Markov chains (CTMCs) and then be solved by existing solution
techniques.

The remainder of this paper is organized as follows. Section 2 explains the
motivations of this work. Section 3 briefly introduces the related works. In Section 4,
the core language of RayLang and its syntax and semantics are presented. The analysis
of RayLang models are discussed in Section 5. Two illustrative examples are given in
Section 6. Section 7 compares RayLang with other formalisms. And finally, Section 8
concludes the paper.

2. Motivations

The main motivation of proposing a new formalism has been to provide an object-
oriented language for modeling, performance evaluation and verification of stochastic
discrete-event systems with a well-defined and easy to use syntax and semantics. The
proposed formalism should have the basic necessary constructs in a programming
language-like syntax (instead of using mathematical notation), which makes it easy to
use for practitioners. Thus, the formalism will provide an effective and simple approach
to model discrete-event systems.

The intended formalism may also integrate model-based performance evaluation
techniques, model checking techniques and software engineering concepts. To model a
discrete-event system using the new formalism, a modeler can exploit performance
evaluation techniques based on the specified rewards using analytic solving techniques
or discrete-event simulation. Having these features, makes the new formalism a light-
weight notation with a rigid semantics that tries to fill the gap between traditional
formal methods and software engineering tools.

3. Related Work

In the literature, there has been a lot of effort to propose modeling languages for
modeling concurrent and distributed systems. In this section, we will briefly review
those models, which are closely related to the work presented in this paper.

Petri nets (PNs) [23] which have been introduced for modeling concurrent and
distributed systems are well-known models that have graphical representation in

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

3

addition to the formal definitions and structures. Due to their modeling power and
simplicity, Petri nets have been extended with several features. Stochastic extensions of
Petri nets, such as stochastic Petri nets (SPNs) [21], generalized stochastic Petri nets
(GSPNs) [2] and stochastic activity networks (SANs) [22] are the most famous models
used in performance and dependability evaluation of systems.

In addition, several high-level and object-oriented extensions of Petri nets have been
introduced to make them more appropriate and easy to use. Coloured Petri nets (CPNs)
 [14], stochastic well-formed nets (SWNs) and language for object-oriented Petri nets
(LOOPN) [17], object Petri nets (OPNs) [16] and concurrent object-oriented Petri nets
(CO-OPN) [6] are the most useful examples of such extensions.

Modeling, specification and evaluation language (MOSEL) [3] is a description
language which depicts a network like model with a controlled flow of tokens,
expresses the two-dimensional network structure, the token flow-control mechanisms as
well as the routing probabilities and the stochastic delay information in a one-
dimensional textual notation.

Maude [18] is a language based on rewriting logic with modules use rewrite theories,
while computation with such modules corresponds to efficient deduction by rewriting.
Real-time Maude [8] is a language and tool supporting the formal specification and
analysis of real-time and hybrid systems in timed modules and timed object-oriented
modules, which can be transformed into equivalent Maude modules.

Classical process algebras are abstract languages used for the specification and
design of concurrent systems. The most widely known process algebras are the calculus
of communicating systems (CCS) [20] and communicating sequential processes (CSP)
 [12]. There exist several timed and stochastic extensions of process algebra with the aim
of performance evaluation. Performance evaluation process algebra (PEPA) [11]
extends the classical process algebra with the capacity of assigning rates to activities to
quantify time and uncertainty, which are described in an abstract model of a system.

The specification languageχ [13] which is developed as a modeling and simulation
tool for design of concurrent systems is inspired by CSP and the guarded command
language (GCL). Similar to CSP, the behavior of system components is described by
processes that communicate via channels. Communication inχ is synchronous,
unidirectional and timeless and variables are typed.

The modeling language MoDeST [4] reasons about stochastic timed systems based
on the stochastic timed automata (STA) formalism by combining the features of
probabilistic GCL (pGCL), process algebras with TCSP-like synchronization over
common actions, and other language constructs such as urgent actions, exception
handling and process instantiation.

The Actor model of computation was originally proposed by Hewitt [10] and further
developed by Agha [1] into a concurrent object-based model. Actors are self-contained,
concurrently interacting entities of a distributed computing system. They communicate
via asynchronous message passing which is fair and can be dynamically created and the
topology of actor system can change dynamically. Reactive objects language (Rebeca)
 [25] is an actor-based language with a formal foundation supported by a front-end tool
for the translation of models into the input languages (e.g. PROMELA) of the existing
modelchecking tools (e.g. SPIN).

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

4

4. Definitions of RayLang

RayLang is an object-oriented stochastic modeling language for discrete-event
systems, i.e. systems which are in a state during some time interval, after which an
atomic event might happen that changes the state of the system immediately. RayLang
has two different settings:
• Non-deterministic setting. In this setting, the events occur in a nondeterministic

manner and no timing parameter is required. The application of this setting is on
model checking.

• Stochastic setting. In this setting, the time parameters are specified for the events,
which indicate the completion time of the actions related to the events (which are
called services here). The application of this setting is on performance and
dependability evaluation.
 The focus in this paper is only on the stochastic setting. For this purpose, we will

firstly present the informal definition of RayLang. Then, the syntax and formal
definitions and behavior of the model will be presented.

An Informal Description of RayLang
In RayLang, a model is composed of a finite set of reactive, self-contained and

communicating objects, which are executed concurrently. An object is instantiated from
a class, consisting of some state variables and services. A state variable has a type (such
as, integer, short, Boolean,etc.) which defines the values that variable can hold and
should have an initial value. A special kind of variables are called condition variables
that are of type Boolean. References are another kind of variables which denote object
acquaintances and can be used for object communication purpose.

Services model the behavior of an object change its state variables. Unlike methods in
programming language, services have not any return value. There are two types of
services: ordinary and immediate. Ordinary services are executed by passing an
asynchronous message (called service request) to them. Each ordinary service has an
unbounded buffer, identified as service queue, for arriving service requests. When a
request at the head of a queue of an ordinary service is serviced, its service handler is
invoked and the request message is deleted from the corresponding queue after a time
based on the service probability distribution function (PDF). Each ordinary service
could have a precondition which is a Boolean expression and acts as a guard for
enabling/disabling the execution of service. If the precondition of an ordinary service is
evaluated to true, it can be triggered by removing a request message from the top of its
corresponding queue and results in an atomic execution of its body which cannot be
interleaved by any other ordinary service execution. For an ordinary service, a user-
defined PDF must be specified which models the service execution time (the time that
must be elapsed while the service is enabled until it finishes serving a request in its
requests queue).

On the other hand, immediate services do not have any service queue, but rather act
like methods or functions in programming languages, i.e. when an immediate service is
called (requested), it is executed immediately (synchronously). An immediate service
could not have a precondition and is always enabled and can be executed immediately
whenever it is called. Requesting an immediate service can be viewed as a synchronous
(local or remote) method invocation.

In a RayLang model, computation takes place by means of requesting services (a kind

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

5

of message passing) and the execution of services. An object can communicate and
interact with other objects when it ``knows" their name, which are said to be their
acquaintances. An object knows its acquaintances by having references to them.

The Syntax of RayLang
The Java-like syntax of RayLang classes (object templates), objects (class

instantiations), and models (parallel composition of objects) in a BNF-like notation is
presented in Figure 1. Note that the words in italic show terminals (such as language
keywords, operators and identifiers).

In each class, after declaring variables, some services will be defined. Service body
instructions allow a probabilistic case (case) or some (remote or local, ordinary or
immediate) service requests (servRequest), broadcast service requests (brdcstRequest),
value assignments (assgmntStatement), conditional statements (condStatement) and
sequential compositions.

In service request statements, the ID of callee (object which receives the request) and
the service name can be specified that are followed by actual parameters. If the callee is
not specified (or keyword this is used), the caller and callee are the same which models
a local service request. If the requested service is an ordinary service, this can be viewed
as an asynchronous message passing that message contains the parameters passed to the
corresponding service handler in callee which represents a request for service. This
could be regarded as a method call (similar to conventional object-oriented
programming languages) if the requested service is an immediate service. Sometimes,
this can be used for object synchronization.

Figure 1.The syntax of RayLang

model � (class)+ main rewards
class � ‘class’ClassName‘{‘ (varDefinitions)? servDefinitions‘}’
varDefinitions �varTypeVarName (‘,’VarName)* ‘;’
varType �refVariableType | conditionVariableType | stateVariableType
refVariableType �ClassName
condVariableType �‘condition’
stateVariableType �‘int’ | ‘short’ | ‘byte’ | ‘bool’
servDefinitions � service+
service �(‘immediate’)? ‘service’ServiceName‘(‘(parameters)?‘)’ Dist?
 ‘{‘ (precondition)? serviceBody‘}’
parameters � parameter (‘,’ parameters)?
parameter �parTypeparName
precondition �‘precondition’ ‘:’booleanExpression
Dist �’:’ distributionFunction‘(‘ actualParameters‘)
serviceBody �caseStructre | (statement ‘;’)*
caseStructute �‘case’‘{‘ (option)+ ‘}’
option �ProbValue‘:’ (statement ‘;’)+
statement �assgmntStatement | ifStatement | serviceRequest | brdcstRequets
 | case | varDef
brdcstRequets �className‘.’servName‘(‘ (actualParameters)? ‘)’
serviceRequest � ((objectID | ‘this’) ‘.’)? servName‘(‘ (actualParametes)? ‘)’
actualParam � (value | varName |‘this’) {‘,’ (value | varName | ‘this’) }*
assgmntStatement �varName‘++’ | varName ‘--’ | varName‘=’ Expression
ifStatement �‘if’ ‘(‘ booleanExpresion ‘)’ ‘{‘statemensts‘}’ (‘else’
 ‘{‘statemensts‘}’)?

varDef �varDefinitions
main �‘main’ ‘(‘ ‘)’ ‘{‘objectDef * ‘}’
objectDef �classNameobjName‘(‘initializationParameters‘)’ ‘;’

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

6

Ordinary services could be exploited in broadcast service requests. A broadcast
request statement ���������. ��	
�������(�, … , �) causes broadcasting a request
message to the ordinary service serviceName of all objects in the model with type
className where �, . . . , � are the parameters of the message. In this way, a request
will be sent to an ordinary service of all objects with a special type defined in the
model.

A (probabilistic) case statement (case) can be used for the execution of some
alternatives and causes one of its corresponding choices to execute probabilistically.
Case statements can only be used in ordinary services. After defining the classes, there
is a part for specifying model configuration (main). This part is specified with the
keyword main followed by the definition of the model configuration which is defined as
a finite number of objects that must be created and then run concurrently. Each class
definition has a constructor with a name same as the class.

When an object is defined in main, a request is sent to its constructor to create an
object with proper parameters. This constructor must assign the initial values for all
local (state, condition and reference) variables and could only request local ordinary
services (immediate, remote and broadcast service requests as well as case statements
are not allowed in constructor). The Constructor must be defined as immediate services.
After definition of all objects in main part of a model and thus immediate execution of
their constructors, the model will be in its initial state.

Some non-terminals (such as expressions and parameters of services) that are not
given in the grammar are like as in programming languages (e.g. Java). Like
programming languages, the model uses scope rules for using identifiers. An identifier
(of a variable) declared in a class is ``known" in all services of that class. When an
identifier in service parameters has the same name as an identifier in the class, the
identifier in the class is ``hidden" and could be accessed only by the keyword this.
Because the state and reference variables in an object are private, they could not be used
or modified in other objects. Condition variables of an object could be used as read-only
Boolean variables via the name of its object (by using its reference) in precondition or
statements in service body of other objects. For the sake ofeasy modeling, the modeler
can also use local variables in the body of services which do not affect the object's local
configurations (state variables, reference variables,etc.). As in programming languages,
local variables are created dynamically and are used onthe execution of a service and
after that, the value of them will be destroyed and cannot be used in the next service
execution.
Semantics of RayLang

In this subsection, the semantics of RayLang is presented. The variables defined in an
object io are typed (integer, boolean, char, condition, reference, etc.). We skip the detail

of variable declarations as they are irrelevant to the purposes of this paper. We assume a
finite set Variables of variables and a domain (type) Dom(x) for any variable x. We
write Values to denote the set of all possible values for the variables, i.e.������ =
⋃ ���(�)�∈����� !"# . The initial value of each variable must be specified in the
constructor. An object �� (with the unique identifier i) is a tuple
< ��, %�	
�∗, �%�	
�∗, '� > where �� is the set of variables (state variables, condition
variables and reference variables), %�	
�∗ = ⋃ %�	
�)�*)*+ is the set of all ordinary

services %�	
�), and �%�	
�∗ = ⋃ �%�	
�,�*,*- is the set of all immediate services
�%�	
�, of object .� where J and K are the number of ordinary and immediate services,

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

7

respectively and j and k are called service identifier of the ordinary service %�	
�) and

immediate service �%�	
�,. Each ordinary service %�	
�) is a tuple < /	�, ���0, 1�23 >

where the %�	
�) . /	� is the precondition expression of the service %�	
�) (as described
in syntax section), ���0(.) is general probability distribution function which may have
zero or more parameters and describes the time that the service needs to be executed
while it is enabled, and 1�23 is a set of RayLang instructions. For an ordinary service,
if the precondition is not specified explicitly, it will always be evaluated as true. Each
ordinary service in an object has a queue which can be defined as a finite sequence of
requests for that service. The service request queue of an object .�, defined by '�, is
like a multi-queue consisting of all the queues of its ordinary services and including all
the requests that have been sent to the ordinary services and have not been serviced yet.
'∗ denotes the set of unbounded FIFO multi-queues that contains message requests of
all (ordinary) services of all defined objects, i.e.'∗ = ⋃ '�∀�∈5 which '� is the
unbounded FIFO multi-queue corresponding to services request queue of object .�.
Let's '� be a set of all unbounded FIFO queues '� = ⋃ 6�)�*)*+ = {6��, … , 6�+}) where

each queue 6�) contains requests of the ordinary service %�	
�) in object .�. For mapping
each ordinary service of an object to one of these queues, function queue,
6����: %�	
�) → 6�), is defined such that 6�) ∈ '�.For a model Ω, there exists a universal
set I of all objects that are engaged in the model and |=| denotes the number of all
defined objects in the system.
The state space of the model (Γ) is defined as:

Γ = ? (Γ� × Q�)
�*B*|5|

 where Γ�: ��	��C��� → ������ is the local state of the object io , an evaluation

function that maps each local variable to a value of the appropriate type (∀� ∈
��	��C���, Γ� ∈ ���(�)), and Q� is the unbounded FIFO multi-queue of service
requests for the object O� as mentioned before. However, all of these state need not be
actually reachable.

Now, we can define the behavior of a model Ω as a labeled transition system
< Γ, E,→, FG > where:
• Γ = ∏ (Γ� × Q�)�*B*|5| is the set of states as said earlier where ΓB is the set of possible

values for internal object's (state, condition and reference) variables and QB is an
unbounded FIFO multi-queue of the service request in the object OB,

• E = ⋃ %�	
�)�*B*|5| is the set of labels that are all possible ordinary service request

that can be executed in Ω , where %�	
�) ∈ E means the execution of a request for

service %�	
�) in object .�,
• →⊆ Γ × E × Γ is the set of transition relations on Γ where 21 γγ l iff F�, FJ ∈ Γ and

� = %�	
�) ∈ E is an enabled transition which means ∃L: 	 = ℎ��2(F�. 6�)), r is the

request for the ordinary service %�	
�) on head of the queue and the precondition

%�	
�). /	� of the service is evaluated as true and FJ results from F� by l as follows:
� Performing the actual transition from the state 1γ to the state2γ (by the service

%�	
�)) needs time 0 which depends on the probability distribution function of

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

8

the service (%�	
�). ���0) in the state 1γ and the real execution will be completed
when time 0 is elapsed in which the service remains enabled. As we assume that
the weight and the priority of all services are equal in the time 0, if there exist
multiple enabled services that are scheduled for execution, one of them is chosen
for execution with equal probability.

� The request message is removed from the head of F�. 6�), i.e.FJ. 6�) =
0���(F�. 6�)). This causes assigning the values of the formal parameters to the
real parameters, too.

� An ordinary service execution that is caused by request 	 leads the execution of
service %�	
�) of the object io as a sequence of instructions as an atomic

operation as follows:
o If the ordinary service is a multi-option service (i.e. the service has a

probabilistic case statement in its top level of statements), each case option
(internal statements of the option) leads in an atomic operation with the
probability defined as the option's probability. If not, the execution of the
service leads to unique outcome state,

o The execution of an ordinary statement (e.g. assignment statements,
conditional statements, etc.) in %�	
�) may change the value of some
variables in object io ,

o The execution of each statement:
((0ℎ��|�CL��0=�)? . ��	
����(��0���/�	���?)

where servName is an ordinary service, changes the service request
queue 6)O

�P where �P is the object identifier of objectID and is same as �
when local service request (without specifying any objectID or with
keyword this) is used and 6)O

�P ∈ '�P is the queue corresponding to

ordinary service servName when L′ is the service identifier,
o Execution of each ordinary service broadcast request statement

(className.servName(actualParams?)), changes all service request queues
6)O
�P where �P is object identifier of all objects with type className, �P ∈

{0|1 ≤ 0 ≤ |=|⋀���(�U) = ���������}, and for each �P, LP will be the
service identifier of servName in object i'o . Immediate services could not be

used in broadcast requests,
o Execution of each immediate service request statement

((0ℎ��|�CL��0=�). ��	
����(��0���/�	���?)
(where the corresponding servName is an immediate service), causes the
execution of �%�	
�P

)P (like a method call in programming language) where �′
is the object identifier of objectID and is same as � when local service request
(without specifying any objectID or with keyword this) is used and this
causes atomic execution of some statements, respectively.

• FG is the initial state of the model. Variables must be initialized to their default
values according to their types in constructors, and 'G is defined such that in the
beginning of the model, for all �, constructor of object .� is executed. It is obvious
that FG ∈ Γ.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

9

5. Analysis of RayLang Models

RayLang is a language for modeling discrete-event systems. The state space of
RayLang models can be generated by model execution in which every ordinary service
can be viewed as an event and the value of object variables in addition to the content of
service queues represent the state of the model (as mentioned earlier). The state space of
the model can be considered as a labeled transition system which could be used in the
analysis process. The initial state of the model is the situation where only the
constructors of all objects have been executed. In each state, some ordinary services
may be enabled, i.e. there exist at least one request in their request queue and their
preconditions evaluated to true. The execution of each enabled ordinary service causes a
transition to another state (if the modeler uses probabilistic case statement in a service,
the execution of the service results in probabilistic transitions into different states).
Generating the state space can be done in a depth-first or breadth-first order. Using the
defined semantics, if the state space of the model starting from the initial state is finite,
we can define the reachability graph as a labeled directed graph based on the
reachability set (the set of all reachable states). This reachability graph can be used for
model checking. If all ordinary services of a model have exponential PDFs, the
reachability graph can also be transformed into a continues-time Markov-chain
(CTMC), which can be used for analytic solution of the model.

Analytical approaches usually suffer from the state space explosion problem. When
the state space of a model is very large or larger than to be handled, discrete-event
simulation techniques can be used to analyze RayLang models. A simulation path is a
(random) path between some states starting from the initial state. Each event in the path
is the (atomic) execution of an enabled ordinary service.

Reward Specification in RayLang Models
For evaluation of a RayLang model, the modeler must define some reward variables

which are specific measures of system behavior based on his/her interests. Rewards that
are supported here are based on [19] which defines a unified approach to the
specification of performance, dependability and performability. A reward variable is a
set of one or more functions (with type double) which return reward value and are
defined on a state or transition between states in the model, i.e. there are two types of
reward functions: impulse reward functions and rate reward functions that specify
impulse and rate rewards, respectively. Rate rewards are used to define rewards based
on the time in each state and the corresponding function defines the measurement that
the reward should evaluate. The impulse reward functions that define impulse rewards
are evaluated when the specified ordinary service of an object in the model is executed.
For each reward, type of rewards must be defined which determines when, in system
time, the reward functions must be evaluated and includes steadyState, instanceOfTime,
intervalOfTime and averagedIntervalOfTime as presented in the syntax of reward
specification (Figure 2).

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

10

Figure 2.The syntax of the reward specification in RayLang models

Implementation of RayLang in PDETool
PDETool is a multi-formalism modeling tool which provides features for

construction and translation of models into the XML-based input language of an SDES-
based simulation engine, called SimGine [15] . PDETool is easily extensible to support
a wide range of graphical and non-graphical formalisms. Furthermore, it facilitates the
construction, animation and analysis of models. A formalism can be implemented in
PDETool if a mapping can be provided to the input language of SimGine.

We have implemented RayLang in PDETool by developing a translator, which
converts RayLang models into the input language of SimGine. It makes modelers
enable to evaluate RayLang models using discrete-event simulation technique. If all
events' delay functions are exponentially distributed, the tool can also be used to
analytically solve the model. In this direction, the model is transformed into a CTMC by
generating reduced reachability graph, which can be used in both transient and steady-
state analysis based on the specified reward variables.

The translation of RayLang model into the input language of SimGine is performed
by a two passes LL(K) parser. In a nutshell, this process is as follows. Objects' states and
services are flattened in the first step of translation. For each object, internal state-
variables will be translated into the model's state variable. Each ordinary service is
mapped into an event in addition to a queue (as a state-variable) which contains the
service's requests. All immediate services are translated into auxiliary functions, which
can be called during model execution and has a special parameter objectID to determine
the object in which the service is called.

6. Illustrative Examples

In this section, we present two examples to illustrate the syntax and semantics of
RayLang.

Example 1. A Client-Server Model
Consider a client-server system, presented in Figure 3, which has a server that serves

some clients. Each client sends a request to the server in the service sendReq (with
exponential rate 1) and waits for the server to respond it. The server has a queue
(corresponding to a service saysrvReq) contains all received requests that is not served
yet. The process of requesting and generating a proper response take a time which is
distributed exponentially. The generated response sent to the client, which generates the
corresponding request and after that, the client rcvRsp is executed after 3.0 time units.

rewards �’rewards’‘{‘(reward)* ‘}’
reward �rewardID‘;’rewardType‘{‘rateReward?

(impulseReward)* ‘}’
impulseReward �‘-’ ‘execute’‘(‘ObjID‘.’OrdinaryService ‘)’ ‘{‘ Body‘}’

rateReward �’-‘ ‘if’ ‘{‘ booleanExpresion? ‘}’ ‘{‘ Body ‘}’
rewardType �steadyState | instanceOfTime|intervalOfTime|

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

11

class Client{

 Server theServer;

 immediate service Client(Server theServer){

 this.theServer=theServer;

 arrive();

 }

 service arrive():Exp(1){

 theServer.enterInQueue();

 arrive();

 }

}

class Server{

 immediate service Server(){ }

 service enterInQueue():Exp(5){

 serv();

}

 immediate service serv(){}

}

main(){

 Server s(); Client c(s);

}

rewards{

 numberOfWaitedCustomers:steadyState{

 -if(true){return s.enterInQueue#;}

 }
}

Figure 3.A client-server model in RayLang

There are two classes, Client and Server, which are templates of the buffer and some
clients. Each client has a reference s to the object server for interacting with it. The
server interacts with its clients via a reference which is passed to the service rcvReq by
the parameter c with of the type of client.

Objects' definition is followed by classes. Each object has a type and proper
initialization parameters, which are passed to the constructor of that object. Here, a
server and four clients are defined. After initializing all objects by executing their
constructors, the model would be in its initial state. The impulse reward variable
reward1 is specified to investigate how many requests are served between time 10 and
20 in the server.

Example 2.A Readers and Writers Model
As the second example, we modify the last example to model probabilistic cases and

mutual exclusion. Assume that there exist a buffer and some customers that access to
the buffer for reading from/writing to it. Multiple readers can read from the buffer
simultaneously but a writer could write into it only if there is no readers or writers (any
customers generally). Figure 4 shows a RayLang model for this problem.

There are two classes, buffer and customer, which are templates of the buffer and
some customers. The state variables readers and writer in object buffer represent the
number of simultaneous readers and writer in the buffer (writer is always equal to zero
or one). Condition variables customerExist and writerExist will be true if any customers
(readers or writer) and any writer exist in the buffer, respectively.

At the beginning, each object customer will have a request for executing accessBuffer
to access the buffer. This will cause to try reading from/writing to the buffer with
probability 0.9/0.1 which is done by using a probabilistic case statement. Generating
such a request is performed during the time exponentially distributed with rate 1. The
object buffer serves the requests of customers. A service startRead can be executed if

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

12

the buffer is not performing a write request and a service startWrite can be started only
if the buffer is not performing any other (read/write) request. Executing a service
startRead/startWrite and finishRead/finishWrite show that the buffer starts to perform a
read/write request and finishes performing a read/write request, respectively. Start
process of the request takes place as early as possible (the PDF of the service is
deterministic with the parameter zero and it will be done whenever it is enabled). The
immediate service getResult in each customer object is performed when the request of
the object in the buffer is served and change the state of customer from waiting into
active.

In reward specification part, avgNR is defined as a rate reward which is intended to
evaluate the steady state average number of requests exist for reading in request queue
of service startRead in object b. It uses operator # which means the number of requests
in the service queue. This property can also be evaluated by reward avgNR2 which
examine the property using variable readers in object b that explicitly models (counts)
the number of read requests. The average number of the write operation, the average
number of requests waiting for a read operation and write operation can be evaluated by
rewards avgNW, avgNWR and avgNWW, respectively. The simulation results with 99%
of confidence level within the confidence interval 0.1 compared to the analytic results
(both obtained using PDETool) are presented in Table 1.

class customer{

 buffer b;

 immediate service customer(buffer b){

 this.b=b;

 accessbuffer();

 }

 service accessbuffer():Exp(2){

 case{

 0.9: b.startread(this);

 0.1: b.startwrite(this);

 }

 }

 immediate service release(){

 accessbuffer();

 }

}

class buffer{

 int readers, writer;

 condition icustomers, iwriter;

 immediate service buffer (){

 readers=0;

 writer=0;

 icustomers=false;

 iwriter=false;

 }

 service startread(customer

c):Deterministic(0){

 precondition: not iwriter;

 readers++;

 icustomers=true;

 finishread(c);

 }

}

 service startwrite(customer c):Deterministic(0){

 precondition: not icustomers;

 writer++;

 iwriter=true;

 icustomers=true;

 finishwrite(c);

 }

 service finishread(customer c):Exp(1){

 readers--;

 if (readers==0){icustomers=false;}

 c.release();

 }

 service finishwrite(customer c):Exp(1){

 writer--;

 iwriter=false;

 icustomers=false;

 c.release();

 }

}

main(){

 buffer b();

 customer c1(b),c2(b),c3(b),c4(b);

}

rewards{

 avgNR:steadyState { -if(true){return b.finishread#;}

}

 avgNW:steadyState { -if(true){return

b.finishwrite#;} }

 avgNR2:steadyState { -if(true){return b.readers;} }

 avgNW2:steadyState { -if(true){return b.writer;}}

 avgNWR:steadyState { -if(true){return

b.startread#;} }

 avgNWW:steadyState { -if(true){return

b.startwrite#;}

}

Figure 4.A Readers-Writers model in RayLang

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

13

Table 1.Evaluation of rewards in Readers-Writers modelusing PDETool

Reward ID Simulation result Variance Analytic result
avgNR 2.5715 0.0274 2.5344
avgNW 0.0978 0.0067 0.0998

avgNR2 2.5715 0.0274 2.5344
avgNW2 0.0978 0.0067 0.0998
avgNRW 0.1622 0.0133 0.0164
avgNWW 0.6618 0.0158 0.7060

7. Comparisons

In contrast to most modeling formalisms, such as Petri nets and process algebras, in
which the modelers deal with some low-level primitives (e.g. transitions, places, tokens
and channels etc.), in RayLang, the important primitives such as objects, variables and
services are high-level. This makes RayLang appropriate for modeling systems with a
proper abstraction level. Now, we compare RayLang with Rebeca, which is the most
similar formalism. Then, we compare RayLang, with some other existing models.

RayLang vs. Rebeca
As mentioned in Section 2, Rebeca is an actor-based language for modeling

concurrent and distributed systems. If we ignore stochastic (timing) concept of
RayLang, it has some conceptual and syntactic similarity with Rebeca. Even, one may
think RayLang as an (stochastic) extension of Rebeca with deep modifications. In
RayLang, we have objects, services and references instead of rebecs, massage servers
and known objects in Rebeca, respectively. The major differences between these two
languages can be explained as follows:

• In Rebeca, each rebec has its own message queue and its internal message servers
and all requests for the rebec come into this queue. For the request on the head of the
queue, the rebec executes the proper message server. But in RayLang as an object-
oriented modeling language, each service can be considered as an active thread
which has its own request queue that contains the requests sent for the corresponding
service.

• RayLang has two types of services: ordinary services and immediate services. In
contrast of Rebeca in which all communications take place by asynchronous message
passing and a message server may be executed when a request exists on top of the
rebec's queue, in RayLang, ordinary services could be executed if there exists a
request in its request queue and its precondition is enabled. Immediate services act
like (synchronous remote or local) method calls in programming language and
execute immediately whenever they are called.

• RayLang supports additional useful modeling facilities (like broadcast service
requests and dynamic objects relationship) which may help modeling realistic
systems like service-oriented systems and computer networks.

Comparison with Other Formalisms
A comparison between RayLang and other existing related formalisms is presented in

Table 2.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

14

Table 2.A Comparison of RayLang with Other Related Models

Criteria
Model

χ
[13]

SPNL
[26]

OSAN
[27]

LOOPN
[17]

MoDeST
[4]

CSP/CCS
[12][20]

Rebeca
[25] RayLang

Similarity with
programming
languages

× × × × � � �

Object-
based/oriented

� � � � � × � �

Synch./asynch.
comm.

�/× -/- -/- -/- -/- ×/� �/� �/�

Having non-
deterministic
extension

� × � × � � � �

Having probabilistic
extension

× × � × � × × �

Having
timed/stochastic
extension

� � � � � × × �

Model checking
tool support

� × � × × � � �

Performance
evaluation tool
support

� � � � � × × �

8. Conclusions

In this paper, we introduced an object-oriented modeling language called RayLang
for stochastic discrete-event systems and formally defined its syntax and semantics.
Object-oriented modeling can help modelers through encapsulated constructs. On the
other hand, model-based performance and dependability evaluation and formal
verification can be used to design more dependable systems. In RayLang, there are
active objects (which are instantiated from classes) run concurrently and communicate
with each other by requesting services. Each object has its internal variables and thus its
internal states. After defining classes and objects, the modeler can evaluate interested
measures specified by some reward variables.

The stochastic setting of RayLang models, which we discussed in this paper, can be
used for performance and dependability evaluation of stochastic discrete-event systems.
The non-deterministic setting of the language can be used for modeling and verification
of discrete-event systems via model checking techniques of the model against some
specified properties.

We have implemented RayLang within the PDETool by developing a translator
which maps RayLang models into the input language of the tool's simulation engine,
called SimGine. Numerical analysis of RayLang models (where the model satisfies
Markovian properties) can be exploited by generating the state space of the model in the
tool and solving the obtained CTMC.

Currently, we allow simple data types. More object-oriented properties (e.g.
inheritance) and supporting rich data types can be added to the language in future
extensions of RayLang.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Advances in Computer Research (Vol. 3, No. 4, November 2012) 1-16

15

9. References

[1] G. Agha,I. Mason, S. Smith and C. Talcott, “A Foundation for Actor Computation,” Journal of
Functional Programming, Vol. 7, No. 01, pp. 1-72, 1997.

[2] M. AjmoneMarsan,G. Balbo and G. Conte, Performance Models of Multiprocessor Systems,
MIT Press, pp. 142-188, 1986.

[3] K. Al-Begain, G. Bolch and H. Herold, Practical Performance Modeling: Application of the
MOSEL Language, Kluwer Academic Pub., 2001.

[4] H. Bohnenkamp,H. Hermanns,J. Katoen and R. Klaren,“The MoDeSTModeling Tool and Its
Implementation”, Lecture Notes in Computer Science, Vol. 4224 pp. 116-133, 2003.

[5] J. Bowen and M. Hinchey, “Ten Commandments of Formal Methods... Ten Years Later”,IEEE
Computer, Vol. 39, No. 1, pp. 40-48, 2006.

[6] D. Buchs and N. Guel,“A Concurrent Object-Oriented Petri Nets Approach for System
Specification”, In Proceedings of the 12thInternational Conference on Application and Theory of
Petri Nets, pp. 432-454, 1991.

[7] G. Chiola,C. Dutheillet, G. Franceschinis and S. Haddad, “Stochastic Well-Formed Colored Nets
and Symmetric Modeling Applications”, IEEE Transactions on Computers, Vol. 42, No. 11, pp.
1343-1360, 1993.

[8] P. CsabaÖlveczky and J. Meseguer,“Real-Time Maude: A Tool for Simulating and Analyzing
Real-Time and Hybrid Systems”, Electronic Notes in Theoretical Computer Science, Vol. 36, pp.
361-382, 2000.

[9] N. Guel, O. Biberstein, D. Buchs, E. Canver, M. Gaudel,F. von Henke and D. Schwier,
Comparison of Object-Oriented Formal Methods, TechnicalReport, Second Year Report of
Esprit Long Term Research Project 20072, 1997.

[10] C. Hewitt, Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language
for Proving Theorems and Manipulating Models in a Robot, TechnicalReport, Artificial
Intelligence Technical Report 258, Department of Computer Science, MIT, 1972.

[11] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press,
1996.

[12] C.A. Hoare, Communicating Sequential Processes, Communications of the ACM, Vo. 21, pp.
666-677, 1978.

[13] A. Hofkamp and J. Rooda, Chi 1.0 Reference Manual, Systems Engineering Group, Eindhoven
University of Technology, Rev-1322 Edition, 2007.

[14] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Monographs in Theoretical Computer Science,Vol. 1-3, An EATCS Series Springer-Verlag, Vol.
97, 1992.

[15] A. Khalili, A. Bidgoly and M. Abdollahi Azgomi, “PDETool: A Multi-Formalism Modeling
Tool for Discrete-Event Systems Based on SDES Description”, In Proceedings of the
30thInternational Conference on Application and Theory of Petri Nets and Other Models of
Concurrency, Paris, France, Lecture Notes in Theoretical Computer Science, Vol. 5606,Springer,
pp. 343-352, 2009.

[16] C. Lakos,“From Coloured Petri Nets to Object Petri Nets”, In Proceedings of the
16thInternational Conference on Application and Theory of Petri Nets, Turin, Italy, June 26-30,
Springer-Verlag, pp. 278-297, 1995.

[17] C. Lakos and C. Keen, “LOOPN-Language for Object-Oriented Petri Nets, In Proceedings of the
SCS Multi-Conference on Object-Oriented Simulation, Simulation, Series 23, Anaheim,
California, pp. 22-30, 1991.

[18] P. Lincoln,N. Marti-Oliet and J. Meseguer, “Specification, Transformation, and Programming of
Concurrent Systems in Rewriting Logic”, In Specification of Parallel Algorithms, DIMACS
Workshop,pp. 309-339, 1994.

[19] J.F. Meyer and W.H. Sanders, “A Unified Approach for Specifying Measures of Performance,
Dependability, and Performability”, In Proceedings of the Dependable Computing for Critical
Applications,Vol. 4, Springer Verlag, pp. 215-237, 1991.

[20] R. Milner,ACalculus of Communicating Systems, Springer-Verlag, 1982.
[21] M.Molloy,“Performance Analysis Using Stochastic Petri Nets”, IEEE Transactions on

Computers, Vol. 100, No. 31, pp. 913-917, 1982.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Modeling and Evaluation of Stochastic… A. Khalili. M. Abdollahi Azgomi

16

[22] A. Movaghar, Performability Modeling with Stochastic Activity Networks, Ph.D. Thesis,
University of Michigan, Ann Arbor, 1985.

[23] J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,1981.
[24] M. Sirjani, F. de Boer, A. Movaghar and A. Shali, “Extended Rebeca: AComponent-Based Actor

Language with Synchronous Message Passing, In Proceedings of the 5th International
Conference on Application of Concurrency to System Design, pp. 212-221, 2005.

[25] M. Sirjani,A. Movaghar, A.Shali and F. de Boer, “Modeling and Verification of Reactive
Systems Using Rebeca,FundamentaInformaticae, Vol. 63, No. 4, pp. 385-410, 2004

[26] C. Hirel,B. Tuffin and K.S. Trivedi, “SPNP: Stochastic Petri Nets, Version 6.0”, In Proceedings
of the 11th International Conference on Computer Performance Evaluation: Modelling
Techniques and Tools (TOOLS'00), Boudewijn R. Haverkort, Henrik C. Bohnenkamp, and
Connie U. Smith (Eds.), Springer-Verlag, London, UK, UK, pp. 354-357, 2000.

[27] M. Abdollahi Azgomi and A. Movaghar, “Modeling and Evaluation with Object Stochastic
Activity Networks”, In Proceedings of theFirstInternational Conference on the Quantitative
Evaluation of Systems (QEST’04), pp. 326-327, 2004.

www.SID.ir

www.SID.ir

